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FOREWORD 

The first, in the series of annual meetings entitled Army 
Conferences on Applied Mathematics and Computing, was held on 
9-11 May 1983 at George Washington University, Washington, DC. 
These meetings, sponsored by the Army Mathematics Steering 
Committee (AMSC), combines two symposia, namely the Conferences 
of Army Mathematicians and the Numerical Analysis and Computers 
conferences. The joining of these two meetings underscores the 
growing synergism between applicable mathematics and computing. 
In the next two paragraphs short histories of the two forerunners 
of these new conferences are presented. 

The Office of Ordnance Research, now the Army Research 
Office, planned a series of symposia called Ordnance Conferences 
of Arsenal Mathematicians. The first of these meetings was held 
on 29 October 1954 at Watertown Arsenal. The purpose of these 
meetings was to focus the attention of applied mathematicians on 
some specific ordnance projects needing high level scientific 
knowledge. Following the Seventh Conference of Ordnance 
Mathematicians, the AMSC became the sponsor for these symposia. 
This committee requested that these conferences be held on an 
Army-wide basis , and that their name be changed to Conferences of 
Army Mathematicians. This name continued through the 
twenty-eight conference, which was held on 28-30 June 1982 at the 
Uniformed Services University of Health Sciences, Bethesda, 
Maryland. 

About five years after the first Conference of Arsenal 
Mathematicians was held, the Office of Ordnance Research 
organized an OOR Liason Group on Computers. Two of these 
meetings were held, one in 1959 and the other in 1960, to 
exchange information of interest to managers of ordnance 
computers. [These gatherings can be considered as the forerunners 
of the Numerical Analysis and Computers Conferences.] The AMSC 
decided that these meetings should be conducted on an Army-wide 
basis and be entitled the AR0 Working Groups on Computers. Their 
purpose was to provide a format for exchanging ideas on the 
Army's desires, capabilities, and interest in the field of 
'other-than business' application of computers, and they should 
provide AMSC and AR0 with information on the Army's need for 
computers, requirements for assistance in research in numerical 
analysis, and other kinds of mathematics. Two meetings, one in 
1962 and the other in 1964, were held under the above mentioned 
title. Starting in 1965 these symposia were held, except for 
1973, on a yearly basis, and at first were entitled Army 
Numerical Analysis Conferences. Starting with the 1975 meeting 
they became known as the Numerical Analysis and Computers 
Conferences. The last meeting in this series was held on 3-4. 
February 1982 at the U. S. Army Engineer Waterways Experiment 
Station, Vicksburg, Mississippi. 
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Members of the AMSC would like to thank Professor Nozer D. 
Singpurwalla of George Washington University, Washington, DC, for 
his invitation to hold the first meeting of this new series of 
conferences at his university. They would also like to thank him 
for providing such excellent facilities for the symposium, and 
for all the help he and other members of this staff provided to 
insure ,a smooth running meeting. 

The Program Committee was especially pleased with the quality 
of the contributed papers for this meeting. Also the number of 
these papers, S7, helped get these new conferences off to a good 
start. There was a Special Session on Distributed Command and 
Control. The speakers in this session covered topics of special 
interest to various Army groups. A list of the invited speakers 
along with the titles of their addresses is noted below. Members 
of the Committee are sorry to report that, due to a previous 
engagement, Dr. Karl J. Astrom of the Lund Institute of Control, 
Sweden, was unable to accept our invitation to address this 
conference. 

Speaker and Affiliations Title 

Professor Julian Cole Pertubation Techniques for 
Rensselaer Polytechnic Institute Fluid Dynamics 

Professor Andrew Majda Stability and Instability 
University of California-Berkeley for Shock- Waves 

Professor Sanjoy K. Mitter 
Massachusetts Institute of 

Technology 

Adaptive Controls 

Dr. M. Yousuff Hussaini Spectral Methods for Partial 
NASA Langley Research Center Differential Equations 

Professor Carl de Boor Multivariate B-Splines 
Mathematics Research Center, 
University of Wisconsin-Madison 

Members of the AMSC would like to thank the speakers and all 
the other individuals who contributed to the success of this 
meeting. They have requested that most of the contributed papers 
be made available in printed form. These research articles will 
enable many persons that could not attend the smposium to profit 
by these contributions to the scientific literature. 
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FLAMES IN FLUIDS: THEIR INTERACTION AND STABILITY 

A CALCULATION OF WRINKLED FLAMES 

fi..V. McConnaughey, M&Tern&c6 Raeah& Centa, 
kk.mi$q 04 Whcondin-Ma&an, G,S.S. Luddand, 
Come.tl Lltivetlai.%y, and 0.1. SICvahi~ky, 
Text- Aviv Univatiy 

EVOLUTION OF NEAR CHAPMAN-JOUGET DETONATIONS 

P. S. SrteumZ, Lhivmtirj 06 l&&h& and G.S.S. 
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THE DETONATION WAVE RESULTING FROM SHOCK-INDUCED 
TRANSITION OF A DEFLAGRATION 

A. A. Oy&.&an and G.S.S. Luddqnd, b&n& 
Llvliv wlAi;ty 
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BIVARIATE QUADRATIC SPLINES ON CRISSCROSS 
TRIANGULATIONS 

DESIGNING FINITE ELEMENT SOFTWARE FOR LARGE 
DEFORMATION ANALYSIS 

Pennh M. Tnacey and Rodlzdy S. Gahaoum, hrrmy 
Mtitia.& and hkchaniti Re~nanch Cut&k 

HIGHLY PARALLEL ARCHITECTURES FOR SOLVING 
ORDINARY DIFFERENTIAL EQUATIONS 

R&m ff. T&avauc~n, lvttegmted Sydemn inc. 
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ASYMPTOTICS AND NUMERICS 

Julian D. Cole 
Department of Mathematical Sciences 

Rensselaer Polytechnic Institute 
Troy, NY 12181 

ABSTRACT. Limit process expansions applied to piwhlems for 
partial differential equations are discussed. Three different 
types of non-uniformities, non-linear far field, non-linear 
local singularity, and singular boundary conditions are illus- 
trated by example. The use of different limits to construct 
overlapping expansions is emphasized. Matching is sketched 
briefly. 

I. INTRODUCTION. The combination of asymptotic and numer- 
ical methods provides a very useful approach to a wide variety 
of problems involving partial differential equations. In many 
cases an "exact" problem can be formulated which is non-linear. 
This non-linear problem in its dimensionless form contains 
various parameters. When a parameter is effectively small (or 
large) the dependence of the solution on the parameter can be 
studied. The dependence is asymptotic and can very often be 
connected with a limit process in terms of resealed coordinates 
and similarity parameters. Very often, too, different expan- 
sions are needed to achieve validity in different regions. 
!Zxpansions in adjacent regions of physical and parameter space 
can be connected by asymptotic matching. The purpose of the 
asymptotic analysis is to define the simplest problems illus- 
trating the phenomena. Both qualitative and quantitative 
understanding is sought. The limit processes used.to construct 
the expansions bring out the similarity parameters of the 
problem End provide scaling laws. 

In problems that are intrinsically non-linear the represen- 
tative simplified problems retain that feature. Thus numerical 
work comes into the picture. The asymptotic analysis isolates 
the crucial numerical problem and can reduce the amount of 
computations required by an order of magnitude. Typical prob- 
lems have to be solved numerically in infinite or semi-infinite 
domains. But asymptotic matching provides the necessary far 
field boundary conditions and determines the constants. Because 
of the asymptotic analysis the numerical problems contain the- 
minimum number of' parameters. Further the variables and 
parameters are scaled to O(l), simplifying the numerics. 

Limit process expansions are applicable to all problems 
where the limits of the solutions exist. If, for example, 
tiscillatory functions appear which do not have limits, then 
multi-scale, WKB, or averaging methods can be adopted. Limit 
process expansions are considered here. An illustrative form 
for a function of one variable x, and two parameters E~P is the 
following 
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-- 
f(X;E,II) = al(E)fl(x;ll) f lX2(E)fz(T;;u) + . . . (1) 

for atxtb. E is the basic parameter; ~((1. - - The aj(E) form an 

asymptotic sequence so that as E+O , aj+l+O -. x = X(x; E), 
ji= V(E,P) are definite functions chosea; for the purposes of the 
expansion. ~I(E,II) is a similarity parameter, The choices are 
not arbitrary .but are connected with the requirement that the 
limit process associated with (1) be distinguished (cf El]). 
The successive terms in (1) are computed from f(X;E,p) by 
successive application of the limits (E+O, x,c fixed). Thus 

These expansions are not usually valid in the entire region 
(a,b) but have some restricted domain of validity, in which the 
asymptotic nature of (1) remains. When the validity breaks down 
(non-uniformity) an adjacent expansion is sought, which can be 
matched to the previous one in an overlap domain. 

In the following sections three examples are presented in 
which asymptotic analysis leads to a better understanding. In 
the first involving water waves there is a non-uniformity at 
infinity and also as the parameter Froude number F+l. The reso- 
lution of the non-uniformity at infinity is a non-linear far 
field expansion. The resolution of that as F+l seems to demand a 
numerical calculation of an unsteady flow. The second example 
of transonic slender body theory shows a boundary value problem 
which is singular because the body shrinks to a line. The inner 
expansion preserves body geometry and is valid for small radius. 
The outer expansion preserves non-linear transonic effects and 
is valid from some region near the body to infinity. These 
expansions do not really match so that an intermediate 
expansion, valid for radius of order of the body length is 
necessary. The third example considers thin supersonic wings 
whose edges are swept to (or close to) the Mach angle. Although 
the linearized theory gives a finite answer it is not correct 
because of a local singularity at the edge. An expansion valid 
near the edge, containing non-linear transonic terms, must be 
constructed and matched to the linear solution away from the 
edge, An analogy is thus shown between the steady three- 
dimensional flow near the edge and two-dimensional unsteady 
small-disturbance transonic flow. 

Another connection of asymptotic and numerics is the 
asymptotic analysis of finite difference schemes as the 
mesh-size approaches zero, and the analysis of truncation error. 
These aspects are not discussed here. 

II. TWO DIMENSIONAL FREE SURFACE FLOW PAST A BUMP. The 
exact problem for an lnvlscid heavy fluld is illustrated in 
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Fig. 1. Continuity and irrotationality lead to the Laplace 
equation. Flow is assumed steady. Boundary conditions of 
tangent flow are applied at the free-surface and at the bump and 
the Bernoulli equation is used to express p=O on the free 
surface. 

In the exact formulation velocities are scaled by the free- 
stream speed U, lengths by the bump length L, pressure by pU2. 
The exact problem is 

cpxx + 9yy = 0 

= 0 

The parameters are 

E = thickness ratio of bump 

(II-l) 

free (II-2) 
surface 

tangency ( I I -'- 3 ) 

F = Froude No. = U/m = flow speed 
fastest linear wave speed 

h = H/L . 
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For a small bump ~<<l a limit process expansion associated with 
the limit E+O, (x,y),(F2,h) fixed linearizes the problem. There 
is a small perturbation of uniform flow . The form for the 
potential 4, and free surface shape ys is 

$(x,y; E,F,h) = x + #'(x,y;F,h) + ~~V'2(x,y;F,b) + . . . 

y&;EAh) = h -t Eq(x;F,h) f $,2(x;F,h) + . . . 

The linear problem that results was solved by Kelvin and Lamb 
121 

qxx +'pyy = 0 (11-5) 

F2hpxx(x,h) + cPy(x,h) = 0 (11-6) 

rpy(xAu = f’(x) l 

The solution has the features shown in Fig. 2. 

(II-7) 

FIG. 2. LINEARIZED FLOW PAST"BUMP 

For F<l the flow dips down over the bump and rises with a wave 
train behind. There is a finite wave drag. For F>l no linear 
standing waves are possible. The flow rises over the bump and 
falls behind. The drag is zero. The linear expansion has a 
non-uniformity as F+l-; for F<l the wave length gets longer as. 
F+l- and finally the solution has the asymptotic form (if r\2 is 
worked out) 

tl’- 3x I 
P 

9x4 
9 + - 4h7 

(WI-P) 



From this it is clear that there is a non-uniformity downstream 
when ~~3-1. Non-linear wave effects become important 
downstream. 

In order to study this a new limit is considered in which 
F+l and the observer goes farther and farther downstream as e+O. 
That is 

E + 0, (z=El/3x,y),(K,h) fixed where F*=l-Kc*/3 . 

K is a similarity parameter. The powers of E are chosen for a 
distinguished limit, x changes are slow. The Laplace equation 
is approximated by c$~~=O and in effect, iterated. The form is 

I# = x + El/3 al(Z) + E{a2(~)-y*alll(;;)/2}+~5/31a3(~)-y2a211(~)/2 

+ y4al1111(Z)/24} + .., 

Ys = h + ~*/~[l(jT) + ~4/3(2(2) + . . . (II-91 

The equation for the free surface that holds downstream is 

d251 + 9 52 + 3K El - 0 
d,x2 2h3 h2 

All the 
Fig. 3. 

possible solutions appear in the phase 

8 3 dsI 
dX 

plane 

(11-10) 

of 

FIG. 3. PHASE PLANE 

The solution is chosen so that, for matching, as r;i+O+, 0+-3/h* 
(cf 11-8). A is related to the area of the bump. If e(Y=O) is 
of sufficiently small magnitude there is matching to a closed 
trajectory, a downstream non-linear (cnoidal) wave train 
periodic in 'jY. For K=K,-r, 0 appears at 9max and then the 
solution is the downstream part of a solitary wave. The 
ultimate level downstream is lower than that upstream. But no 
solution exists for K<Kcr so that there is a further 
non-uniformity as F gets closer to 1. The supercritical 
solution F>l also up as F+l+. For a further discussion of 
this problem see 
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III. TRANSONIC SLENDER BODY THEORY. Transonic slender 
body theoryshows a non-unitormity of a different na%ure. 
Consider a slender body as in Fig. 4 flying close to the speed 
of sound. The theory is worked out in the framework of gas 
dynamics (inviscid, perfect gas). Shocks are weak 

FIG. 4. SLENDER BODY 

so that the flow remains isentropic and a potential 0 exists. 
Lengths are scaled by the body length, velocities by the free- 
stream speed U. The small parameter 6 is the body thickness 
ratio and measures the order of the flow deflection. The angle 
of attack a, not appearing explicitly, is assumed O(6). The 
continuity equation becomes the compressible potential equation 

a*V*@ = q.v q* , q = v4 
( ) 7 

(III-l) 

where 

a* = 1 + y-l 1 - s_l , 
3 p1 -T- 

I 1 U2 
y=ratio of specific heats=% . (III-2) 

CV m 
, 

(III-2) is the compressible Bernoulli equation, a=local speed of 
sound, M--free-stream Mach number=U/a,. Equation (III-l) is 
non-linear of changing type, 
subsonic Iqjta, 

locally elliptic where the flow is 

sonic (c(>a. 
and locally hyperbolic where the flow is super- 

The boundary condition of tangent flow has to be 
satisfied on the body surface B=O, 

-&VB = 0 l (III-3) 

The approximations are concerned with 6*0, M-+1. In'outer 
coordinates the body shrinks to a line. An inner expansion is 
needed to preserve the body geometry and satisfy (111-3). Thus 
the limit 6+0, (x,y*=s,z*=$) fixed is considered. At the same 
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L .-l 

time M-+1 such that K = lVMm 
2 

fixed, as considerations of the 
62 

outer limit show is necessary. -The inner expansion is of the' 
form 

og62S(x)i62V(x,r*,0)+6410g*6(P2~ 

+ 641ogW21+64Q+... (III-+4) 

where r*2=y*2+z*2 , 8=tanv1 a . 
0 z 

This expansion includes so-called switch back terms introduced 
for purposes of matching. The dominant equation of the inner 
expansion is the Laplace equation in each cross-section plane 

qy*y*fqz”z* = 0 (III-S) 

The outer expansion, valid to infinity has to preserve the 
non-linear changing type structure. Since disturbances spread 
laterally to much greater distances than upstream, the observer 
has to run to infinity laterally. 

x,F=&r,B;K) fixed where m 
The limit process has 6+0 

r= y +z . The expansion is of the form 
anticipating some matching) 

a = u{x+a2@(x,F)+s4$2(x,F,e)+...) . (III-G) 

The resulting dominant equation is the transonic small- 
disturbance equation 

(K-(Y+U~~~$~~ + GE + & oF = o 
r 

(111-7) 

Matching is concerned with behavior as r*+m, F+O. We know that 
far away the solution of (111-5) looks like a source-line, with 
S(x) a source strength / 

50= S(x)logr* + g(x) + . . . (111-8) 

Formally matching for the first terms shows that indeed + is 
axisymmetric. But the two expansions do not really match as can 
be inferred from the fact that r += in the outer limit and r+O in 
the inner. The difficulty is manifest in the higher orders. An 
intermediate expansion is thus needed and turns out to be 
connected with the limit 6+0, (x,y,z;K) fixed. The form is 

rt, = ~{x+62&x,y,z;K)+6~~1+6~~2+~~~~ 9 (111-9) 

The equations are 



- 
“yy + $22 = 0 (III-l@) 

Tlyy + 7-1 = 0 ZZ 

- 

+,YY 
+ 92 ZZ 

-- 
= (Y+u+x4Jxx Kixx 

(III-11) 

+ a(; $2) . 
ax Y 

(III-12) 

The intermediate expansion must match to the inner expansion as 
r=m+O r (r*+=) and to the outer as r+= (y:+O). Matching 
shows that 

5 = S(x)logr + g(x) . (111-13) 

The first term on the right hand side of (111-12) is dominant 
as r+m and is the non-linear term necessary to match to the 
outer expansion as Y+O, (111-7). The last term on the right 
hand side of (111-12) dominates as r+O and is the non-linear 
term necessary to match to the higher order inner terms. 

The outcome of all this is a well posed boundary value 
problem for (111-7) r+r+S(x) r-t0 where S(x), from the inner 
expansion, is related to the rate of change for cross-section 
area of the slender body. The dominant outer flow is axisym- 
metric; This defines g(x). Further a deeper understanding 
of the non-axisymi+etric flow fields is gained. 

IV. PSEUDO-TRANSONIC FLOW. In the same general framework 
as the preceeding section, pseudo-transonic effects occur when 
the leading edge of a thin supersonic (M,>l) wing is swept to 
the Mach angle eM=tan-l am* 

E- 
(See Fig. 5) 

IL 
FIG. 5. PSEUDO-TRANSONIC FLOW 

a 



B now measures the thickness ratio of the wing. Linearized 
supersonic theory is traditionally used to calculate the flax 
about such wings. The physical content is that of acoustics. 
The limit process has 6+0 (x,y,z;M-) fixed. The corresponding 
expansion is of the form 

Q = U{x+G~(x,y,z;Nm)+...) (IV-l) 

The disturbance potential 4 satisfies the classical wave 
equation 

k2-1) $xx - (9yyVzz) = 0 (IV-21 

The boundary value problem in y>O can be solved by a 
distribution of supersonic sources over the wing planfDrm in 
y=o. For the special case of a wedge airfoil 
F(x,z) = (x- J o1 M 2-1 z)l the boundary condition of t+l!gent fiow 

2 
is 

Qy(x,O+.z) =; 

The solution is 

Ux,y,z) = - 1 (J (1/2)dtds 
rr 'real J(x-S)L-BL(z-r)L-BL ” r’ 

(IV-31 

, $=M-*-1 (IV-4) 

z - 1 
3 

Jx2-&y2+,2) + Y cos-1 BY (IV-S) 
rr Jx+LzL 

The square root 
leading edge and 

behavior indicates a singularity in $x at the 
a non-uniformity of linearized theory. The 

component of flow normal to the edge is exactly sonic so that 
transonic effects could be expected. Although the singularity 
is integrable the finite results in this case are not in good 
agreement with experiment. A better treatment locally comes 
from the following limit 

6+0 (5’ x-f3z , rl= y 
6213 

, C=Z , M;) fixed. 
&l/3 

The expansion is valid in a local region near the leading edge; 
The form turns out to be 

(P = U{X+~~/~ (E,o,~iM,)+...j (IV-6) 

The distinguished equation for q that results is 

(IV-7) + 
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This equation is in perfect analogy with the unsteady version of 
the two-dimensional transonic small disturbance equation (111-7) 
with K=O. Here 5+x, r~+y, 5'7. This says that the flow can be 
computed as if there were unsteady flow at each spanwise section 
starting at the apex. As usual (IV-7) admits shock waves. The 
solution far away from the edge must match to the linear 
solution (IV-5).If tie write (IV-5) in inner coordinates and keep 
dominant terms we see that 

Thus for matching 

This provides the far field boundary condition for (IV-7), and 
calculations can be performed. This particular problem is 
conical and can be simplified further. It can be shown that the 
drag including pseudotransonic effects is reduced. 

The results here indicate that the flow near a high aspect 
ratio wing swept to the Mach angle should also be approximated 
by (IV-7). This is the case for the wing in Fig. 6. 

FIG. 6. SWEPT HIGH ASPECT PATIO WING 

10 



The expansion is of the form 

@(X,Y,Z) = UEX+~~/~ &q,q,;B+,...) (IV-91 

where 6=x-Bz, r1=61/3y, ~=61/3z and the similarity parameter 
B=61/3b. 

The results of this section are easily extended to cases 
where the edges are close the Mach angle. 

part 
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AN EQUIVALENT GAS MODEL FOR DUSTY GASES 

Donald A. Drew* and Fredrick J. Zeigler** 

1. INTRODUCTIQN 

Many fluid flow problems of interest concern the behavior of a gas which 

has. been contaminated with small particles of dust. The presence of the dust 

can cause significant changes in the flow, and it is important to analyze an 

explanation for this phenomenon. This is done by examining a model in which 

the gas and dust exchange heat and momentum. In the limit of low volumetric 

concentrations of dust, but with strong coupling between the phases, the model 

equations are closely approximated by the equations for an adiabatic ideal 

gas, with modified values of the density and ratio of specific heats. By the 

use of similarity transformations of these equations, it is possible to relate 

solutions of flow problems for a gas with dust to solutions of, corresponding 

problems for a clear'gas, thus giving an explicit way of calculating the 

effect of the dust'on the flow. Because of their simple form, the equations 

of transonic flow are used to provide an example of this procedure. It is 

found that-the transonic flow around a thin airfoil for a gas with dust is 

equivalent to the flow around an airfoil with modified thickness, at a 

different free-stream Mach number. 

*Department of Mathematical Sciences, Rensselaer Polytechnic Institute, 
Troy, NY 12181 

**General Dynamics Corporation, Fort Worth Division, P. 0. Box 748, Mail 
Zone 2882, Ft. Worth, TX 76101 

Sponsored by the United States Army under Contract No. DA?G29-80<-0041. 
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2. EQUATIONS OF TWO-PHASE FLOW 

The equations governing the flow of particles and fluid are 

aap 
1? c V*ap G = 0 I 

at PP 

au - alp f 
at + V*(l I a)p,G, 3 0 0 

Orp I i!E + Gp.VG ) 
P at P 

= &7P + ab (4 
M f 

(2. la) 

(2. lb) 

(2.2a) 

(2.2b) 

a(Ep +-’ 2 
aPp[ 

2 qp) + 
at +q*VE 

P [ P + + $1 = 

=- V*a * 
p9p 

- pVa* + abv(Gf F gp 's + I+ + aH (T M f -Tp' I f2.3a) 

= -V*(l - a)P$ - pVa* - ab M (; f - $,)=;B + uHM(Tp - Tf) , (2.3bi 

where 2.1, 2.2, and 2.3 are equations of conservation of mass, momentum, and 

energy for the particle and fluid phases. Here G represents the velocity 

tp for particles, f for fluid), CC is the dust volumetric density, p 

denotes the phasic density, p is the pressure, and C is the internal 

energy per unit mass. 

The dust is assumed to be incompressible 

P = ctmst ; 
P 

the ideal gas law 

14 
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P = RPfTf 

holds for the fluid. We assume 

E = ctp)T 
P VP 

and, 

(2.5) 

I 

(f) 
Ef = cv Tf + P/P~ . (2.6) 

The terms on the right of (2.2) and (2.3) involving s and s reflect 

momentum and energy transfer between the particles and gas. For b, we 

assume Stokes drag 

The heat transfer coefficient HM is assumed to be 
4 

%= 
$Nu Pr bM . 

where Nu is the Nusselt number and Pr is the Prandtl number. 
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The dusty gas limit of the previous two-phase flow equations corresponds 

to the limit a << 1, 
pf << P and up - P . In order to exhibit this 

P P f 

limit explicitly we first scale the variables and put the equations into 

nondimensional form. 

Thus, we assume the problem contains a typical length scale L, velocity 

scale U, gas density scale r, temperature scale TO, and volumetric 

concentration scale A. If we denote a dimensionless variable by a caret (~1, 

we have 

apf A A ; 
7 + V’Pf% = 0 
at 

(3.la) 

(3.lb) 

(3.2a) 

* a; -- * ,,(4 + Gf ‘GGf) = -;; + - •k 
at 

i a( it2 - G,, (3.2b) 

CI A * A 
c + h** * = Uhf - i$,)*Gp + E atTp - Tf) l 

The equations of state take the form 

P = rPfTf , 

(3.3b) 

(3.4) 

E =cT 
P P' 

Ef 
= cTf + P/P, 0 

(3.5) 

(3.6) 

16 



The dimensionless constants are defined by 

E = (ff) (?) ($[%) . 

gpf 

h = HMTo/bM"' 

r = RT,/U2 

c=c yTo/U2 

A 
c = c;~)T#I~ . 

17 
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(3.7b) 

(3.3c) 

(3.3d) 
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4. GENERALIZED GAS MODEL 

We see that for sufficiently small particles, s will be small. The 

rest of our discussion will be limited to the regime 6 << 1. 

For this case, inspection of equation 3.2 shows that Gf = 
;P 

(we now 

dxop the carets for convenience) unless the accelerations are large. This 

suggest a model which we term the generalized gas model, which has the 

property that ; = G + O(E), except in places where the flow fields change 

rapidly. We shall call these regions of rapid change generalized shocks. As 

we shall see, this model is analogous to a gas with changed properties. 
+ + 

Consider the flow fields a, 9 I q I P p 
etc. as functions of 

+ 
X# t, and E. In the generalized gas model, we consider a limit of the 

+ 
dusty gas equations in which E + 0, with x, t held fixed. Away from 

generalized shocks, we therefore consider an expansion 

a(x,t;c) = a (0) (x,t) * Ea(')(x,t) + . . . (4.2) 

with similar expressions for the other flow quantities. 

Substituting these expxessions into the dusty gas equations and equating 

terms of equal order to zero gives the following: 

T(o) = T(o) E T 
f P 

aa - + V*a(O)G = 0 
at 

apt') f - + v.p;); = 0 
at 

(4.3) 

(4.4) 

(4.5) 

(4.6) 
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(0) & 
pf C at + G=vG) = -vp (0) •t ,(o)(y) +(I ) 

P -qf ) (4.8) 

f f[ 12 + &v(cT + z q )] = '(I 1 
at (q (I) 

f - qP 
'('))*; + h(Tf - T;‘)) (4.9) 

(0) 
pf 1 

a($O) + $q2) 
at + ;;'V(E (0) 

f 
f + q2)] = 

= -pp(O )+ 9 - .(o,,;p _ p.; + huyT;l) _ T:l)) 

plo) = rp:')T 

(4.10) 

(4.11) 

(4.12) 

This model allows us to derive the equations needed at the lowest 

order. Adding a (0) times (4.7) to (4.8) yields 

(p(o) + p (0) 
f f& + L&G) = -vp 

A similar combination of (4.9) and (4.10) gives 

(4.13) 

(0) a& 
pf at [- + &] + a(O)f[z + &VcT] * 

+ q + u(o)f),a(~tq2) + &v(+ q2)] + 

Io) ,p)  

+ p;“J[a(p at f  
+ &V(p 

(“%o )  

)  ]  = -v.p(oJ; .  

Additionally, (4.5) and (4.6) may be combined as 

atpi') + 2O)f) 
(0) + a(O) 

ap 

at + WPf f,$ = 0 = * + v*pm; 

(4.14) 

(4.15) 
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where p = P (0) 
f 

+ a(O) f is the mixture density. Using (4.5) and (4.6) we m 

obtain 

(4.16) 

Therefore a is constant for a fluid Particle. We shall assume that 

a(0),p(O) is constant over the entire flow domain. If we subtract the f 

kinetic energy equation from (4.141, and use (4.6) and (4.11), we have 

Therefore 

(o');-l T = Const*(Pf 

where 

ato+ c 
c 
c + cr(0)fc/p:O) 

Y+ -Eii^ 
CI pf c+r 
y=* 

c + r + a(0)fc/piO) = , + U'O)f c -- 
(0, - 

pf c+r 

(4.18) 

(4.19) 

Dropping the (0) superscript for the pressure, the generalized gas 

model is 

PmC$ + i&v;, = -vp , 

(4.20) 

(4.21) 

P/P, 
; 

= (Pm/PO) , (4.22) 
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where Pa and PO are constants. Thus, a dusty gas with small dust 

particles behaves Like a gas with a modified y. We empha'size that this 

derivation assumes that we are not near a shock. 

We note that the speed of swund for a generalized gas is given by 

* 
where a 

(0) 

is the spee~P~6jsou~d in the clear gas. Moreover, since 

Pm = Pf + a(O)f, -+- = 14 l 

m 
;,o, 

f 
1+- 

*to) 
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5. SMALL DISTRUBANCE THEORY 

The dusty gas may be regawded as an equivalent gas with a modified value 

of y. Assuming that we have potential flow, it is therefore possible to 

formulate a small-disturbance theory for transonic thin airfoils in dusty 

gases, analogous to that in I2 I. The transonic similarity paxameter for this 

case is a function of the new value of Y. It will be shown how this modified 

similarity parameter is related to the usual one for the case of no dust, so 

that a method of estimating the effect of the dust on the usual small- 

disturbance theory may be achieved. 

We formulate the boundary value problem for a thin airfoil, in a dusty 

gas and travelling in the transanic range. The free-stream Velocity is U 

(in the x direction), where the coordinates x, y have been normalized with 

respect to the airfoil chord. The airfoil is given by y = bFU I1t~), where 
I 

the function F satisfies max IFJX) - FE(x)1 = 1. The free stream Mach 
h * xe[O,ll 

number is Mm = U/a=. 

Under the condition of small disturbances, we may derive an approximate 

equation by a limit process expansion for the velocity potential 4, based on 

1 - ;" 
the limit process 6 + 0, l/3 with x,'; = s y, and i = 

&2/3 
Q1 fixed as 

It has the form 

@(x,y;6) = u{x + 62'3+(x,;l * . . .I . 

Then $ satisfies 

k - (; + l'$x)+xx + "yu = 0 

and the boundary conditions 

OCxCl 
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In this context,the Kutta condition may be written as 

r9xl,, = 0 I (5.5) 

where TE means trailing edge. 

Additionally, shock jump conditions must be imposed in order to have a 

complete problem for 0. 

The form of (5.2) shows that for two flows at different transonic Mach 

numbers, but with the same values of i, these two flows will be 

geometrically similar (the difference will be that the 'size' of the 

disturbance will be determined by different factors of 6 2/3. J. An analogous 

similarity law holds for the gas alone, governed by the similarity parameter 

K. Both of these similarity laws relate families of flows, for different 

values of the displacement thickness at a corresponding Mach number. 

We wish to see how the change in the ratio of the specific heats for the 

dusty gas, ;, affects the flow. This will be done by finding a 

correspondence between the similarity parameters in the two cases. 

We shall develop the correspondence by transforming the boundary value 

problem (5.2)-(5.5) for the dusty gas into a problem for the gas without 

dust. Define 

E = u-2; 

3 
where and ;=w&. Then, under (5.6) the entire 

* 
for +(x,;;K) transforms to the corresponding problem for Stx.L;E 

is the case of the gas without dust. The similarity parameter 

(5.h) 

(5.6bJ 

(5.6~) 

problem 

I which 

or the new 

problem is of the form 
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1 - iit 1 1 
K= 

12/3 = (,3&)2/3 = u262/3 = w K ' (5.7) 

from which we conclude i m = ii,. 

Thus, we see from (5.6~) that the small. disturbance problem for a dusty 

gas is equivalent to one for a clear gas, with a modified amplitude of 

disturbances, a changed wing thickness ratio and similarity parameter. 

The transformation parameter W, as a function of a (0) (0) 
f/Pf I is shown 

in Figure. 5.1 for c,(i + r) = 1.0, which is a representative value for many 

materials. 

w =I.29 *- -_---- --,-_--- 
m 

-----_ 

0.5 - 

0.0 0 I I 

0.0 1.0 2.0 
3.0 a 

to1 f/$) 

Figure 5.1. w vs. a 
(0) 

f/PiO) 
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Thus, for example, a dusty flow with a mass loading of 2.0 corresponds to 

a value of W of 1.21, which means that if the airfoil has 'thickness 6, the 

flow is equivalent to that of a clear gas around an airfoil of the same shape, 

but of thickness 3 = w36 = 1.776. The equivalent similarity parameter K is 

K&w -2* K = 0.68;. 
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ABSTRACT. We study the flow of two immiscible fluids of different 
viscosities and equal density through a pipe under a pressure gradient. This 
problem has a continuum of solutions corresponding to arbitrarily prescribed 
interface shapes. The ,question therefore arises, which of these solutions are 
stable and thus observable. Experiments have shown a tendency for the thinner 
fluid to encapsulate the thicker one. This has been "explained" by the 
viscous dissipation principle, which postulates that the amount of viscous 
dissipation is minimized for a given flow rate. For a circular pipe, this .' 
predicts a concentric configuration with the more viscous fiuid located at tie 
core. A linear stability analysis, which is carried out numerically, shows 
that while this configuration is stable when the more viscous fluid occupies 
most of the pipe, it is not stable when there is more of the thin fluid. 
Therefore the dissipation principle does not always hold, and the volume ratio 
is a crucial. factor. 

22 INTRODUCTION. The flow we consider is a cylindrical pipe of infinite 
length in which there are two fluids. The fluids are immiscible and have the 
same density but different viscosities. The flow is steady, purely axial and 
driven by a prescribed pressure gradient. 

The equations governing the flow are the steady Navier-Stokes equations 
with the velocity and the pressure gradient in the axial directicn, and 
incompressibility. The boundary condit.ions are: no slip at the pipe wall, 
and at the interface of the two fluids, which one of the unknowns, the normal 
and shear stresses and the velocity are to be continuous. He specify the 
ratio of the cross-sectional area occupied by each fluid and ask the 
question: what shape will the interface be? 

Theoretically, it is known that if there is no surface tension, every 
interface position is allowed by the equations. -If there is surface ,tension, 
then the interface has to be circles or circuldr arcs terminating at the pipe 
wall. The number of Fossible steady solutions is still infinite. k'0r 

example, if you specify that fluid 1 occupies 1/3 of the area and f1ui.d 
2 occupies 2/3 of the area, 2 possible arrangements are shown in Figure 1. 
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Figure 1 

Such nonuniqueness appears in the theory of steady 2-fluid flows for all 
kinds of flow regimes 11 I. On the other hand, experiments with the pipe flow 
indicate that whatever the initial configuration, the low viscosity liquid 
will eventually encapsulate the thicker fluid. The encapsulation property has 
been observed for both high and low Reynolds number flows, ranging from oil 
and water .to molten plyrners [2, 3, 4, 5, 6, 7, 8, 91. 

What has to be done is to reconcile the existence of a continuum of 
solutions with the experimentally observed unique configuration. Up to now, 
explanations have been based on a variational method, called the "viscous 
dissipation principle" which says that the flow chooses an interface which in 
some sense minimizes viscous dissipation for a given flow rate, or 
equivalently, maximizes the volume flux for a given pressure gradient [2, 5, 
8, 101. This is based on the idea that there is work to be done, but it is 
harder to make the thick fluid do the work , so the thin fluid does it by 
migrating to regions of high shear. The thin fluid is easy to push around. 

Michael Renardy has shown that for a pipe with arbitrary cross-section, 
the minimizer of viscous dissipation exists if there is an a priori estimate 
for the length of the interface curve. This is a quantity which we do not 
know how to obtain 1111. Not much more is known about the interface folr flows 
in pipes of arbitrary cross-section. However, for a circular pipe, the 
analysis is. much simpler because of the s$mmetry and the minimizer turns out 
to be the concentric configuration wit& the thick fluid at the.core.' This 
appears to agree with experiments. Our question is: how valid is the viscous 
dissipation principle? One way to find out is to do a stability analysis for 
the circular pipe to see if the configuration preferred by the viscous 
dissipation principle turns out to be stable. 

II. NUMERICAL CALCULATIONS. We did a linear stability analysis for the 
circular pipe where the basic flow is the Poiseuille flow with a concentric 
interface (Figure 2). Fluid 1 is at the core, fluid "2 encapsulAtes fluid 1. 

We superimpose an infinitesimal disturbance (u,v,w,p)c 
i (-act+az+nOj . We use 

a Chebyschev polynomial expansion in the radial direction [12]. The problem 
is then an eiqenvalu; problem for c, given all the other parameters. If the 
sign of the imaginary part of c is positive, the flow is unstable to small 
disturbances. 

The particular case of the long-wave limit, a x Reynolds number + 0', 
and the thinner fluid at the core was studies by H.ickox 113) and was s!lown to 
be unstable.' This supports the viscous disx.ipati.on principle, but Hickox did 
not look at the case where the thicker fluid is at the core to see if that 
would be stable. 
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Figure 2 

III. RESULTS l The eigenvalue which determines instability is an interfacial 
one in the sense that Jt is neutrally stable when the two viscosities are 
equal. This situation is not identical to the one-fluid flow because of the 
extra conditions at the interface. Yih 1141 found similar results when he 
looked at plane Couette flow with a flat interface with the long-wave 
approximatian. 

Our range of parameters is the following: viscosity ratio ur'u2 from 

0.2 to 8, dimensionless.wavelength of axial disturbance CIR, 2 from 0.1 to 

10, reference Reynolds number R2V(R,)/V2 from 0 to 1000, where V(R,) 

is the basic velocity at the interface and V2 is the kinematic viscosity, 
density is tdken to be 1. 

First, we found that the configuration with the thin fluid at the core is 
unstable. This extends Hickox's long-wave results and agrees with the viscous 
dissipation principle. Secondly, when the thick fluid is at the core, 
stability depends on the radius ratio R,/R2- This is what we found to be 

most interesting because it shows that the viscous dissipation principle is 
not always true. This dependence of the stability on the radius ratio is 
qualitatively similar to Yih's (141 results where stability depends on the 
depth ratio of the 2 fluids. Figure 3 shows an example of what we found at 
Reynolds number 100, aH2 = 1. 

Q) (FJ 
R1 
-2 0.7 
3 

FL - l 5 
Rz 

0.7 

SThBLE UNSTABLE 

Figure 3 
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Figure 4 .oos 

R@ = 100, ctR3 = 1, R/R2 = 0.7 
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Figure 4 is a graph of the imaginary part of c versus viscosity ratio 
for Re = 100, CR = 1, 

2 
R /R = 0.7. 

12 
Nuders next to the curves denote 

azimuthal mode numbers. The dark points on the curves show our computed 
values and the dashed lines are interpolants. At this radius ratio, there is 
a slight instability due to the higher azimuthal modes. (Mode 5 becomes 

positive in the inset.) For 
3 -2 0.7, 
R2 

the curves sink below the Im(c) = 0 

3 
R 

line for ;;1> 1, For $ s 0.7, the curves rise above the line, yielding 
2 2 

the results in Figure 3. 

Thirdly, when the viscosity ratio is large, the response changes only 

R1 3 
gradually. Figure 5 is a graph at - = 0.3, Re = 100, aR2 = 1. 

R2 
Whether - 

p2 
ia 6 or 7, it does not make much difference to the imaginary part of c. 
This behavfour has been mentioned in some experiments [Zl. 

-.006 

Figure 5 

Re = loo, "5 = 1, R,% = 0.9 
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Fourthly, for short disturbance wavelengths, stability is lost. We did 
not include surface tension in our computations and that would dampen some of 
these instabilities. Figure 6 is a graph of im(c) VErsus Viscosity ratio 

at He = 100, 
"1 - = 0.8, a% = 10. When ~5 = 1, the region of stability is 

"'> 1 
R2 

-p2 
but for aR2 = 10, the modes are mostly unstable. This agrees with 

#e results of Hooper and Boyd 1151 who consider the Linear stability of an 
unbounded Couette flow. The 2 fluids occupy each half-plane. Their analysis 
is relevant locally at any interface with a viscosity jump and predicts 
instability for short-wave disturbances. This is in contrast with one-fluid 
flows where viscosity acts to dampen short waves. 

Fifthly, as the Reynolds number increases, stability is lost. Figure 7 
R1 is a graph of Re = -1000, - = 0.8, aR2 = 1. When Re = 100, the region of 

stability is Ll 
R2 

but when Re = 1000 the O* mode is unstable. the 
v2 LI, 

region of stability at Re = 1000 for Figure 7 is for ;;- 2 1.8. 
- 

IV. CQNCLUSIOM. Our conclusion is that the viscous dissipation principle is 
not always true, but that does not mean we are saying it is never tiue. From 
our results (Figure 3i, there seems to be some truth to the basic idea that 
the thin fluid tends to lubricate the wall. However, if there is a large 
enough amount bf the thin fluid , other mechanisms must be at work. Also, the 
situation we have dealt with has a rotational symmetry and symmetric salutions 
to symmetric problems always have a special status so that it is quite natural 
for the concentric configuration to be preferred over others in this case, 
whatever the mechanisms may be. 
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NUMERICAL SIMULATION OF THE FLOW OF A CHEMICAL 
CONTAMINANT SUBJECTED TO A JET IMPINGEMENT 
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ABSTRACT. A numerical simulation and study are presented for 
characterization of the interaction flow of a water jet with a chemical 
contaminant droplet on a plane wall, which occurs in chemical decontamination 
processes. The model for this analysis is a two-dimensional, two-fluid flow 
governed by the Navier-Stokes equations. Emphases of the study are on the 
evolution of the contaminant droplet and the effects of variation of relevant 
flow parameters on the displacement of the contaminant. Computed results 
show that a jet impingement at an angle of incidence in the range of 45' - 
60" can achieve the highest cleaning speed of the contaminant. The results 
also show that an increase in either the jet velocity or its cross-sectional 
area can greatly improve the cleaning speed. However, for a given jet flow 
rate, it is more advantageous to increase the jet velocity rather than the 
cross-sectional area in order to increase the efficiency of the use of jet 
fluid. 

I. INTRODUCTION. Application of jet spray for removal of chemical 
contaminants of solid walls has long been recognized to be effective. The 
procedure is to use the great force produced by the turning of the jet stream 
to displace the contaminant which is in the form of droplets along the walls. 

A high-performance jet system for this use should possess the following 
basic feasures: high cleaning speed and efficient use of jet fluid. These 
two features are particularly important when the system is operated in the 
field where it is often required to decontaminate an area in the shortest 
period of time and with the least consumption of jet fluid. In'designing such 
a system, knowledge of fundamental characteristics of the flow is vital, such 
as the evolution of the contaminant droplet and the effects of variation of 
relevant flow parameters on the jet performance. 

The contaminant droplet has an average size of 3 mm in diameter and 0.6 
mm in height. Its density is approximately the same as that of plain water, 
however, its viscosity may vary widely from 10 to 1000 times the viscosity of 
plain water. 

The interaction flow between the jet and the contaminant droplet consists 
of two fluids, the jet fluid (water) and the contaminant, or three fluids if 
the ambient is treated .as the third one. The two prime fluids are separated 
by interfaces and have free surfaces with the ambient. The flow is three- 
dimensional in nature and is highly transient. Most of the investigations 
conducted in the area of jet impingement in the past are relevant to the VTOL 
program (vertical takeoff and landing aircraft) or rocket exhaust flows, and 
are 'concerned with impingements on a solid surface 11,2,3,4,5,61. For 
impingements on a liquid surface, Hund [7] and Vanden-Broeck [8] considered 
steady and two-dimensional cases. They used simplified theories to 
characterize the wave-like hydrodynamic instability occur.lng at the interface 
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of the two fluids, but gave no predictions on the velocity and pressure 
distributions in the flow field. 

In the present investigation, we have simplified the analysis by treating 
the jet-contaminant flow as a two-dimensional problem. We have developed a 
two-fluid flow model suitable for characterization of the flow and adoption of 
the existing computer code SOLA-VOF [9] for numerical solutions. The flow is 
governed by the unsteady Navier-Stokes equations. Presented are the evolution 
of the contaminant droplet and effects of variation of relevant flow 
parameters on the jet performance in displacing the droplet. 

II. FLOW MODEL. Figure 1 depicts a pre-impingement flow configuration 
which practically occurs in the decontamination process. A water jet is 
directed at a contaminant droplet which is initially covered by a thin water 
layer on a plane wall. To characterize the flow developing from this 
configuration following the impingement we have developed a two-dimensional, 
two-fluid viscous flow model in Figure 2. 

The flow region in the model is essentially the region enclosed by the 
dashed line indicated in Figure 1, covering the major part of the flow 
field. It resembles a channel flow containing two fluids (water and 
contaminant) separated by an interface, Both fluids are assumed to be 
newtonian and the surface tensfon effect along the interface is neglected 
because of its small magnitude. The upper boundary of the channel coincides 
with the upper free surface of the water layer so as to eliminate 
consideration of the free surface interface with the ambient. An outflow 
condition is specified at this boundary and at the ends of the channel, 
allowing the fluids to flow out of the region. The contaminant which 
initially occupies the shaded rectangular region is assumed to wet perfectly 
the bottom wall of the channel. To account for viscous effects, a no-slip, 
condition is used for the bottom wall. Finally, a steady uniform jet velocity 
at an angle of 0 is specified along a.segment of the upper boundary as shown 
in the figure. The lower left side of the Figure 2 shows part of the 
computational domain of the flow field. The domain is discreted into a 100 x 
12 mesh with finer zoning near the lower wall to ensure better accuracy of 
computation in this thin layer. 

III. FLOW EQUATIONS AND METHOD OF SOLUTION. The governing equations for 
the model flow are: 

continuity 1 ap + au av -- 
2 at 

PC 
ax + ay =. O Cl> 

momentum g+u ~+va,_-- 
ay 

1 & + v a2u : a2u 
P ax [ 1 ax2 ay2 

(2) 

g+ ug+vaV=- 
ay 

1 a~ + v a2v : a2v 
p aY 

[ I ax2 ay2 
(3) 

where t is time variable, u and v are the x-component (along the channel) and 
the y-component (normal to the channel) of the flow velocity, respectively. 
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The density p, the sound speed c, and the viscosity v, are constant. In 
addition, a function F, called the fractional volume of fluid function, is 
introduced for tracking the water-contaminant interface. The function is 
given as 

(4) 

This equation states that F moves with the fluid. In a two-fluid flow the 
value of F is unity at any point occupied by the first fluid (say, 
contaminant) and zero elsewhere. When averaged over the cells of a 
computational mesh, the average value of F in a cell is equal to the 
fractional volume of the cell occupied by the first fluid. In particular, a 
unity value of F corresponds to a cell full of the first fluid, whereas a zero 
value indicates that the cell contains only the second fluid (say, water 
including the jet fluid and the water layer of Figure 1). Cells with F values 
between zero and one contain an interface, as illustrated in Figure 3. With 
this, the interface separating the two fluids can be tracked. 

The velocity components u and v in the momentum Eqs. (2) and (3) have 
been solved by using the explicit finite difference scheme, while the pressure 
p has been computed, coupled with the continuity equation (Eq. (l)), via an 
implicit finite difference method. The solution of the F function in Eq. (4) 
has been obtained by using the Donor-Accepter flux approximation. Details of 
the solution method have been given in Reference 9 of this paper. In order to 
observe the evolution (location and shape) of the region covered by the 
contaminant droplet, Marker Particles have been embedded in the fluid and move 
with it, but do not affect the fluid dynamics. 

Numerical computations have been carried out by employing the SOLA-VOF 
code (9). In the current version of the code, the viscosities of both fluids 
in a flow are considered the same or simply zero. To adapt this code for 
solving the present flow which involves two fluids with very different 
viscosities we have implemented the following viscosity relationship into the 
code. 

v = uc F + (1 - F) ww 

where v is the kinematic viscosity of fluid in a cell, vc the kinematic 
'viscosity of the first fluid (contaminant), v the kinematic viscosity of the 
second fluid (jet fluid), and F the functionWdefined in YEq. (4). Similarly, 
the density in a cell is approximated to be 

p = pc F + (1 - F) p W 

where p, and p, are the density of the contaminant and plain water, 
respectively. From Eqs. (5) and (6), we see that the values of v and p in a 
cell are functions of F. 
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Finally, it is noted that the Reynolds numbers based on the jet thickness 
and the jet velocities used in our computations are in the range of 20 - 
2000. Within this range, Eqs. (2) and (3) are felt to be appropriate for the 
present flow analysis, even though the equations do not include turbulence 
considerations. 

IV. COMPUTATIONAL RFSULTS AND DISCUSSIONS. The following are the input 
data for our computations: 

0 = incidence angle of the jet = 19.8O - 90" 

= diameter of the jet (thickness of the jet in 
the present two- dimensional model) =,1.83 mm 

vj = jet velocity, uniform across the jet = 5 - 10 
m/set 

pW 
= density of plain water = 0.001 Kg/cm3 

PC 

V 
W 

= density of the contaminant = 0.00107 Kg/cm3 

= Kinematic viscosity of water = 0.0098 cm2/sec 

V 
C 

= kinematic viscosity of the contaminant = 0.098 - 9.8 
cm2/sec 

Droplet size: 3 mm x 0.6 mm (length x height) 

Computed results are presented as follows: 

A. Flow Patterns. Figure 4 presents two typical flow developments 
following the commencement of the jet flow up to 0.2 millisecond. They 
correspond to the contaminant viscosities v = O.-O98 cm2/sec (= 10 Y ) and 
v = 9.8 cm /set (= 1000 v ), respectively. 2 It is noted that a!!1 of the 
g;aphs in the figure have "b een magnified by a factor of 3 in the vertical 
directionin order to provide a better flow visualization near the bottom wall 
of the channel. The vectors indicated in the flow region represent the local 
fluid velocities in the individual cells of the computational mesh. In the 
low viscosity case the jet stream toward the droplet is very much parallel to 
the bottom wall, while in the high viscosity case the jet stream is lifted off 
the wall. It is interesting to note that as the time progresses, part of the 
fluid near the downstream edge of the droplet, especially in the high 
viscosity case, moves toward the bottom wall behind the droplet. Apparently, 
a low, pressure region is created behind the lower portion of the droplet, 
similar to the flow region appearing behind an obstacle which stands in a 
flow. Figure 5 presents another view of the revolution of the two droplets. 
The viscosity effect is pronounced as seen when comparing the profiles and the 
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displacements S of the two droplets. We also observe that at t = 0.2 
millisecond all fluid particles inside the low viscosity droplet have been 
disturbed, while in the high viscosity droplet there is a region near the 
wall in which fluid particles remain in good order. 

B. Optimum Jet Incidence Angle. The incidence angle of the jet 
impingement should play a key role in affecting the jet performance in 
displacing the contaminant droplet. A small incidence angle will result in a 
large portion of the jet stream moving toward the contaminant droplet, but a 
small normal force to displace the contaminant near the wall as a result of a 
small rate change of momentum in the impingement area. A large incidence 
angle, on the other hand, will produce a reverse result. Therefore, there is 
an optimum angle at which a jet impingement can perform best for removal of 
the contaminant. 

In order to optimize the incidence angle, several angles ranging from 
19.8O to 90" have been used to compute the displacement of the droplet as a 
function of time following the impingement process. At each angle the jet is 
properly located such that the impingement will need the shortest time to 
displace the upstream edge of the droplet a prescribed distance, say, one 
third of the original droplet length. 

Figures 6 and 7 show‘ the results for the jet velocities of 5 m/set and 10 
m/see respectively. The dashed lines represent the results for the case that 
the contaminant yiscosity is equal to 10 times viscosity of plain water 
(vc = 10 v- ) and the solid lines for v = 1000 u As seen, 
displaceme% S at a given time t increases wi:h the incid&e angle 8 until 

the 

Ei reaches 56.28O. 
m/set and.v = 

Beyond that angle, S falls except in the case that Vj = 5 
1000 u shown in Figure 6, When the water layer which 

initially co$ers the drlplet as shown in Figure 3 is increased,from 0.2 mm to 
0.6 mm, the result shown in Figure 8 also indicates that 9 = 56.28O rdsults in 
a better jet performance than any other smaller angle. An important 
conclusion then can be drawn that for a given jet velocity and a given jet 
size (i.e., the cross-sectional area of the jet) a jet impinging at an angle 
around 56" can achieve the highest cleaning speed of the contaminant. 

The efficiency of the use of jet fluid, as well as the cleaning speed, is 
of concern since in some areas, especially in the battlefield, the supply of 
the jet fluid could be very limited. Thus we need a system capable of 
decontaminating a surface area with the least consumption of jet fluid. 

In Figure 9, A dendtes the surface area which has been decontaminated and 
V* the volume of jet fluid consumed for the decontamination of the area. Then 
A/V* is called the nominal area cleaned per unit volume of jet fluid consumed 
and thus can represent the efficiency of the use of the jet fluid. The figure 
explicitly shows that a jet at .an angle of incidence between 45O and 60" from 
the impingement surface will achieve the most efficient use of jet fluid. 
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C. Improvement of Jet Performance by Increasing the Jet Velocity or 
the Jet Size. The jet velocity and its cross-sectional area are another two 
important flow parameters governing the performance of the jet impingement for 
decontamination applications. 

In Figure 10 a comparison between curve "a" and curve "b" ot between 
curve "a W and curve '*b W indicates that an increase in the jet velocity Vj 
from 7.27 m/set to 10 m/set accelerates the cleaning speed substantially. 
Similar results can be obtained when the jet size Dj (i.e., the thickness of 
the jet in the *two-dimensional*case) is enlarged as-peen from a comparison 
between curve "a W and curve "b W or between curve "a 11 and curve "b ". A 
question then arises: Which is the better means to improve the cleaning * 
speed provided that the jet flow rate (Q = V. D > is the same, by increasing 
the jet velocity or incseasing the jet size. 'I%!! the answer we first compare 
curve "a" with curve "a ". As listed at the-right come; 0; the figure, both 
curves correspond to the same jet flow rate Q = 0.0183 f /set, however, curve 
"a" resulted from a jet velocity twice that of curve "a W but from a jet size 
half that of curve "a*". The comparision between them reveals that the one 
(curve "a" 1 resulted from a higher jet velocity provides a highez cleaning 
speed. This is zlso true when we compare cur-t "a '* with curve "a' ", curve 
"b" with curve "b '*, or curve '*, ** with curve b ". 

Next we examine the increases of the jet velocity and the jet size in 
relation to the efficiency of the use of jet fluid. In Figure 11 the upper 
curve of each set of the curves is the result from an increase in jet velocity 
V. from 5 m/set to 10 m/set, while the jet size is held constant, D =d= 
1383 mm. The lower curve of each set is the result from an increase in jet, j 

size from d to 2d, while the jet velocity remains the same, Vj = 5 m/set. p 
see that the efficiency of 'the use of jet fluid, represented by A/V , 
increases with the increasing jet velocity, but decreases with the increasing 
jet size. The figure shows that at a given jet flow rate Q , the jet with an 
increased jet velocity performs more efficiently in terms of consuming less 
jet fluid to decontaminate a given area. 

As a remark, the above results obtained from the present two-dimensional 
(2D) flow model are also applicable to the three-dimensional (3D) 
impingement. Unlike in the 2D impingement in which most of the jet fluid from 
the increased jet size flows toward the contaminant, only a small amount of it 
moves toward the contaminant in the 3D case, Accordingly, in the 3D 
impingement an increase in the jet size is less effective than in the jet 
velocity in improving the jet performance. In fact, when a number of 3D jets 
are arrayed in a line, they resemble a 2D jet. 

v. Summary and Conclusion. A two-dimensional, two-fluid model has been 
developed for characterization of the jet-contaminant interaction flow on a 
plane wall which occurs in chemical decontamination processes. Computer 
graphs are presented to show' typical flow developments following the 
impingement process. The contaminant viscosity, the jet incidence angle, .the 
jet velocity, and the jet size have been demonstrated to be important flow 
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parameters in governing the flow pattern and the performance of the jet 
impingement for decontamination application. 

The computer graphs show that in the high viscosity contaminant case a 
thick viscous layer develops qufckly inside the flow region covered by the 
contaminant droplet and the jet stream is lifted off the impingement 
surface. From the computed results we have found that the optimum jet 
incidence angle for achieving the highest cleaning speed of the contaminant 
and the most efficient use of the jet fluid is in the range of 45' - 60°. An 
increase either in the jet velocity or in the jet size can greatly improve the 
cleaning speed. However, if the jet flow rate is the same, an increase in the 
jet velocity rather than the jet size will raise the efficiency of the use of 
jet fluid. 
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Figure 6. Droplet upstream edge displacement, S, 
vs. time after commencement of jet flow, t, for 
various jet incidence angles, 0 (jet velocity V. = 
5 m/set) 
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Figure 8. Droplet upstream edge displacement, S, 
VS. time after commencement of jet flow, t (water 
layer thickness is increased from 0.2 nun to 0.6 mm) 
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Figure 10. Droplet upstream edge displacement, S, 
vs. time after commencement of jet flow, t, for 
various combinations of jet velocity and jet size 
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High viscosi@ Liquids hate to work. Low viscosity Zdquids 
me the victims of the laziness of high viscosity lipids because 
they me easy to push momd. 

ABSTRACT. The arrangement of components in steady flow of 
immisme liquids is typically nonunique. The problem of selection 
of arrangements is defined here and is studied by variational 
methods under the hypothesis that the realized arrangements are the 
ones which maximize the speed on exterior boundaries for pre- 
scribed boundary tractions, or the ones which minimize the,tractions 
for prescribed speeds. The arrangements which minimize tractions 
also minimize the dissipation by putting low viscosity liquid 
in regions of high shear. The variational problem is used as a 
guide to intuition in the design and interpretation o,f experiments 
when results of analysis of stability'are unavailable. In fact we 
always observe some kind of shielding of high viscosity liquid. 
This can occur by sheet coating in which low viscosity liquid 
encapsulates high viscosity liquid, or through the formation 
of rigidly rotating masses of high viscosity liquid which we call 
rollers. In other cases we get emulsions of low viscosity liquid 
in a high viscosity foam. The emulsions arise from a fingering 
instability. The low viscosity liquid fingers into the high 
viscosity liquid and then low viscosity bubbles are pinched.off 
the fingers. The emulsions seem to have a very low effective 
viscosity and they shield the high viscosity liquid from shearing. 
In the problem of Taylor instability with two fluids low viscosity 
Taylor cells are separated by stable high viscosity rollers. 

1. INTRODUCTION. We are interested in the flow of two 
immisci e -parated by an interface, driven by prescribed 
forces of the usual type. We call such motions bicomponent or two 
phase flows. In fact, we do not consider two phases of the same 
material, but of separate liquids which do not mix (oil and water, 
for example). To fix our problem, we specify the total volume of, 
the two fluids and the individual volumes occupied by each one of 
them. Then our problem is to describe the motion and the spatial 
arrangement of each component. There is a high degree of nonuniqueness 
in such problems, even when the motion is steady and even when the 
region of flow is bounded and the Reynolds numbers for each of the 
fluids is very small. In some cases we nay find a class of steady 
motions: no motions, Couette motions, Poiseuille motions, etc., 
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which are uniquely determined by the data up to an arbitrary 
rearrangement of components (phases). The arrangement of components 
which is actually achieved in the flow is certainly connected to the 
problem of hydrodynamic stability. However, it has been suggested 
that in some problems the configurations which are achieved are 
those which in some sense extremalize the viscous dissipation. In 
fact a more precise statement of this apparently mystical idea 
can be formulated in terms of fluxes and forces. The idea is to 
maximize the flux for a given force (or to minimize the force 
for a given flux) over an admissible class of phase arrangements in 
a set of nonunique steady solutions. Our experiments show that 
something like this is going on. The arrangements of the components 
do in fact appear to be ones which extremalize in some mathematical 
sense. The extremalizing configurations are such as to minimize 
the shearing of high viscosity liquids by the spontaneous migration 
of low viscosity liquids into regions where the shearing is greatest. 

The experiments reported in this paper seem to be of extra- 
ordinary interest in that they exhibit previously unknown types 
of fluid dynamics which may be typical for flows of immiscible liquids. 
Our experiments are visual and qualitative. In the future it would 
be good to systematically monitor torques and speeds and to under- 
take to correlate observations with systematic variations of geo- 
metric parameters. 

2. EQUATIONS OF MOTION. The equations of motion in each 
liquid are the usual ones. We are going to study Navier-Stokes 
fluids in this paper but we are not yet certain that Navier-Stokes 
dynamics suffices to explain all that we have.observed. The stress T 
is given by - 

(2.1-j x=-p1 +s, - 2 = 2 '-! D[lI] -- 

where D is 4 of the symmetric part of the velocity gradient vu 
and for all fluids in all regions of flow - 

!2.2! div ~~ = 0, X=1,2 , 

(2.3) d 
Qdt U-2, = - VOl+ div ga , S, = 2~;~ p[Q , --,u 

(2.4) $11 = Pgg z + PA 

where g is gravity, Z increases against CJ, pl and p2 are the densities 
of the first and second fluids and 

Pl ,and ~2 are the viscosities. 
The interface between the regions 1 and 2 is called- C and is 

given by 

(2.5) f@(t) ,tj = 0 
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and, since this is an identity in t 

(2.6) af.U at -9 Vf = 0 

where we have assumed that the normal component of velocity dx/dt of 
the surface C and the particles of fluid on either side of 7, are 
the same. In fact, the velocity 1 is continuous across C 

(2.7) it gl = 11 y 3 
= 0. 

:- 

Now we state the conditions of continuity for the stresses 
across C. Let n = Vf/lVfl be the normal to c and 
y 12 be two oFthonorma1 vectors in C. The jump across I of 1. 
the traction [El l fl. satisfies 

2H is the sum of the principal 
ZXt3&siZ ~~f~"~~r~=~"ei:=~~ion. Now, using (2.4) we introduce 
the head 9, 

where Zz is the value of the coordinate 2 on Z. We project (2.81, 

using (2,9), with s and Lo, 12 to find that 

(2.11) Q'llgu ' !J + La ' VIIU - 0 , a=1, 2 l 

This statement of conditions is completed by stating boundary and 
other auxilliary conditions. In general the position of the 
interface, f(x,t) - 0 is an unknown, to-be-determined quantity. 
In many cases, even after specifying the volumes occupied by each 
fluid, the solutions of the equations are not uniquely determined by 
the boundary data. In fact, there is a very high degree of non- 
uniqueness which we shall now specify more precirely, : 
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3. HYDROSTATIC CONFIGURATIONS WHICH ARE NOT UNIQUE. Immiscible 
liquids of the same density will form spheres of one liquid in another. 
The steady distribution of such spheres, their sizes and their 
placement, seems not to be unique. In fact Plateau (1873) suspended 
masses of olive oil in a mixture of alcohol (lighter than oil) and 

'water (heavier than oil) of the same density. By the latter 
device, spheres of many centimeters were obtained. It is possible 
to have big spheres of oil in alcohol-water and big spheres of 
alcohol-water in oil. 
52 with 

For such spheres we satisfy the equations of 

u = s = VIIU = a?] = 0 - - 

and 

where R is the radius of each sphere. There is nothing here to 
determine the size and placement of spheres from given data. 

The type of stationary configuration with bubbles of different 
sizes in immiscible fluids of matched density which was studied by 
Plateau is shown in Plate 3.1. This plate shows the result of 
matching the density of dibutyl phthalate with a glycerine (heavier) 
and water (lighter) solution. 

The nonunique stationary configurations which are achieved by 
matching density appear to be stable to small disturbances. However, 
there is a tendency for bubbles which touch to collapse into one 
bubble. It may be true that there is a selection mechanism based on 
stability to large disturbances in which the stable configuration 
is the one which minimizes surface area. This type of criterion 
leads to large bubbles, even one large one, rather than many-small 
ones. 

4. NONUNIQUE PLANE COUETTE FLOW IN LAYERS. Another case of 
nonuniqueness of steady flow of two immiscible fluids is plane 
Couette flow in layers. Such flows are like heat conduction in layered 
materials.and are characterized by alternate layers of fluids whose 
speed and shear stress is matched at each interface. The flowing 
fluid with velocity u = gx u,(y), density pl and viscosity ~1 occupies - 
a height gl per unit area in the plane of flow, the second fluid 
occupies a height ,P,~ per unit area where Rl + R2 = R is the total 
height of the layers and the two fluids may have any number of con- 
tiguous layers as in Fig. 4.1. The velocity functions 

j4*1) u 1y) =ay+b 

are linear in each layer and satisfy the conditions 
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:3,2; 

The normal stress balance is automatically satisfied by the fields 
(4.1), on flat interfaces, whether the surface tension is small or 
large. It matters not whether the densities are the same or 
different. If they are different then the steady layered flow 
exists, but is unstable, with all the heavy stuff falling to the 
bottom. If the densities are the same, no one knows what is the 
preferred arrangement of the layers. In fact Yih (1967) has 
shown that many o'f the configurations of flow with two layers 
are stable to small disturbances in the form of long waves and 
many are unstable to the same type of disturbance as the Reynolds 
number tends to zero. Stability depends on the viscosity ratio and 
the volume ratio. So non-uniqueness of layered Couette flow remains 
even after analysis of stability eliminates some steady arrangements. 
In the case of instability, Yih says that the interface becomes 
wavy. It would be interesting to study the bifurcation of layered 
Couette flow with flat interfaces into shear flow with wavy inter- 
faces. If such solutions do bifurcate there would be a yet greater 
degree of 

Fig. 4.1: Layered Couette flow. The high viscosity fluid is the 
one with viscosity p2 > pl. The two layers with fluid 
2 have a total height equal to R2 and the two layers with 
fluid 1 have a total height of El, El + R2 = 1. The 
velocity profiles are linear functions of y, which in- 
crease in a continuous way from u(0) := 0 to u(1) = U. 

lluP = u1 - u2 = 0, 

u(0) = 0, 
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5. NONUNIQUE PLANE POISEUILLE FLOW IN LAYERS. Another case 
of nonuniqueness of steady flow of two immiscible fluids is plane 
Poiseuille flow in layers: The set-up is the same as in §4,-but 
u(y) is generated by a constant pressure gradient 

instead of by shearing from the top wall. Hence, in each layer 

where, at each interface [u]l = KIJdUll = 0 and u(0) = u(a) = 0. 
This problem has a continuum of so gtions in which the fluid with T- 
viscosity pl is in N layers of total height Rl separated by layers 
of fluid with viscosity p2 whose total height is R2. The heights 
of the constituent layers and their number are otherwise arbitrary. 
The remarks made about density differences in §4 apply in full 
force here. 

Yih (1967) has also considered the stability of such flow 
of two fluids with different viscosities in two layers separated 
by one interface. He finds that Poiseuille flow in two layers is 
always unstable to long waves even for small Reynolds numbers 
tending to zero. Yih does not raise the problem of preferred 
arrangement of constituents. In fact it is probable that among the 
continuum of layered Poiseuille flows the one with the greatest 
stability is that for which the high viscosity fluid is centrally 
located (see Fig. 5.1). This configuration maximizes the mass flux 
for a givenG, Rl, 11* and requires the study of flows with at least 
three layers, not admitted.into the analysis of Yih. The variational 
problem associated with the problem of the preferred arrangement 
of constituents is formulated in 511, and a solution of this problem 
for bicomponent Poiseuille flow in pipes is given in a paper by 
Joseph, Renardy and Renardy (1983) which is a companion to this one. 
We shall refer to this companion paper as JRR(1983). 

6. NONUNIQUE POISEUILLE FLOW'IN PIPES OF ARBITRARY CROSS-SECTION. 
Another case of nonuniqueness of steady flow of two immiscible 

fluids is Poiseuille flow in pipes of arbitrary cross-section. We 
shallimaginethat the fluids have the same density but different 
viscosities. The cross-section of the pipe is called R and the 
coordinates in R are (y,z) with x increasing along generators of the 
pipes. The total cross-sectional area occupied by each of the 
two components al and ,R2, R2 + Rl = fl, and the pressure gradient 
(-G) are prescribed. We may find a continuum of phase arrangements 
satisfying 
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Fig. 5.1: Layered plane Poiseuille flow in three layers. 

The configurations in (a) and Cb) are the centrally located 

ones. The configuration in (a) maximizes the mass: flux 

for a given pressure gradient I-G) among the continuum of 

contiguous layers of high visccsity (p2) layers of total 

height R2 and low viscdsi5>- 1 (?A~, layers' of total height RL; 

It1 + R2 = R, 
., . . 
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At each interface we require that the velocity and the shear stress 
be continuous. The prescription of the shape and placement of the 
interfaces is left completely arbitrary, 
of prescribed total area. 

subject to the constraint 
The jump of the normal stress across 

interfaces vanishes automatically for solutions of Poiseuille type 
when the surface tension 0 = 0. If a# 0, 
across each interface, 

the pressure will jump 

of (y,z) , 
and the value of the jump will be independent 

and balanced by a constant surface tension force; that 
is by constant interface curvatures. 
allowed interfaces are circles, 

Hence, when 0 # 0, the 

boundaries. 
or circular arcs terminating on 

The number of such arcs 
arbitrary. 

and their placements are 

There are experimeats which suggest that in the flow of two 
fluids in a pipe there is a tendency for the low viscosity fluid 
to encapsulate the high viscosity one. The flows are such as to 
put the high viscosity component in the center of the pipe where 
the shears 'are smallest (see 910 and JRR(1983)). 

7. NONUNIQUE COUETTE FLOW IN CIRCULAR RINGS BETWEEN ROTATING 
CYLINDERS. Another case of nonuniqueness of steady flow of two 
immiscible .fluids is Couette flow in circular rings between rotating 
cylinders. We shall imagine that the fluids have the same density 
but different viscosities, We look for solutions in which the 
liquids are arranged in contiguous circular layers subject to 
a prescription of the total volume of each component liquid, (Fig. 7.1). 
Some solutions of this type will be given in §12. We look for 
solutions in each layer in the form 

where the speeds of the inner (r=a) and outer (r=b) cylinders 
are prescribed 

v(b) = R2b. 
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The v(r) that is required by the Navier-Stokes equations in each 
layer is of the form 

v(r) = Ar + ; . 

The number and thickness of such circles are arbitrary, with the 
fixed volume constraint, and we can choose sets of {A) and {B) so 
that at each interface 

b4i = 81; d(,p -J = 0. 

The. normal stress equation may be satisfied by balancing pressure 
jumps against surface tension. 

Fig. 7.1: Couette flow in circles of immiscible liquids of 
the same density but different viscosity: (a) two 
layers, (b) three layers with the same total volume of 
pl and u2- The number and thickness of these layers are 
arbitrary. 

8. MORE GENERAL EXAMPLES OF NONUNIQUENESS IN THE STEADY FLOW 
OF IMMISCIBLE LIQUIDS. Nonunique arrangements of components in 
&component flows appear to be a general property going far beyond 
the simple examples exhibited in the previous sections. 

For example we could generate nonunique two dimensional 
"Poiseuille" flows by, say, a wavy perturbation of the solid boundary. 
We should then of course be obliged to show how the hydrodynam,ics 
and interfaces perturb under the boundary perturbation. 
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As another example we may consider how the circular flows in 
Fig. 7.1 perturb when there is a small density difference [IpI = E f 0. 
We expect to see slightly displaced circles. 

As another example consider the problem of one fluid displacing 
another in a pipe (see Fig. 8.1). This problem is a model for 
studies of the motion of the contact line. If there are such 
solutions, they are not unique because there are also at least 
layered Poiseuille flows. If P1 =c l-r2 the less viscous fluid 
will finger into the more viscous fluid. In this case, and also when 
P’2 < l+ the configuration shown in Fig. 8.1 is probably unstable. 

Another example, due to F. Busse (1982), is described by him 
as follows: "Convection in a fluid layer heated from below with 
two immiscible components A and B of the same average density exhibits 
different states of motion. Besides a solution describing convection 
in sublayers other solutions in which fluid B is surrounded by 
streamlines of fluid A or vice versa are possible." 

In our experiments, we see many different configurations. 
There are persistent solutions with bubbles of low viscosity fluid 
in high viscosity foams, which are steady in some average sense. 

We conclude that, unlike single component flow, there is a 
pervasive lack of uniqueness in the flow of immiscible liquids even 
when the Reynolds number is small and even when the region of flow 
is bounded. 

Fig. 8.1: One fluid displaces another in a horizontal pipe. 
This configuration is probably unstable. 

9. PHYSICAL MECHANISMS FOR SELECTING THE ARMNGEMENT OF 
COMPONENTS PREFERRED IN THE FLOW OF IMMISCIBLE LIQUIDS. The natural 
thing to do when faced with nonuniqueness is to study stability. 
It is probable that most of the possible steady configurations of 
flow are unstable. Our experiments show that there is a definite 
tendency for flows of immiscible liquids to arrange themselves in such 
a way as to shield the high viscosity components from intense 
shearing. We shall call this tendency for low viscosity liquids to 
migrate into the regions of high shears an encapsulation instability. 
A fingering instability which is responsible for the formation of 
emulsions is also important in the context of encapsulation. These 
types of instability are important because they represent a type of 
self-lubrication principle. 
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There is an irresistible temptation to invoke variational 
principles for selection criteria for the arrangementsof components 
which are preferred in bicomponent flow. These principles are 
suggested by various results associated with extremalizing the 
dissipation. Such principles, as a strict statement of the under- 
lying physics, are oversimplified. In fact, exact variational 
principles are ambiguous. One can state different principles 
leading to different selection rules. We are going to postulate 
some such "principles", because they are mathematically interesting, 
very suggestive of true underlying physics and provide the right 
ambience for the discussion of this problem. So in this case as 
in many others we do not resist irresistible temptation, However, 
in JRR(1983) a good variational problem is stated, solved, 
shown to agree with experiments (the experimental results that 
we know; there are surely others) and to be in partial agreement 
and partial contradiction with the analysis of stability. 

The big interest in variational ideas for us was that 
it guided our intuition in the design of experiments in situations 
in which analysis is hard, impossible or in any event not available. 
Probably the coarse statement that the hydrodynamics shields the 
high viscosity component from shearing is more nearly correct than 
any exact variational embodiment of it. 

10. ENCAPSULATION INSTABILITIES AND EXTREMAL PRINCIPLES FOR 
PIPE FLOW. In pipe flow of two liquids with different viscosities 
under an applied pressure drop, the low viscosity liquid will tend 
to encapsulate the high viscosity liquid. If the effects of gravity 
are negligible, the phases will arrange themselves so whatever may 
have been the initial configuration, the high viscosity phase will 
ultimately be centrally located (as in Fig. 5.1(a)). This property 
has been convincingly demonstrated in experiments with very viscous 
viscoelastic liquids (polymer melts) by Southern and Ballman (19731, 
Everage (19731, Lee and White (1974), Williams (19751, and 
Minagawa and White (1975), as well as in the flow of oil and water, 
in which the water migrates to the pipe wall, forming a lubrication 
layer, studied by Charles and Redberger (1962), Hasson, Mann and 
Nir (19701, and Yu and Sparrow (1967). 

In the experimentsof Southern and Ballman (1973) encapsulation 
of the type exhibited in Fig. 10.1 is documented. Everage (1973) 
shows a photograph of complete encapsulation with a centrally located 
high viscosity nylon completely encapsulated by an annular ring 
of low viscosity fluid. 

Theoretical explanations of the slow envelopment phenomenon 
have up to now been based upon extremalizing energy dissipation as 
originally suggested by Southern and Ballman (1973). Maclean (1973), 
who considered planar layered.flow, and Everage (19731, who studied 
a cylindrical geometry, both invoked a variational principle to 
show that the phase configuration with the high-viscosity component 
centrally located is favored over several other configurations. 

We are going to state a general variational criterion which 
presumably reduces to the ones first discussed for special cases. We 
say that realized flows arrange the two components so as. to maximize 
the speeds when the tractions on exterior boundaries are fixed, or to 
minimize the tractions when the speeds are prescribed. For pipe flow 
we arrange the two flowing components to maximize the mass flux 
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when the pressure gradient is prescribed or to minimize the pressure 
gradient when the mass flux is prescribed. The extremalizing 
arrangement is the one with high viscosity liquid in the center 
(JRR(1983)). We could draw an analogy with turbulent flow in 

which it is shown that among all the turbulent solutions, the 
laminar one maximizes the mass flux for a given pressure drop. In 
fact the extremalizing solution is not always stable. The results 
(JRR(1983)) depend on the volume ratio with stable flows character- 
ized by narrow layers of less viscous fluid on the outside. 

If we suppose that nature's design corresponds to man'-s desire, 
we could hope to realize the solution of the problem of maximizing 
the flux of oil down a pipe of fixed radius by lubricating the pipe 
wall with water. In fact the solution of the design problem is 
a stable one according to the calculations give in JRR(19831.The 
design problem is as follows: 

Water and oil flow steadily along a horizontal pipe of radius 
R. The lower viscosity (P2) water completely encapsulates the 
higher viscosity (11,) oil, which flows as a central core of radius a. 

The flow is described by the usual equation, with 

u2 =Oatr=R 

and 

d"2 
I 

dUl I 
at 'IT - a. 

-- 
u2 dr 

=Pidr j 

The velocity distributions in the two fluids are: 

and 

CL) , 
a2 

aLr:IR, 
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where 

The,volume flow rate of oil (Q,) is then 

Ql = a4 1 T VI) (Z - 1) 
Q 

?1+2(- 
R 

\ 
P2 a2 I 

where G = 
4 

--&(G) is the volume flow rate of the single phase (ul) 
1 

when it fills the entire pipe. For fixed R and G, the volume flow 
rate Q, has a maximum when 

a -= 
R 

and the maximum value is then 

nor large values of the viscosity ratio IJ~/LI~, as would occur for 

example in an oil/water configuration, the maximum volume flow rate 
Q, 1s obtained when a ~2 , and is given by 

VT 
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Fig. 10.1: Encapsulation of hi h viscosity liquid ing 
.viscosftY liquid b 

PlPe fhw of y low melts (after Southern and Ballman, 1973) _ polymer 
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The volume flow rate of the lower viscosity fluid is 

Thus the volume flow rate Q, required to maximize Ql is 

Q2 - = 
6 

I 
-5 * --I 7, 

'2 -- 

i I 

h 2(--) - 1 
p2 

. 

For large values of - this reduces to 
u2 

Q2. - 
a I u1 = l/4(--) 

ax Q 1 
p2 

Ql = %+=-)max 
Q - 

11. EVOLUTION OF THE ENERGY AND BALANCE OF POWER OF THE 
EXTERIOR TMCTIONS IN THE BICOMPONENT FLOW OF IMMISCIBLE LIQUIDS., 
The following energy equation due to E. Dussan V governs the flow of 
immiscible incompressible fluids (see Joseph, 1976, for a full 
discussion) : 
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crdC] = I dq ,-JC 
J fit 

z c 

The terms of (11.1) need to be defined and discussed. The 
definitidns of volumes, surfaces, distinguished directions and 
velocities are defined under Fig. 11.1. The stress x is given by 
(2.1), D[u] is the stretching tensor for ;, -- 

da 
dt 

4 al*UdR, 
ac - 

r tr T D[uj 
it fl 

--- 

Y 

(kinetic energy), 

(potential energy), 

(surface energy), 

(deriyrative of surface tension 
following a particle in the surface) 

(power or working of the contact 
line) 

(power or working of the traction 
vector T.n on the exterior 
boundarT)- 

(stress power or diss!Upation 

For incompressible Newtonian fluids the dissipation is in the form 
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pig. 11-L: Voiumes,'+surfaces and distinguished directions 
for two fiuids separaPred by an interface. 

“$, andV2 are the volumes occupied by the two fluids, 

Tel u-7$ 
.YI~ is the outward normal to avi(i = 1, 2), 

X F 3vln af is the interface separating the two fluids, 2 

n_ is the normal to C pointing fromyS2 toy/;, 

a+ aviu ay2 - C is the exterior boundary; parts of this 

boundary may be made of rigid solids, 

n is the outward normal on 3% -- . 

ac = C fl @is the -contact line; L is an arc length on this 

line, 

t 5,s the tangent vector on 3.1, - 

_ 

T =tfinis the normal to ac on c, - - 

u -i is the velocity of the fluid inYJ?l(i = 1, 2), 

U is the velocity of a point oflthe contact line- 



The steady flow of immiscible fluids satisfies (11.1) with time 
derivatives set to zero. If 0 = 0, U = 0 or if there is no contact 
line as in some flows of two fluids rn pipes or between cylinders, 
then for Newtonian fluids 

(11.2) I u. (T-n) ay- -- i 2yD[u] : qlg 
=9- -- 

One selection rule which may be postulated is as follows. 
The realized placements of&i1 and 

I F 2 within up is the one which 
Y maximizes the speeds 1 for prescribed tractions on the exterior 

boundaryaporminimizes tractions for prescribed speeds. 
Renardy 

Joseph, 
and Renardy (1983) have shown that this is a well-defined 

problem with a definite solution in some cases, The selection rule 
could be stated in terms of fluxes and forces instead of speeds 
and.tractions. The selection rule requires that we first specify a 
class of nonunique flows, say layered Poiseuille flows, before we 
seek the optimum placements of components. Maximizing speeds is 
the same as maxitiizing dissipation for prescribed tractions. 
Minimizing tractions for given speeds requires that we minimize 
the dissipation. In Poiseuille flows it is natural to fix the pres- 
sure gradient (tractions) and maximize the flux (speeds). In contrast, 
in Couette flows we specify the speeds (angular velocity) and 
minimize the shear stresses (torques) at the boundary. 

12. VARIATIONAL PROBLEMS FOR COUETTE FLOW IN PLANE AND 
CIRCULAR LAYERS AND FOR LAYERED POISEUILLE FLOW. Consider the set 
of layered Poiseuille flows discussed in 55. In Fia. 5.1 we 
exhibited some examples of three layer configurations. In general, 
the layered Poiseuille flows are uniquely determined up to 
arrangement. This means the total number N of layers and the size 
of the layers, subject to total height constraints, are left 
undetermined. Now we shall write the energy balance (11.2) for 
layered plane Poiseuille flow. The volume here is a plane area 
of channel height R and length L (along the axis x). Since u 
vanishes on the solid walls the integral on the left of (11.2) is 
over planes perpendicular to x at x and x + L. 

r ,R 

J u- (Tan) = “!P 1 $7 -- 

= (-PLcx+ 
F px', udy = - 
0 
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where 

Q = j udy is the vclume flux. 
0 

On the other hand 

2 I pD:D = $ I pu' 2 (y) a*r -- . 
3 

L 
'-- 

2 
I l'u"(y)dy. 
0 

Hence 

II 
Ii2,l) 2GQ = uuV2(y)iy. 

We next recall that between 0 and R are N contiguous layers with 
fluids of different viscosities. We can suppose that the layer 
nearest the bottom is occupied by a fluid of viscosity ~1, the 
next layer has P2, then ~1 again, and so on. So besides the total 

number N of layers and their sizes, we need to know if p1 is the 
larger viscosity. We suppose that the total volume (height) of 
high viscosoty (P,) fluid is given as R+ and R- is the volume of low 
viscosity fluid and g+ + R- = R* The N layers are divided into 

rntervals 

,lJY(,)rY(3)1 **JqrJ-1 ,) ,t:. 

With G given we maximize 
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f’(l) 
i’(2) R 

(12.2) Q- I 
'0 

cII) Wdy + y2) (y)d;r -t-.-.-t 
J 

U(N) (Y)dY 
y (1) 

Y (N-1) 

where 

yil). Y(2) 
(12.3) 2QG = Ii1 J 0 u~ll I' (yldy + b2 J Y(l) 

u;f, (y)dy 

f ‘cl r 
y(3) 

11 
u;; ,  (yldy. l * -  

y(2) . 

Now we change variables: 

(12.4) 

GV u(3) = - p1 (3j 

where 

(lZ.S! V' 
(iii = 

- y + y , y E [O,L] 

satisfies (5.11, I[JlU’l = 0 at each interface and there is one 
Y E (0,R) such that v'(~) (Y) = 0. Inserting this change of 

variables into (12.3) we get: 
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We maximize this by arranging the layers so that the high viscosity 
in the denominator is associated with the smallest value of 
(y - Y12* This is clearly the arrangement of (a) of Fig. (5.1), so 
N = 3, and pl is the low viscosity v-/ 

The -same considerations, but in more complicated form, enter into 
the rigorous solution of this problem for pipe flow given by JRR(1983). 

Couette flow differs from Poiseuille flow in that it is 
perhaps more natural to prescribe the speed of exterior boundaries 
and to minimize the torque. We first note that for the Couette 
flow between cylinders in N rings and layers which is shown with 
N = 2 and 3 in Fig. 7.1 we have 

so that k 

(12.7) J avE -(T-n) = - - I v(r)% l (T'ff) 
a+*- I 

<rf3> = HIT {bZ2Ttbj - afilT(a) 

where fi2 'and fil are the angular speeds of the outer and inner 

cylinders, and M = 2nrTCr0' (r) is the torque and it is constant for 
a<r<b. - - It is clear from (11.2) that (a2 - fi,)M is positive and 
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(12.8) 

and 

v 1 z- 
2 

r(l)r3 
'a 

dr 

c I $: 2dr t . . . 

We want to choose the arrangements of layers and the placement 
of viscosities so as to minimize IMI when a2 and "1 are prescribed. 
It will suffice to solve this problem for the two layer configuration 
shown in Fig. 7.1. We may always consider the problem posed for 
two adjacent layers. We find that the minimizing solution has the 
lower viscosity fluid on the inside. We conclude that N = 2 with 
more,viscous fluid on the outside and less viscous fluid inside. 

Suppose yl) = d is the interface between two layers at 
r = a and r = b. The fluid with viscosity M, occupies the region 
a<r<d, - - the fluid with viscosity pl occupies the region 
d<r<b. We find that in d < r c b - - - - 
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and in 

Since 

(12.3) 

9 = Air + B1/r , 

*1 

B1 = (i-2, - 5-5) :J2/9, 



where k = (b* - d*)/(d* - a2) is positive, we may without losing 
generality, consider the case'for which M and .Q2 - "1 are positive. 
It is immediate that M(k,Vl,W2) is a monotonically increasing 

function of p2, from zero at V2 = 0 to 

b*(s,, - I. 91)2(ka2 .+ b")11,/(b* - a2)k.. 

It follows from monotonicity that M is larger when ~2 > pl 
than when '1* < 'I~. So we minimize the torque by putting the 

lower viscosity fluid p- = p2 on the inner cylinder at radius r = d. 
The situation when one sf the liquids occupies an infinite re-. 

gion has to be treated separately. For example, when b+m and s2 + 0 
then 2 

(12.10) /Ml = 
(c12-u1) a 

2 
+uld 

2' 

which for a fixed d is smaller when p2 > ~1. 
SO in every pair of layers the arrangement which minimizes the 

torque has the low viscosity liquid on the inside. It follows 
that optimal arrangements of layers for minimum torque is the one 
with two layers and the less viscous fluid on the inner cylinder. 

The preferred arrangement for the problem of plane Couette 
flow in which the velocity is U at y = R and zero at y = 0 may 
be studied using (11.2) in reduced form 

i:2.1-1) UTcXy' = 

It is not hard to verify that the value of the integral on the 
right of (12.11) is independent of the number and size of layers if 
the total volume R and R of the high and low viscosity fluids is 
prescribed. It follows tFiat the variational problem for the preferred 
arrangement of layers in plane Couette flow has no solution. 
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13. STABfLITY. Ultimately the only satisfactory theoretical 
approach to the problem of selection is through stability. There are 
a few papers which treat the problem of stability of immiscible 
liquids with different viscosities. M these, 
(19671, and Joseph, 

the papers of Yih 
Renardy and Renardy (1983) are most important. 

The problem of stability is clearly identified as a problem of 
selection of stable arrangement of components in the latter paper. 
Interested readers should consult these papers and 510 of this 
paper for more references. 

14. ENCAPSULATION INSTABILITIES. We say that a family of 
steady configurations of components in the flow of immiscible liquids 
undergoes an encapsulation instability when this family gives - 
way to motions in which the high viscosity liquid is shielded from 
shearing by the low viscosity liquid. This type of instability 
can be observed as a migration of low viscosity liquid into regions 
of high shear. Sometimes the low viscosity liquid moves into the 
region of high shear as a sheet, and sometimes (for example, 
when the high viscosity liquid wets the moving boundary) the low 
viscosity liquid fingers into the high viscosity liquid, droplets 
are torn off the fingers and move into the region of high shear as 
an emulsion of droplets of low viscosity liquid in a high viscosity 
foam. 

The series of experiments described below were motivated by 
observations of encapsulation instabilities in pipes. We wanted 
to know if the theoretical explanation of the observations which 
involved extremalizing dissipation could be defended and extended. 
We reasoned that minimum dissipation would put Low viscosity liquid 
on a rotating rod, in the region where there is the greatest shear,, 
as a kind of lubrication bonanza. Though our original idea was 
known by us to be oversimplified it was definitely useful as a 
guide to intuition and interpretation. 

The experiments were carried out in two rectangular plexiglass 
boxes shown in Fig. 14.1. A box is filled with the heavier of two 
liquids up to the central diameter of the rod and the lighter 
liquid is floated on the top, as in Fig. 14.2. Since 
two liquids are always used the density differences are not vast. 
The rod is set into steady rotation. 
will coat the rod. 

We want to know which liquid 
The notion that the hydrodynamics will develop 

so as to minimize the torque, for a given speed, implies that low 
viscosity fluid will coat as in Fig. 14.3. 

The experiments in which we achieved sheet coating of the type 
described by Fig. 14.3 are summarized in Table 14-l. Photographs 
of 5 entries from Table 14.1 are shown in Plates 14.1 - 14.5. 

15. ROLLERS. There are very viscous oils which are extremely 
sticky in the sense that they strongly adhere to certain solid 
surfaces. Polymeric oils are sticky in this sense. High viscosity 
(jJ = 950 poise) silicone oils and STP (11 = 110 poise) were sticky 
to aluminum and plexiglass in this sense. When the oils were 
floated on water the contact angle showed that aluminum favored 
water over STP (see Plate 15.1(a)) or silicone oil. (water wets the 
rod). However, when the rod is turned on, it is the oil that coats, 
and in copious quantities. This is in apparent contradiction of the 
dissipation principle which, thinking superficially, would put 
water on the rod. So we have the impression that contact angles do 
not tell the whole story about stickiness. 
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Liquid 1 

--_- 
silicone I 

silicone I 

light machine oil 

light machine oil 

silicone I 

veg. oil 

g castor oil 

water 
-- . 

2% polyacrylamide 

castor oil 

Liquid 2 

glycerine - 
-- 

water 
-- 

glycerine 
- 

corn syrup 

corn' syrup _~ 

glycerine 

glycerine 

dibutyl 
-@thalate --- 

dibutyl 
phthalate 

. . , 
,% pol'yacrylamidr - - 

--d--F--. 
1.9 

,----- 

19 
---.-. ---. 

6.36 
-.w--.-.- 

6.36 

19 
-Ad 

60 

700 

-1 

-700 

700 

95000 

12 
.- 

1761 

1761 

18-19 . 
--- 

18-19 
-- 

90 

1 

2 ~. 

0.96 
m----. 

0.96 
----a 

0.931 
- .--- 

0.831 

.96 
-I- . 

0.92 

0.96 

1 
_5- 

.- 
1.02. 

0.96 
-- 

0.95 

-LL 
1.25 

----- 

1.0 
-- 

1.25 
--.._ ._ I_--._. 

1.20 

1.25 

1.25 

1.04 

1.04 

1.01 

1 

__--- -- 
oil 

--m-- --- 

oil 

oil 
___-___ -- - -.__- .^__._.. ,-. ._..~ I 

oil 

oil 

Oil 

oil 

dibutyl phthalate 

dibutyl phthalate 
(sheet coating a~- hiah speed) 

oil 
(sheet coating at high speed) 

water _ 

Table 14.1 

Experiments in which the low viscosity fluid coats in sheets. 



Fig. 14.1: Sketch of plexiglass boxes used in the 
experiments. A rod is inserted through the 
long planar sides of the box and is attached 
to a variable speed motor. The [length{ height, 
depth, rod diameter, rod composition] of the 
two boxes, I and II, respectively are: 
[20.32 cm, 22.86 cm, 10.16 cm, 5.08 cm, plexiglass] 
for I and 
[20.32 cm, 11.43 cm, 7.62 cm, 2.54 cm, aluminum] 
for II. 
The rod rotates counter-clockwise in box I and 
clockwise in box II. Th.e experiments in Plates 
14.1 - 14.4, 15.3, 16.1, 16.2 and 17.1 are 

-carried out in box I an =! the experiments in Plates 
14.5, 14.6, 15.1, 15.2, 16.3 and 16.4 are carried 
out in box II. 
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Fig. 14.2: The plexiglass box is loaded with two liquids 
with the undisturbed tnterface at the level. of 
the horizontal diamter of the rod. 
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less viscous 

I?ig. 14.3: The rod rotates and the less viscous liquid 
coats the rod. This kind of coating is called 
sheet coating. -We say that the low viscosity 
liquid encapsulates the high viscosity liquid 
because it shields the more viscous liquid from 
intense shearing. 
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For the very sticky and viscous oils-the configuration which 
appears to minimize dissipation is sometimes achieved by a kind 
of miracle which we call rollers. In Plate 15.1(a) we show the 
static configuration in which STP is floated on water. The STP 
wets the plexiglass box and water wets the aluminum rod. The rod 
was put into steady rotation (clockwise in Plates 15.1); 
it transported all of the STP on the left side of the box (i.e. the 
upward-motion side of the rod) to the roller of STP, or to a stag- 
nant region of STP on the right (i.e. the downward-motion side of the 
rod). A thin sheet of water was pulled between the STP roller and 
the stagnant STP (see Plate 15.1(b) and Fig..15.1). Astonishingly 
the roller of STP also separated from the wall of the box even 
though it is well known to us that STP is very sticky to plexiglass. 
This hydrodynamically generated separation of STP from the plexiglass 
side wall is shown in Plate 15.1(c). 

The STP roller rotates as a rigid wheel, lubricated by water from 
all sides. The stagnant STP on the right barely moves. A sketch 
of Plate 15.1 is shown in Fig. 
about what is being shown. 

15.1 so that there is no ambiguity 
This hydrodynamic configuration evidently 

reduces the total dissipation to a very small value associated 
mainly with shearing water in a lubrication layer. 

Data for experiments leading to rollers is tabulated in Table 15.1. 
The rollers are not hard to obtain. They seem to arise out 

of an encapsulation instability in which the water spontaneously 
migrates into the regions in which it undergoes high shear, shielding 
the STP from intense shearing. We have not yet studied the rollers 
under systematic variations of the parameters. However, in another 
set of experiments we tried to remove some of the STP from the 
stagnant region. In fact we removed all but about a 6mm layer of 
this STP without visibly affecting the stability of the roller. But 
at a critical value of the depth of "dead" STP, the roller bifurcated 
into another roller with triangular symmetry. 
"figure of equilibrium" 

This bizarre triangular 
was unstable but not violently so. In 

an attempt to save the day we added some STP to the stagnant 
region and recovered stability. However, the newly stable roller 
was lop-sided and ugly so we put a screwdriver in the box and molded 

as does a potter at his wheel 
:z:ge radius which is exhibited i; Plates 15.2(a) and 15.2(b) 

into the automobile tire shape of 

The STP rollers are robustly stable. They withstand larg; 
perturbations and can rotate for weeks without apparent change. 

The development of rollers might be thought to be associated 
to a degree with normal stresses characteristic of shear flows 
of non-Newtonian fluids. We discount explanations of our observations 
based on normal stresses because the shear rates in the rollers 
appear to be small and because we can obtain rollers in Newtonian 
liquids. 

The photographs exhibited in Plates 15.3 show rollers of 
silicone oil (950 poise) in water. The viscosity ratio is 95,000. 
The roller of silicone oil is almost perfectly round, and it has 
detached from the walls under hydrodynamic action. The angular 
velocity of the silicone roller is constant: the roller rotates 
as a rigid wheel. The roller is robustly stable, it rotates for 
weeks without change of form. The dynamics of the roller appears to 
be governed by the inviscid equations of motion. There is an unknown 
constant in the pressure which determines the radius of the roller, 
through the balance of normal stress with surface tension. This radius 
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Fig. 15.1: (al Sketch of plate 15.1(c): (b)-' sketch of 
plate 15.1(b). 

- -  
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e -  

-  -  

pure silicone 
pure siiicone 

Fig - 15.2: Fingering of water droplets into high viscosity 
(35OOOcp) silicone oil. 
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SIDE 

( 1 a 

Fig. 15.3: Schematic of the experiment with STP and water 
in the four-roller apparatus. 
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is not uniquely determined. In fact the roller in Plates 15.3 has 
captured all of the silicone oil which was originally floated on the 
water. Presumably if we had floated more or less oil we would 
achieve a roller with larger or smaller radius.. The silicone oil is 
attracted energetically to the plexiglass rod: it is favored over 
water. 

We next describe what happened when we tried to obtain rollers 
with the same silicone oil (V = 95,000 cp) in the box with an 
aluminum rod which was wetted by water rather than oil. 
over a period of about six hours, 

At first, 
we developed an imperfect roller 

configuration but thereafter we lost the lubricating water film 
to a cusp-like water film which is characteristic of fingering 
instabilities and the formation of emulsions (see Fig. 15.2). The 
configuration of components then assumed form as a dilute water laden 
emulsion of water droplets in silicone oil. The water droplets 
were continuously generated from the cusp shown in Fig. 15.2. 
The droplets were very effective in reducing the viscosity of the 
silicone oil. 
rod. 

More and more of the water droplets drifted to the 

lation 
After a few days this collection of drops reached a perco- 

threshold with rings, like wedding bands, of water around the 
rod. After three days all the rings had collected into a sheet 
of water coating the rod and encapsulating the silicone oil. The 
silicone oil inthisconfiguration appears not to move, though of 
course there must be some small motion of the silicone oil due to 
shearing by water. This final configuration is shown in Plate 14.4. 

The hydrodynamical history of the silicone oil experiments 
exhibits encapsulation phenomena in the form of roller instabilities, 
fingering instabilities and the generation of emulsions and finally 
to an unambiguous sheet encapsulation of high viscosity silicone oil 
by a lubricating water layer. 

form. 
The sheet encapsulation can actually be put into a more dramatic 

In this configuration we get a water layer on the rod, completely 
surrounded by silicone oil as in the idealized picture shown in Fig. 
7.1. This was achieved by withdrawing some water with a syringe 
after the sheet coating with water, 
graph, has completely stabilized. 

described in the previous para- 
The fully encapsulated configuration, 

shown in Plate 14.5, is robustly stable. 
arays of rollers of STP lubricated on all sides by water can 

be achieved using the four roller apparatus of G. I. Taylor sketched 
in Fig. 15.3. The apparatus is filled with water up to the plane 
of symmetry btitween the upper and lower pairs of rollers, and then 
STP is added to cover the upper rollers. Rollers of STP develop 
out of small sinusoidal disturbances of initially uniform (along 
rod generators) interfaces. 
finally develop are steady, 

The interpenetrating rollers which 

water. 
stable and lubricated everywhere by 

and (b). 
Photographs of these rollers are exhibited in Plates 15.4(a) 

16. FINGERING INSTABILITIES, THE FORMATION OF AND LUBRICATION 
BY EMULSIONSI-, In many cases the wetting properties of the rod or 
the experimental conditions do not allow the formation of lubricating 
sheets of low viscosity liquid, In these cases we get fingering 
of low viscosity liquid into high viscosity liquid. Drops of low 
viscosity liquid are torn off the finger tips leading to the formation 
of an emulsion of low viscosity drops in a high viscosity foam. 
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A type of capillary instability may be associated with drop form- 
ation from fingers. The emulsions have a .very low viscosity and 
they shield the bulk of high viscosity liquid from shearing. In 
Table 16.1 we have summarized the experiments exhibiting fingering 
into emulsions. 

The first group of emulsifying configurations are those 
in which a light liquid of moderately high viscosity, like vegetable 
oil, light machine oil or castor oil, is floated on top of water, 
or waterbased polymeric solutions, like polyacrylamide. In all these 
cases the oil wets the plexiglass rod, and after the whole rod is 
exposed to oil, the oil clings tenaciously to the rod in a narrow 
layer, even in a monolayer, in apparent but only superficial 
contradiction of the lubrication principle. When the rod rotates 
slowly there is a tendency for water to be drawn up onto the rod, 
but surface tension pulls the water back as shown in Plate 16.1(a). 
At a higher speed the water will begin to finger into the oil, 
depositing droplets as shown in Plate 16.1(b). The fingering in- 
stability is sketched in Fig. 16.1. The continuous formatian of drop- 
lets leads eventually to emulsification of water droplets in oil 
foam. The emulsified liquid then coats the rod as shown in Plate 16.1(c) 0 
Instead of sheet coating we get coating by water-laden emulsions. 
These emulsions have very low viscosities: first they are 
water-laden, second, they tank tread like roller bearings and they 
seem to be nearly as effective as sheet coats in shielding the 
high viscosity liquids from shearing. 

The photograph of castor oil above pdlyacrylamide shown in 
Plate 16.2 is a variant of fingering dynamics leading to drops 
and emulsions. In this, the polyacrylamide-water droplets are 
encapsulated at higher speed by a sheet of low viscosity (poly- 
acrylamide-water) liquid. 

A second group of emulsifying configurations are generated by 
experimental conditions which prevent the generation of sheet coating. 
We did some experiments in Box II of the type that led to the forma- 
tion of the rollers shown in Plates 15.1(a), (b) and (c). The only 
difference was that the box was filled to the top and kept from 
moving there by a cover plate. We expected that the phase configura- 
tion of minimum dissipation would lead to the capture of low 
viscosity fluid on the rod, with most of it on the rod if the 
densities were nearly matched. The difference between this sequence 
of experiments and the ones in 515 is that the cover plate forces 
a kind of hydrodynamic lubrication at the top of the cylinder, 
promoting fingering and the formation of emulsions. 

Realizations of the idea of the foregoing paragraph are shown 
in Plates 16.3(a) and (b). As always, we started with the static 
configuration of heavy fluidbelowas shown in Plate 15.1(a). 
In Plate 16.3(a) we see the phase configuration of STP (dark) and 
TLA 227 (light) after a few days of rotation, Both fluids are oil- 
based polymFric immiscible liquids. The density of TLA 227 is about 
0.005 grn/cm greater than the density of STP- It can be seen in Plate 
16.3(a) that after a few days much of the STP had migrated to the 
rod, and the streamlines carrying in the STP from remote regions 
are evident. When the (dark) STP is drawn from remote regions t0 
the rod it carries with it some (light) TLA 227 by shearing action- 
After a week the color differences were very faint and we were I 
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Fig. 2.6-l: Fingering instability leading to emulsions of 
water droplets in oil foam. 



unsure if the bulk of the STP was really on the rod. But when we 
stopped the rod the STP precipitated out, as illustrated in Plate 
16.3(b). 

The shielding effects of emulsions is very clearly seen in the 
experiment with STP (dark) above polyacrylamide in water (clear), 
shown in Plates 16.4(a) and (b). The polyacrylamide is heavy 
and much less viscous (viscosity ratio of 120). The STP has a 
great affinity for the rod and when we turned on the rod it pulled 
along a big annulus of the high viscosity STP, going against our 
idea that the low viscosity fluid coats. But after a while the 
small bubbles of polyacrylamide which were being torn off were 
injected into the STP and the whole of the STP emulsified after 
about three days. The parts of the emulsion having a heavier con- 
centration of low viscosity polyacrylamide drifted to the rod 
and all the shearing was confined to the low viscosity emulsion 
near the rod. Then the polyacrylamide in the emulsion-near the 
rod deposited polyacrylamide in almost pure form onto the rod. 
This appears as a light ring of polyacrylamide on the rotating rod 
shown in Plate 16.4(b). The bulk of the STP is completely quiescent, 
being shielded from the polyacrylamide by the emulsion. We think 
that this configuration very nearly minimizes dissipation but 
we did not anticipate that the hydrodynamics would take on such 
bizarre forms. The rotational speed appeared to have increased a 
lot (at the same torque) in the week and one half of rod turning, 
suggesting a big drop in the dissipation of the preferred phase 
configuration. 

17. CENTRIFUGAL AND TAYLOR TYPE INSTABILITIES IN THE FLOW OF 
IMMISCIBLE LIQUIDS. The instabilities we have in mind are the ones 
which are commonly associated with an adverse distribution of angular 
momentum. For single fluids such instabilities are well under- 
stood in certain circumscribed circumstances; Taylor cells are the 
best known and most important example. 
the presence of two liquids. 

The point of novelty here is 
Two types of phenomena which occur 

in our experiments are of interest. The encapsulation instability 
seems always to position a low viscosity film or emulsion between the 
rod and a stagnant body of high viscosity liquid. Such a configura- 
tion is very conducive to the development of an adverse distribution 
of angular momentum. The tendency for centrifugal forces to throw 
the heavy, less viscous liquid outward seems to be resisted by the 
other more viscous and still stable portion of the fluid. The 
result is apparently a cellular motion, which here can be observed 
as a deformation of the free surface. This is the first type of novel 
phenomenon which can be seen in experiments with two liquids. Such 
free surface cells are exhibited in Plate 17.1. 

A second type of phenomenondevelopsin the flow of immiscible 
liquids in a Taylor apparatus set on its side. The inner diameter 
of the outer cylinder is 6.35 cm, and the length of the space between 
the inner and outer cylinders is 30.48 cm. The cylinders are made of 
plexiglass, the outer is stationary and the inner is free to rotate. 
Three inner cylinders (diameter = 5.72, 5.08, 3.81 cm) were used 
in the experiments. Every experiment was carried out with equal 
volumes of the two liquids. The apparatus was half-filled with 
heavy liquid on the bottom and light liquid on the top as in Fig. 17.1(a). 

The fluid dynamics of the resulting flow is dominated by a form 
of Taylor instability which seems to be only weakly influenced by 
gravity. An idealized sketch of the cells which develop is shown 
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in Fig. 17,1(b). High and low viscosity cells (e.g., oil and water) 
separate each other. Examples of the cells which actually do develop 
are exhibited in the photographs shown as Plates 17.2 - 17.6. 
Encapsulation instabilities enter into the dynamics of these cells in 
an important-way which we specify below. 

It is a good idea to compute stability limits for centrally 
located Couette flows of immiscible liquids in two layers with 
gravity neglected. This type of calculation would lead to critical 
conditions for the appearance of cells. For the present we imagine 
that there is a critical Taylor number, which is given by analysis 
for one fluid and is in the form 

412R4 
Tc = -’ 1 y2 1’ -$ 

u-71)4 
l-l4 

where R1 is the radius of the inner cylinder, R2 is the radius 
of the outer cylinder, rl = Rl/R2, v is the kinematic viscosity 
and Q is the angular velocity of the inner cylinder. For small 

1 - rl = E, Tc = 3416 and 

In the experiments shown in the photographs exhibited in this 
paper the liquid with the smaller viscosity is water with v = 0.01 
stokes. We may estimate E = 1 - 11 for the water alone as 

F = +Ci - 5 g-1 ., 
2 

Then, as a rough measure of critical conditions we have 
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This is an estimate of the critical speed in water. The critical 
speed for oil is higher; roughly 

20Qc for silicone oil I (V = 29Cp), 

12,0009c for STP (LI = 11000 cp). 

At low speed, we see at first a high torque, which very 
rapidly drops to a lower value. Correlating this with direct _ 
observation, we identify the first significant dynamical event as 
an encapsulation instability in which a sheet of water is pulled 
around the inner cylinder. After this event, gravity seems less 
important and the flows tend more to axisymmetry. 

The next event is the formation of Taylor cells in the 
water layer. The dynamics associated with this event are not 
perfectly understood in detail but probably can be roughly described 
as follows. Imagine that a layer of water occupies the region 
next to the inner cylinder, with [PI = 0 or, equivalently, g = 0. 
As Q is increased past criticality the smooth flow of water gives 
up stability to Taylor vortices. 
in cells, 

The oil also moves very slowly 
driven not by instability but by shear stresses induced 

by cellular motion of the dynamically active water. These motions 
will naturally distort the oil/water interface, as in Fig. 17.2(a). 
The large amplitude limit of the flow in Fig'. 17.2(a) is usually 
like the flow depicted in Fig. 17.2(c). In this flow the passive 
oil cells undergo extremely weak cellular motions driven by shears 
from active water cells. The oil cells are rollers and are lubricated 
at the sides and at the outer cylinder by water. The lubrication 
of oil rollers by water is enhanced by the fact that water is 
heavier than oil and will tend to replace the oil layer on the 
outside of the cylinder. If the oil is sticky to plexiglass a 
small layer of oil will continue to adhere to the outer cylinder 
at positions above the water layer where the shears are small. To 
understand this it is necessary to study Fig. 17.3. In the 
experiments it is very easy to see that the azimuthal component of 
velocity of oil cells near the outer cylinder is much greater than 
the azimuthal component of velocity in neighboring water cells. 
This striking observational fact is completely explained by the 
encapsulation of the oil rollers by water at the outer wall. 

When the viscosity of the oil is not too great, it is 
possible to run our apparatus at speeds for which both oil and 
water are very unstable toTaylorvortices. In such situations 
the two components emulsify strongly, forming one emulsified 
liquid which exhibits Taylor cells in classical form (see Plate 17.3). 
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Fig. 17.1: Sketch of Taylor cells 
instability of water. d eveloping from the 
passive while the motion in the water is The oil is dynamically 
driven by centrifugal instability. 
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water oil 

water oil (cl 

Fig- 17.2: Sketch of dynamically active water cells and 
dynamically passive oil cells (shaded) arising 
from the instability in bicomponent Couette 
flow between rotating cylinders. The situation 
in (a) arises near criticality as an instability 
of layered Couette flow. The situation in (b) 
could be regarded as the large amplitude limit 
of (a) when density differences are negligible. 
The secondary flow in the oil cells is extremely 
weak. Instead of (b) we usually see a confi- 
guration like (c) with passive oil cells rotating 
as rigid rollers attached to the inner cylinder 
and lubricated by water at the outer cvlinder. 
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b) 

Fig. 17.3: The azimuthal velocity distribution in (a) 
water cells, and (b) oil rollers lubricated 
by water. 
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Plate 3.1: One of the static configurations of dibutyl 
phthalate bubbles (P = 1.04 gm/ce) in glycerine-water 
solution. The mixture of glycerine (p = 1.25 gm/cc) and water 
(p = 1.00 gm/cc) is adjusted to match the density of 
dibutyl phthalate. 
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(a) (b) 

Plate 14.1: Encapsulation of silicone oil I (p = 0.96 gm/cc, 
p = 19 cp) by (a) corn syrup/water solution (p = 1.2 gm/cc, 

- 12 cp, blue) and (b) water (blue). 
Fad is about 150'RPM. 

The speed of the 

(a) (b) 

Plate 14.2: Encapsulation of glycerine (p = l.25 gm/cc, 
p = 1760 cp, clear) by silicone oil I (p = 0,9G g/cc, 
11 = 10 cp, red). The speed of the rod is 100 RPM: 
(a) front view, (b) side view. 
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Plate 14.3: Encapsulation of glycerine (p = 1.25 gm/cc, 
p = 1760 cp, clear) by castor oil (p = 0.96 gm/cc, 
p = 700 cp, red). The speed of the rod is about 50 RPM: 
(a) front view, (b) side view. 
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lb) 

Plate 14.4: Encapsulation of silicone oil III (p = 0.95 gm/cc, 
p = 95,000 cp, red) by water (clear). The speed of the rod 
is about 65 RPM. The rod is lubricated entirely by water: 
(a) back view, looking at an angle from below, (b) side 

view. 

Plate 14.5: The same experiment as in Plate 14.4. After the 
configuration in Plate 14.4 is achieved, some ,water is with- 
drawn from the box so as to lower the level of silicone oil 
below the rod. The rod is surrounded by a very thin annular 
layer of water and the water is surrounded by oil. The 
rod is completely lubricated by the water and the oil is 
sheared only by water. 

It is possible to obtain a water lubricated aluminum 
rod in which the thickness of the water layer is zero, 
confined to a monolayer on the rod. In such configurations 
the rod rotates at high speeds, but the silicone oil is 
dead still. This violates the no-slip condition; it slips, 
completely as in an inviscid fluid. So if we wish to say 
that fluid will stick to a solid we must specify the fluid, 
thesolid, and say there are no monolayers, or make other 
quantifying statements. 101 



b) (cl 

Plate 15.1: (a) The static configuration of STP (density 
P = 0.89 gm/cc, viscosity IJ = 11000 cp, brown) on water 
(l-l = 1 cp). 

(b) Front view of the box. The rod rotates 
clockwise at about 40 RPM. The STP on the right is nearly 
stationary and is shielded from shearing by a thin layer 
of water. 

(c) Side view of ths box lcokinl; in from the 
left of Plate 15.1(b). The STP roller is also shielded from 
shearing against the plexiglass walls by a layer of water. 
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(b) 

Plate 15.2: (a) The same experiment as in Plate 15.1(b) 
and (c) after some STP is removed from the right of the 
box, resulting in a roller in shape of an automobile tire. 
There is a smaller layer of STP on top of the water. This 
layer is separated from the roller by a layer of water main- 
tained hydrodynamically. 

(b) Side view of the roller, looking in from 
the left of Plate 15.2(a). The roller has detached from 
the side walls under hydrodynamic action. 
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Plate 15.3: (a) The formation of a roller of silicone 
oil III (p = 0.95 gm/cc, Jo = 95,000 cp) in water. In 
the beginning the rod rotates counter-clockwise at 10 RPM. 
The torque is 1.4 lb.-in. Fingering instabilities lead to 
an emulsion of water droplets in silicone oil; (1) front 
view, (2) side view. 

Three days later as more water droplets are formed, 
the effective viscosity of silicone oil decreases and the rod 
rotates at a higher speed (16 RPM). At this speed the roller 
is formed but does not rotate as a solid body since it is 
still attached to the side wall (3) front view. (4) side 
view. 
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Plate 15.3: (b) The speed of the rod is increased. The 
torque goes up to above 5 lb.-in. The two photographs 
(1) and (21, which are taken 5 seconds apart, show the 
dynamics through which the roller detached itself from the 
side wall. After detaching from the wall, the torque goes 
down to 0.6 lb.-in. 
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Plate 15.3: (c) After detaching from the wall the roller 
becomes unstable. To restore stability the speed of the 
rod is reduced to 12 RPM. The roller is stable but the shape 
is irregular; (1) front view, (2) side view. After a 
few hours the roller molded itself into the shape depicted 
in Fig. 15.1. The speed of the rod and the speed on the 
surface of the roller are almost the same showing that the 
roller is very nearly in a solid body rotation, with small 
shearing by water at the roller rim. 

LO6 



b) 

Plate 15.4: (a) Interpenetrating rollers of STP and water 
as seen from the top of the box sketched in Fig. 15.3. There 
is water on every side of the STP rollers. The rollers 
develop as an instability of two rollers (one on each rod) 
which areinitially uniform along the rod. The water surface 
between them develops a small wave. A grown-up version 
of small waviness can be seen in the above photograph. 

(b) Interpenetrating rollers of STP and water 
as seen from the side of the box sketched in Fig. 15.3. 
The clear parts are of water. 
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Plate 16.1: (a) Light machine oil (p = 0,831 gm/cc, 
p = 6.36 cp, yellow) on water. The rod rotates counter- 
clockwise. at 115 RPM. The contact angle in this 
experiment seems to be fixed with the contact line slipping 
on the rod in such a way as to stay fixed in space. The 
configuration of the contact line and thetenacityof the 
contact angle even under pressure from the intense water 
circulation under the free surface are noteworthy. 

(b) The rod rotates at 195 RPM. This plate 
shows the fingering instability in mature form and how water 
droplets are torn off the fingers. 

(c) Emulsion of water in light machine oil 
at 300 RPM. The water-laden emulsion shields the main body 
of oil (on the top left and right) from shearing. 
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Plate 16.2: A combination of emulsion and sheet coating of 
1% polyacrylamide/water (11 = 90 cp, p = 1.01 gm/cc, blue) 
in castor oil 1l.1 = 700 cp, p = 0.96 gm/cc, yellow). 
rod rotates clockwise at 1 RPM. 

The 
The rod is covered by 

polyacrylamide/water droplets and these droplets in turn 
are encapsulated by a sheet of polyacrylamide/water shielding 
them from shearing against the high-viscosity castor oil. 

109 



(a) 

(b) 

Plate 16.3: (a) Emulsion of STP (11 = 11000 cp, 
P = 0.890 gm/cc, dark brown) in TLA 227 (IJ = 20000 cp, 
p = 0.895 gm/cc, light brown). The rod rotates clock- 
wise at about 16. RPM. Streamlines show STP being drawn 
into the rod. 

Ib) Emulsion of STP in TLA 227. The motor 
is stopped. A ring of STP (dark brown) precipitates out 
of TLA (light brown) around the rod. 
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(b) 

Plate 16.4: (a) Emulsion of 1% polyacrylamide/water 
(lJ = 90 CP,P = 1.01 gm/cc) in STP (W = 11000 cp, 
P = 0.890 g/cc, dark). The polyacrylamide/water 
solution is on the bottom and on the rod, which rotates 
clockwise at about 45 RPM. 

(b) Close-up view showing the emulsion and the 
ring of polyacrylamide/water solution around the rod. 
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Plate 17.1: Centrifugal instability of multigrade motor 
oil (lOW40) in water. The layer of oil on the rod is 
separated from the main body of oil by a sheet of water. 
At the speed of about 300 RPM the oil-water interface 
becomes wavy. 
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Plate 17.2: Rollers of silicone oil I (p = 0.95 gm/cc, 
J.l = 19 cp, red) separating Taylor cells of water (clear) 
(Sa, R - Rl) = (130 RPM, 0.635 cm). The azimuthal velocity 

of si icone oil is much larger than water, presumably because + 
of encapsulation by a thin film of water (see Fig. 17.3). 

Plate 17.3: A similar experiment to Plate 17.2 at a much 
higher angular velocity, ($2, ~~ - RI) = (1810 RPM, 0.318 cm). 
At this velocity the oil and water are both unstable and the 
oil has completely emulsified, forming a single liquid in 
which we see classical Taylor cells. 
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Plate 17.4: Rollers of STP (orange) separating Taylor 
cells of water (clear); (a, R 
The viscosity of the STP is 1 1 

- Rl) = (86 RPM, 1.27 cm). 
,000 that of water, so that 

STP is always stable against Taylor instability. The 
azimuthal velocity of the rollers is much greater than that 
of the wave of STP which sticks to the inner wall of the 
outside cylinder above the water (see Fig. 17.2(c) and 17.3). 
The manner in which the STP is fractured to avoid being 
sheared is noteworhty. 
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Plate 17.5: Monograde motor oil (SAE40, brown) and water 
(clear), (n, R2 - Rl1 = (120 RPM, 0.318 cm). At this 
speed only water is unstable, and the dynamics is similar to 
(c) of Fig. 17.2. We see rollers of oil separating Taylor 
cells of water. The azimuthal velocity of water is much 
smaller that that of oil, apparently caused by the layers of 
oil sticking to the inner wall of the outer cylinder, 

Plate 17.6:. Monograde motor oil (SAE40) and water 
(a, R2 - Rl) = (440 RPM, 0.318 cm). The light cells 
are emulsions of oil with small droplets of water. The 
light cells are of water with many large drops of oil. 
This is like a two component flow of two different emulsions, 
and the dynamics which are realized seem to fall under 
(b) of Fig. 17.2. 
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FLOW PAST A FLEXIBLE MEMBRANE 
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ABSTRACT. The deformation of a two-dimensional membrane due to the flow 
of an incompressible fluid around it is considered. The membrane is assumed 
to be flexible and inextensible. The problem is related to the flow of air 
past parachutes. Numerical solutions are obtained by discretization of the 
model nonlinear integrodifferential equation describing the flow. The 
numerical results are shown to be in reasonable agreement with experiments. 
In addition some aspects of the effect of porosity are discussed. 

I. Introduction. We consider the deformation of a two-dimensional 
membrane due to the steady potential flow of an incompressible inviscid fluid 
around it (see Figure 1). We assume that the membrane is flexible, 
inextensible and characterized by a constant tension T. This flow 
configuration is relevant to the flow of air past a parachute. We shall first 
neglect the porosity of the cloth. Some aspects of porosity will be discussed 
in the last section of the paper. 

We approximate the wake behind the membrane by assuming that the pressure 
in it is equal to a constant Pb. 

AS we shall see, the shape of the membrane is characterized by the 
dimensionless parameters 

T 

(1.1) 

(1.2) 

(1.3) 

R-C 
s=c- 

(1.4) 

Here CP is the pressure coefficient, CT the tension coefficient, CD the 
drag coefficient, P, the pressure far upstream, P the density of air, c 

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and 
the National Science Foundation under Grant No. MCS-800-1960. 
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the distance between the edges of the membrane, U the velocity far upstream, 
D the drag per unit span of the membrane and 11 the length of the membrane. 

This problem was previously considered by Newman and tiw [l]. They 
presented experimental measurements of the drag coefficient and of the 
pressure coefficient for various values of 5. In addition they performed 
some numerical computations based on the model of Parkinson and Jandali 121. 
Their numerical results were found to be in satisfactory agreement with the 
experimental data. 

In the present paper we compute accurate solutions by using the open-wake 
model. This model was introduced by Joukowsky , rediscovered by Rashko and 
extended by Wu [31. Our numerical results are found to be in good agreement 
with the experimental data of Newman and Low 111. 

The problem is formulated in Section 2 and the numerical results are 
discussed in Section 3. Some aspects of porosity are discussed in Section 4. 

II. Formulation. Let us consider the steady two-dimensional potential 
flow of an inviscid incompressible fluid past a membrane (see Figure 1). We 
use the open-wake model to describe the wake behind the membrane. In this 
model the portions CD and C'D' of the boundary of the wake are described 
by the free streamline theory. Downstream of the points D and D' the 
boundary of the wake consists of two horizontal straight lines. The position 
of the points D and D' is to be found as part of the solution. 

It is convenient to introduce dimensionless variables by using U as the 
unit velocity and C as the unit length. We introduce the potential function 

4 and the stream function $. Without loss of generality we choose $=O 
at the point B and $ = 0 on the membrane and on the surface of the wake. 
The flow configuration in the complex potential plane f = 9 + i$ is 
illustrated in Figure 2. We denote by b and d the values of Q at C 
and D. These values will be determined as part of the solution. 

We denote the complex velocity by u - iv and we define the function 
r - iB by the relation 

u-iv=e 
T-i0 

. (2.1) 

We shall seek T - i0 as an analytic function of f = 9 + i$ in the half 
plane $CO. 

The Bernoulli equation yields 

$q'+$ 
P 

+12+f, q.'<o. 

Here q is the magnitude of the velocity and P the pressure- In 
dimensionless variables (2.2) becomes 

e2= P P 
+-= 1+ 00 

+ PU2 ; pu2 
I $<O. 
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On the portion CD of the surface of the cavity we require P = Pb* 
Therefore (2.3) yields 

e2= = 1 -c p, bC+<d,$=O. ('2.4 1 

Here Cp is defined by (1.1). 

On the membrane surface the Bernoulli equation (2.3) and the pressure 
jump due to the tension T yield 

e2' T a0 
+CTe q-l-C,, Otlp<b,#=O. (2.5) 

Here CT is defined by (1.2). 

On the portion DE of the boundary of the wake we impose the condition 

0 = 0, d<+<=, q-0. (2.6) 

Finally, the symmetry of the problem yields 

0 I =o -c+<o,jJ=o. (2.7) 

At infinity we require the velocity to be 1 in the x-direction. 
Therefore, T - i0 must tend to zero at infinity. The function T - i0 is 
analytic in the half plane JI < 0 and vanishes at-infinity. Therefore on 

$= 0 its real part is the Hilbert transform of its imaginary part. Using 
(2.6) and (2.7) the Hilbert transform yields 

(2.8) 

The integral in (2.81 is of Cauchy principal value form. The functions T(*) 
and e(0) in (2.8) denote the values of f and 0 on 9 = 0. 

Relation (2.1) yields the indentity 

a”+i a+ 2$ = ,-=+ie . (2.9) 

Taking the imaginary part of (2.9) and integrating from 0 to b we obtain 

Jb emT sin 6 dg + + = 0 . 
0 

(2.10) 

Relation (2.10) defines the unit length as C. 

Finally, the length of the mmbrane and the drag coefficient are given by 

a 
b 

-c s c---L= 
C 2 I emTd$ - 1 , 

0 
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CD = (1 - cp, - 2 1" e2Ty4d+ . (2.12) 

For given values of CP and s1 relations (2.41, (2.51, (2.8), (2.101, 
(2.11) and (2.121 define a nonlinear system of integrodifferential equations 
for the unknowns e(4), ~(91, b, d, CD and CT' This system was discretized 
and the resultant algebraic equations were solved by Newton's method. The 
details of the numerical procedure follow closely the work of Vanden-Broeck 
141. Therefore they will not be repeated here. 

III. Discussion of the results. Poshko 151 derived an exact solution 
for the open-wake model past a flat plate. In particular he cal.cul.ated the 
following expression for CD 

CD = 'z lr Id(l + WV' + $(I -WI 2 
2 -I$ 

- (I + W2)tan-'W]]-' . (3.1) 

Here 

w = (1 - C,I -l/2 . 

In order to check the accuracy of our numerical procedure, we run our 
program with CP = -1.34 and s = 0 for 20, 40, 100 and 150 mesh points. 
The respective values of CD were 2.104, 2.095, 2.092 and 2.091. This 
sequence of values is in good agreement with the exact value 2.091 predicted 
by (3.1). This constitutes au important check on the validity of our 
numerical approach. 

The experimental results of Newman and mw [I 1 suggest that CP is a 
linear function of s for 0 < s < 0.6. We found that the experimental 
values presented in Figure 13 of their paper could be fitted by the straight 
line 

CP = -1.3 - 0.6s . (3.2) 

The numerical scheme was run for various values of s and Cp 
satisfying (3.21. Some of the results are presented in Table 1. 

S 

0.02 
0.1 
0.2 
0.3 
0.4 
0.6 

CP I cD 

-1.31 2.16 
-1.36 2.28 
-1.42 2.38 
-1.48 2.45 
-1.54 2.52 
-1.66 2.66 

cT 

3.34 
1.71 
1.41 
1.31 
1.29 
1.33 

. 
Table 1 
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The values of CD and CT given in Table 1 agree within ten percent 
with the experimental data presented by Newman and Low in Figures 8 and 18 of 
their paper. 
.and CT. 

Therefore the open wake is adequate for the prediction of CD 

IV. The effect of porosity. Cumberbatch [61 extended the open-wake 
model to the flow past a porous flat plate. He assumed a Darcian flow through 
the mesh and obtained a solution in closed form. In addition he showed that 
his solution is in fair agreement with the experimental data of Taylor and 
Davies 171. 

Numerical solutions for the flow past a flexible and porous membrane can 
be obtained by an appropriate generalization of the procedure described in 
Section 2. When porosity is included the stream function $ is no longer a 
constant along the membrane. The basic idea is to write JI = F(4) along the 
membrane and to determine F(I$) by imposing Darcy’s law across the mesh. 
Preliminary computations with s = 0, gave results in agreement with 
Cumberbatch's [61 solution. Work is continuing on this aspect of the problem. 
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ABSTRACT. A method is presented for nonlinear, transient dynamic 
analysis of vehicle systems that are composed of interconnected rigid and 
flexible bodies. The finite element method is used to characterize 
deformation of each elastic body and a component mode technique Is employed to 
reduce the number of elastic generalized coordinates. Equations of motion and 
constraints of the coupled system are formulated in terms of a minimal set of 
modal and reference generalized coordinates. A Lagrange multiplier technique 
is used to account for kinematic constraints between bodies and a generalized 
coordinate partitioning technique is employed to eliminate dependent 
coordinates. The method is applied to a planar truck model with a flexible 
chassis and nonlinear suspension components. Simulation results for transient 
dynamic response as the vehicle traverses a bump, including the effect of 
bump-stops, and random terrain show that flexibility of the chassis can be 
routinely accounted for and predicts significant effects on vibratory motion 
of the vehicle. Compared with a rigid body model, flexibility of the chassis 
increases peak acceleration of the chassis and induces high frequency vertical 
acceleration in the range of human resonance, which deteriorates ride quality 
of off-road vehicles. 

1. IRTRODUCTION. Modern, lightweight, off-road vehicle systems, 
operating over rough terrain, have placed increasingly higher demands on the 
technology required to accurately model and predict dynamic response of a 
vehicle system. In order to predict dynamic performance of a vehicle, it is 
necessary to consider nonlinear suspension kinematics and forces, coupled with 
elastic deformation of the vehicle chassis. Accurate description of vehicle 
dynamics; e.g., ride comfort and precision of armament subsystems, requires a 
high resolution mathematical model that accounts for flexibility effects and 
their coupling with geometrical and suspension force nonlinearities. This is 
mainly due to the large number of degrees-of-freedom required to model vehicle 
components and the high degree of geometrical nonlinearity associated with 
gross motion of suspension components and force-displacement nonlinearity 
associated with suspension bump-stops. When flexibility is considered, the 
problem becomes even more difficult, because of the increasing dimensionality 
and high frequencies of natural vibration. 

Some investigators [l-2] have-considered flexibility of vehicle 
components. Their method of analysis is based on a linear theory that has 
been employed to analyze mechanisms with flexible members [3-S]. In this 

*Research Supported by Project No. DAAG29-82-K-0086 U.S. Army Research Office. 
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analysis, elastic deformation is assumed to have no signific$nt effect on 
gross motion. Gross motion is first determined, using rigid body analysis and 
the resulting inertia and reaction forces are Introduced in elastic analysis 
of the components. The total motion of the elastic member is then obtained by 
superposition of small deformation on gross body motion. There is, however, 
an increasing demand to produce lighter weight vehicular components that 
operate at higher speeds. Linear theory assumptions are no longer accurate 
enough to represent system dynamics, since flexibility effects can 
significantly affect motion at the driver's station. 

Sunada and Dubowsky [6] recently presented a method for the dynamic 
analysis of flexible mechanisms that couples flexible degrees of freedom with 
a geometrically nonlinear set of equations of motion. Existing finite element 
structural programs are combined with a 4x4 matrix dynamic analysis 
technfque. The method has been applied to analyze spatial mechanisms and 
robotic manipulators. The capability of this method to treat applications 
such as vehicle systems and space structures without substantial ad-hoc 
formulation, is not clear. Further, this method neglects rotary inertia of 
mass that is lumped at individual grid points, in order to avoid the 
difficulty of using a consistent mass approach to represent inertia coupling 
between the rigid body motion and the elastic deformation. 

Shabana and Wehage [7-81 presented a method for dynamic analysis of large 
scale inertia-variant flexible systems with coupled reference and elastic 
deformation. Each flexible body is represented by two sets of generalized 
coordinates. The first set defines the location and orientation of a body- 
fixed coordinate system that is rigidly attached to a point on the flexible 
body. Second, elastic generalized coordinates characterize small deformation 
relative to the body-fixed system. This set of coordinates is introduced 
using the finite element method of structural analysis. Modal analysis is 
employed to reduce the number of elastic degrees of freedom, hence reducing 
problem dimensionality to manageable extent. 

The purpose of this paper is to adapt the automated analysis method of 
Refs 7-8 for coupled dynamic analysis of planar vehicle systems that are 
composed of rigid and flexible bodies. As a numerical example, a cross 
country truck is considered in which the chassis is flexible. This 
investigation is mainly concerned with analysis of the effect of chassis 
flexibility on dynamic response of the vehicle , over a single bump and random 
terrain. A rather simplified tire model is used in this study. Extension of 
the formulation presented and illustrated here to include a more realistic 
tire model and three dimensional structural vibration [9] is theoretically 
simple but involves more detailed calculations than are presented here. 

To achieve the above goals, the DADS computer program is used to 
automatically generate equations of motion, using a Lagrangian formulation. 
The system equations of motion are solved numerically using a direct 
integration method and advantage is taken of sparsity of the matrices arising 
in the formulation. As is shown, this automated formulation is general and 
conserves manpower that would be required in ad-hoc model formulation and 
analysis. 
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2. VEHICLE AND ROAD SURFACE MODELS. 

2.1 Vehicle Model. The vehicle used in this investigation is a 5 ton, 
cross country truck [lo] with rigid axles and a Watt mechanism independent 
suspension. Figure 1 shows the general configuration of the truck. 
illustrates the wheel suspension, 

Figure 2 
with two suspension support arms beneath the 

axle and two arms above. Vertical forces are supported by coil springs of 
progressive stiffness. Figure 3 is an overall view of the frame, which 
consists of two sidemembers (closed box griders) and several tubular 
crossmembers that are mounted in holes in the sidemembers and welded to their 
inner and outer sides. Vehicle parameters used in this analysis are given in 
Table 1. 

Table 1 Vehicle Parameters 

Parameter Value 

Gross Vehicle Mass 
(including payload) 

14,400 kg 

Vehicle Sprung Mass 11,950 kg 
Vehicle Unsprung Mass 2,450 kg 

Front axle 1185.0 kg 
Rear axle 1185.0 kg 
Long trailing arms 44.8 kg 
Short trailing arms 35.2 kg 

Pitch mOment of inertia of sprung mass 58300.0 kg-m2 
(about C.M.) 
Front and Rear Suspension 

Spring rate (per spring) 6.91x105 N/m 
Damping rate (per shock absorber) 

Compression 5480.0 N.sec/m 
Rebound 17575.0 N.sec/m 

Wheel Travel (unloaded) 
Jounce 0.15 Ill 

Tire Quadratic Spring Constant (per tire) 5.649x107 N/m2 
Damping rate (per tire) 4625.0 N.sec/m 

Tire Radius 0.6 m 
Vertical Natural Frequency of Sprung Mass 1.98 Hz 
Sprung Pitch Natural Frequency 1.95 Hz 
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Fig. 1 5 Ton 4x4 Cross Country Truck 

Fig. 2 Wheel Suspension 

Fig. 3 Main Frame 
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A simplified, planar rigid body truck model is shown in Fig. 4. Bodies 1 
and 2 are the front and rear axle-wheel assemblies, respectively. Each axle- 
wheel mass is assumed to be concentrated at the wheel center. Body 3 is the 
chassis of the truck. The mass of the chassis includes masses of the payload 
and engine. Body-fixed coordinate axes are located at the centroid of each 
body. Bodies 4, 5, 6 and 7 are the trailing arms that connect the chassis and 
wheel assemblies by revolute joints. The function of these trailing arms is 
to provide kinematic control of the axle position and to absorb driving and 
braking torques acting on the wheels. Therefore, they are modeled as a Watt's 
mechanism, which gives very small rotation to the axle during vertical 
displacement. Rigid body data and the initial location and orientation of the 
body-fixed coordinate systems of each body, with respect to the inertial 
reference frame, are given in Table 2. 

The suspension springs and dampers and the tires are modeled by springs 
and dampers, as shown in Fig. 5. Spring characteristics of the tires are 
taken here as quadratic functions of displacement. A simple point contact 
tire model is used to simulate tire forces that occur due to motion of the 
wheel relative to the road surface. Fore-and-aft force components are 
neglected, assuming the tire force is always vertical. The tire is free to 
leave the ground, to simulate wheel hop. Nonlinear spring and damping 
characteristics of suspension elements are given in Fig. 6. The high 
stiffness of the suspension spring in compression, when the spring deflection 
is greater than 0.15 m, simulates the bump-stop in the suspension system. 

A rigid body vehicle model of this vehicle, with five degrees-of-freedom 
(5-DOF), is also formulated to allow evaluation of the effects of chassis 
flexibility. 

Table 2 Rigid Body Data and Initial Positions 

Body No. Mass (kg) Moment of Inert a 
'2 

Initial Body Coordinates 
about C.G. (IQ-m ) Urn> y(m) $(rad) 

1 1185 13.33 1.500 0.575 0.0 
2 1185 13.33 5.850 0.575 0.0 
3 11950 58300 3.675 0.975 0.0 
4 22.4 2.38 2.116 0.725 0.464 
5 22.4 2.38 5.234 0.725 -0.464 
6 17.6 1.14 1.066 0,909 -0.154 
7 17.6 1.14 6.284 0.909 0.154 

2.2 Road Surface Models. The dynamic response of a vehicle depends 
strongly on the vertical displacement history of the wheels on the road 
surface. In this investigation, two roadway models are used, as shown in 
Fig. 7. Figure 7(a) represents a simulated obstacle with 0.2m height and 0.4m 
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Fig. 4 Rigid Body Truck Model 

- . - . B  e. 

1 

-*- Center Line of Chassis 

Fig. 5 Suspension and Tire Model 

Fs (N) 

(a) Spring Characteristics 

Fc (N) 

K cr r 35150 N*sec/m 

K cc = 10960 N*sec./m 

(b) Damping Characteristics 

Fig. 6 Suspension Characteristics 
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fig. 7(a) Single Bump Road Profile 

a- - 

Fig. 7(b) Random Terrain Profile 
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width, which is used to simulate shock response of the vehicle over a single 
bump. Figure 7(b) is a terrain profile with a RMS roughness of 2.64cm (1.04 
in) and a length of 91.44m (300 ft). 

3. ANALYTICAL APPROACH. The analysis rrrethod employed in this 
investigation is similar to the method used in Refs. 7-8 to analyze mechanical 
systems with interconnected rigid and flexible bodies. In this method, the 
chassis of the vehicle is considered as a deformable substructure. Two sets 
of generalized coordinates are employed to describe the flexible body 
configuration. First, reference generalized coordinates define the location 
and orientation of a body-fixed coordinate system on each body. Second, a set 
of elastic coordinates define small deformation of each body, relative to its 
body-fixed coordinate system. This set is introduced using the finite element 
method. 

Kinetic and strain energy expressions are developed for the individual 
elements. The kinetic and strain energy of each body are obtained by summing 
energies of its elements. Constraints between different elements of a body 
are expressed in a Boolean form and constraints between different bodies are 
introduced using a Lagrange multiplier technique. The generalized coordinate 
partitioning method [ll] and a component mode structural analysis technique 
are employed to describe the system equations of motion, tith a minimal set of 
independent generalized coordinates [7,8]. The method of Refs. 7 and 8 is 
summarized here, for completeness. 

3.1 Energy Expressions. Figure 8 shows a typical element j of a two 
dimensional planar flexible body i. Let the x-y coordinate system represent 
an inertial reference frame and the xi-yi system represent a coordinate system 
that is rigidly attached to body i. 

The location of an arbitrary infinitesimal volume at point p ij on element 
j can be defined as 

Rij e Ri + Airij 

-P- -  

(1) 

* iT where Ri = [xl,y ] is the vector of translational coordinates of the origin 
of the-coordinate system of body i with respect to the x-y system, 

Ai = 

[ 

cosei -sinei 1 (2) 
sin6 i case i 

is the transformation matrix from x i-yi to x-y coordinate systems, and rij is 
the position vector of p ij with respect to the xi-yi system, defined as 

r ij -# +p 
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where r$ is the position vector of pij in the undeformed state and kj is the 

elastic displacement vector in the body fixed coordinate system. Let an 
xij -yij coordinate system be attached to the left end of element j. Using a 
shape function, r ij 

2 (k = 1,2...6?, 

can be expressed in terms of nodal coordinates 

which represent nodal coordinates and slopes of reference 

lines at nodes, relative to the xi-yi system, 

(4) 

where NiJ is the element shape function. 

From Eq. 1, the position vector Rij 
-P 

can be expressed [7-81, in terms of 

reference coordinates (xi,yi, 0') and nodal coordinates (ziJ), as 

Rij Ri + Ai$jeij -p =- 

Differentiating Eq. 5 with respect to time gives 

$j = ii + ii $jhj + Ai$jgj 
--P 

where 

l i A P hi -sin0 

[ 

i -case i 

case 1 -sin0 1 1 
3 #&- 

Substituting Eq. 7 into Eq. 6 and writing the result in partitioned form 
yields 

Ai*$jEij Ai$j ] 

The kinetic energy expression for element ij is given by 

Tij = 1 2 lvij pij gjT $j dVij 

1 l ijTMij 
=pL 

' 13 
9 

(5) 

(6) 

(7) 

(8) 

(9) 
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where V ij is the el ement volume, p ij is density of the element material, 

ij mT- i ij T T 
% =w 0 e I (10) 

. . 
are the generalized coordinates of element lj and MIJ is the element mass 
matrix [7-E]. The vector eij can be written as 

e tl u =e 
-4 

+$ (11) 

where e!j U is the vector of nodal coordinates in the undeformed state and lf 
4J 

is the vector of deformations 
fixed coordinate system. 

The total kinetic energy of body i is given by 

at the nodes, defined with respect to the body- 

(12) 

where q _' = [ BiTei 1: ] = [ dT 2@T ] , 2, and 1: represent, 

respectively, reference and elastic coordinates of body i. The strain energy 
of body i can also be expressed in compact form as 17-81 

(13) 

where K1 is the stiffness matrix of body i. 

The virtual work of external forces acting on body i can be written as 

(14) 

where Qi is the vector of generalized forces associated with the generalized 
coordiyates of body 1. 

3.2 Equations of Constraint. When adjacent bodies are connected, 
nonlinear constraint equations are written between adjacent bodies and a 
Lagrange multiplier method is employed to adjoin these constraint equations to 
the equations of motion. These constraints permit the joining of elastic 
bodies, rigid bodies, or rigid and elastic bodies. Points of attachment on 
elastic bodies are at nodes of the finite element model. In general, 
equations of constraint can be written, in vector function form, as 
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a(; t) = 0 - -’ (15) 

where O(q,t) = [ Ol(s,t),===,Om(qlt)]T. This is a set of nonlinear algebraic 

equations, which can be used to describe constraints between vehicle 
components. 

3.3 Equations of Motion. The composite vector of all system generalized 
TT 

coordinates is designated as q = [q 1T 
I q2T . l *** qN ] , where N is the total 

number of bodies (substructur;s) i; the-system. The'constraint equations of 
Eq. 15 are assumed to be independent. Presuming that the constraints are 
workless, the variational form of the equations of motion 1121 for body i, 
where subscript notation denotes differentiation with respect to a vector, is 

d Ti - 9 -t t+ -" 6s' = 0 dt 
ii 22 2 

(16) 

for all virtual displacements i 
61 that are'consistent with constraints of Eq. 

15. It can be shown that introducing the vector LT 
% into Eq- 

16 allows the 

coefficients of S? to be set to zero [131. Thus, - 

T T T 

dt 
d Tfi - Tii + Uii - Qi f '& = 0 

9 1 !I 4 
(17) 

with T1, Ui, and Qi given by Eqs. 12, 13, and 14. 

3.4 Generalized Coordinate Reduction. Efficient solution of the system 
equations of motion requires a transformation from the space of system nodal 
generalized coordinates to the space of system modal generalized coordinates, 
which has lower dimension. The method presented in Refs 7-8 is based on 
solving the eigenvalue problem for each substructure once. From Fourier 
analysis of the forcing functions, an initial estimate of the number of modes 
to be retained is made. During the simulation, additional eigenvectors are 
recalled or deleted, as required. For the purpose of determining eigenvalues 
and eigenvectors, if a substructure is assumed to vibrate freely about a 
reference configuration, Eq. 17 yields 

(18) 

-i 4 
Where Mff and Kff are the mass and stiffness matrices associated with the 

nodal generalized coordinates and Ei is the vector of elastic coordinates 

after imposing the body-fixed coordinate conditions. The stiffness 
-i matrix Kff is positive definite, because the reference coordinate system is 

fixed. Equation 18 yields a set of eigenvectors and a modal matrix. A 
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coordinate transformation from the physical nodal coordinates to mndal 
coordinates is defined by 

-i 
Ef - = B; xi (19) 

where Bi 
*i 

is the modal matrix, consisting of the eigenvectors obtained from Eq. 
18 and x is a vector containing the modal coordinates. Using Eq. 19, the 
reference and nodal generalized coordinates are written in terms of reference 
and modal coordinates. A substantial reduction in problem dimensionality can 
be achieved by considering only significant modes. 

4. NUMERICAL RESULTS. In order to take the effect of flexibility of 
vehicle components on global vehicle motion into account, the chassis (Body 3) 
and long trailing arm (Body 4) are modeled as elastic bodies. The chassis and 
long trailing arm are divided into 12 and 2 finite beam elements, 
respectively, with reference coordinates located at their midpoints. The 
flexural rigidity of each flexible member is calculated using the cross- 
sectional area of the beam and its material properties. Lateral and axial 
deformation are considered. 

The flexible components are initially treated as substructures that are 
fixed at their midpoints. Since each beam element has 6 degrees-of-freedom, 
the flexible chassis has a total of 36 elastic degrees-of-freedom and each 
flexible link has 6 elastic degrees-of-freedom. The eigenvalue problem is 
solved for each of these substructures. The lowest six natural frequencies of 
the flexible chassis are 6.11, 6.11, 38.31, 38.31, 83.36, and 83.36 Hz, where 
the first four modes are bending modes and the fifth and sixth modes are axial 
vibration modes. The lowest two natural frequencies of the flexible links are 
88.92 and 88.92 Hz. One percent structural damping is considered for every 
chassis mode of vibration. 

4.1 Vehicle Response over Single Bump. The vehicle travels over the 
single bump given in Fig. 7(a), with a vehicle speed of 3 m/see (6.7 
miles/hr). The simulation is carried out for two vehicle models, rigid and 
flexible chassis, to evaluate flexibility effects of the chassis on vehicle 
motion. To compare higher mode effects of the flexible chassis model, 2- and 
4-made solutions are obtained. Figure 9 shows the vertical displacement of 
the center of mass of the chassis, from its static equilibrium position. The 
figure shows significant peak differences between vertical displacement of 
rigid and flexible chassis models. Figure 9 also shows that the contribution 
of higher vibration modes to vertical displacement of the chassis is 
negligible. 

The vertical acceleration at the center of mass of the chassis is given 
in Fig. 10, for each model. It shows that chassis flexibility results in 
increased peak acceleration and significantly higher frequency content during 
,passage over the bump. The effect of structural damping on the vehicle 
response is shown in Fig. 11. In this figure the vertical acceleration of the 
chassis with and without damping are plotted. The damped response decays with 
time, while the undamped response has a sustained oscillation. 
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Fig. 8 Generalized Coordinates of a Beam Element 

---- Rigid Body Model 
. . . . Flex. Chassis Model, 2 Modes 

- Flex. Chassis Model., 4 Modes 

I P, I 1 I I 1 I I 
0.0 0.5 1.0 1.5 :&C. 2.5 3.0 3.5 

TIME I 

Fig. 9 Vertical Displacement of the Chassis C.G. over Single Bump 

137 



. 
=I 

VERT. ACCL. Or CHASSIS C.G. (ql 

-F-- --- I 

-=_ 
a------ 

N- 
b 

Iu 
m 

w- 
b 

u- 
Ln 

P- 
b 



Computation time for the rigid model simulation was 7.0 minutes on a 
PRIME 750 supermini computer. Computation times with the two and four mode 
flexible chassis models were 2.08 and 5.18 times the computation time of the 
rigid model. This shows that computational efficency can be obtained by using 
the smallest number of modes required to obtain reasonable accuracy. 

4.2 Vehicle Response over Random Terrain. Simulation is carried out 
over the terrain given in Fig. 7(b) for the rigid model, the two and four mode 
flexible chassis models, the-two mode flexible-links model, and the two mode 
flexible chassis and links model. Vehicle velocity is 7.5 m/set. (16.8 
miles/h). Results are given in Figs. 12 to 14. Since link flexibility does 
not have significant effect on the global vehicle motion, results for the 
model with flexible links are not included. 

Figure 12 shows vertical displacement at the center of mass of the 
chassis. No significant difference is observed between rigid and flexible 
models. No significant difference has been found between the two and four- 
mode solution of the flexible chassis models. It has also been found that 
there is no significant difference in vertical chassis displacement between 
the two mode flexible chassis and links model and the two mode flexible 
chassis model. It is concluded that flexibility effects of the stiff link 
(which has relatively high natural frequency) on the vehicle response may be 
neglected. 

Figure 13 shows vertical acceleration at the center of mass of the 
chassis. Flexibility of the chassis results in a significant increase in the 
acceleration level at the center of the chassis and high frequency content 
near the resonant frequency of the human body. Vibration in the chassis may 
thus result in an unpleasant motion and deteriorate ride comfort of the 
vehicle. Suspension link flexibility does not have noticeable effects on the 
vertical acceleration of chassis. 

Deflection of the front end of the chassis, with respect to its body- 
fixed coordinate system, is given in Fig. 14. Dynamic peak deflections for 
the two mode flexible chassis model is 22 times the static deflection of that 
model. The frequency of vibration of the front of the chassis is about 6 Hz, 
which is the fundamental natural frequency of the chassis. 
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Fig. 14 Front End Deflection of Chassis over Random Terrain, 
Flex. Chassis Model, 2 Modes 
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APPLICATION OF SYMBOLIC COMPUTATION 
TO THE ANALYSIS OF MECHANICAL SYSTEMS, 

INCLUDING ROBOT ARMS 

M.A. Hussain, General Electric Company-CRD 
B. Noble, Mathematics Research Center, University of Wisconsin 

SUMMARY* 
This paper illuslrales lhe application of symbolic computation in connection with 

three aspects of mechanical systems: 
1. The derivation of dynamical equations by Lagrangian methods. 
2. The analysis and synthesis of kinematic mechanisms. 
3. A robot manipulator arm. 

INTRODUCTION 

This paper illustrates the potential of symbolic computation in connection with the formula- 
tion and analysis of equations for dynamical systems, sensitivity analysis, linkages and mecha- 
nisms, and robot manipulator arms. 

* This is a preliminary version of a paper to appear in the proceedings of NATO Conference on Mechanisms. 
University of Iowa, 1983. 
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We use MACSYMA (project MAC’s Symbolic MAnipulation system), a large-scale com- 
puter program for symbolic mathematical computation. MACSYMA can handle polynomial 
manipulation, simplification and substitution with symbolic expressions, symbolic solution of 
algebraic and differential equations, and matrix manipulation. Although we have found 
MACSYMA particularly convenient to use, other symbolic programs such as REDUCE and 
SMP could be used. 

This report deals with three topics: 

1. The derivation of dynamical equations by Lagrangian methods, including sensitivity 
analysis (Sections 1, 2, 3, 4, and 5). 

2. The analysis and synthesis of kinematic mechanisms, including dual-number quatern- 
ions (Sections 7 and 8). 

3. The direct and inverse problem involving robot manipulator arms (Sections 9 and 10). 

In order to make the presentation clearer to the general reader who lacks specialized 
knowledge of symbolic manipulation, we explain the mathematical aspects in the main text 
(namely the kind of problem for which we feel symbolic computation is useful), and give the 
detailed MACSYMA programs in appendices. 

In a certain sense the real “meat” of this paper is the detailed programs which appear in 
the appendices. The reader interested in symbolic manipulation should solve the problems 
oullined in the text using MACSYMA, or any other suilable program, with Lhe appendices as 
a guide. 

The objective of this paper is to encourage the use of symbolic manipulation in the analy- 
sis of mechanical systems. It is clear that the complexity of the problems being tackled is in- 
creasing to the point where symbolic manipulation must play an important role in their for- 
mulation and solution. In this paper we have simply picked out the tedious parts of well 
known methods and examples, and illustrated the ease of performing the manipulation using 
MACSYMA. 

1. DESIGN OF A 5-DEGREES-OF-FREEDOM VEHICLE SUFPENSION 

The objective of this example is to illustrate how MACSYMA handles Lagrange’s’equation 
of motion in the form: 

d x aT+av 
z ijyi I I 

-A 
hi - - Qi = 0, 

aqi 
i=l, 1.. ,n (1) 

where T and V are quadratic fokms representing kinetic energy and potential energy, respec- 
tively, expressed in terms of generalized coordinates yi. Qi are nonconservative generalized 
forces. Consider the S-degrees-of-freedom model of a vehicle suspension system shown in 
Figure 1 and dealt with in Haug and Arora 161 (pp. 25, 200): 

(2) 
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where dl = Z2 I- + 23 - Zl 

d3 = Z5 - 2’2 + 

d5 = Zs - f 1 (t) 

d2 = & - 22 - + 23 

d4 = Z4 - fz(t) 

Figure 1. 

The Qi are found from 

SW= i Q,SZi= - qrj,Sd, - c2&d2 . . * - c&d5 (3) 
i-1 

The MACSYMA program and output for the above problem is given in its entirety in 
Appendix 1. We commcnl on the key commands. (C2) establishes the vector Q of gcneral- 
ized coordinates 21, a m e 25. (C3) establishes the dependence of the elements of Q on time. 
(C4)-(C7) establish mass, spring,‘damping and displacement vectors [for DISP equations fol- 
lowing (2) above]. (Cll),(C12) derive the generalized forces Qn (=QQ(n) in the program) by 
picking out the cocficienls of SZ,, (=DEL(Q(N)) in the program) in 6 W in (3) above (=DW 
in the program). (C9),(ClO) establish kinetic and potential energies defined in (2) above. 
(Cl31 forms and displays the equations of motion by evaluating (1) above. The key com- 
mand here is DIFF(EXPR,T) where EXPR is some function of T, which takes the derivative 01 
EXPR with respect to T. Thus 

DlFF(DlFF(tT,DlFF(Q(N) ,T)) ,T) = d a 
I I dt alj,, 

As requested, the computer then displays the equation, of which we have shown only the 
lirst, namely 
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2. SLIDER CRANK PROBLEM 

This example illustrates the derivation of equations of motion when constraints are 
present. The appropriate Lagrange equations are: 

(4) 

where T, Y, and Qi are as previously defined and the constraints are represented by k alge- 
braic equations: 

a&d=0 
and h are k values of Lagrange multipliers or undetermined coefficients. 

Figure 2. 

For the slider crank mechanism shown in Figure 2 we have 

4 = [4 I,~2,Y2,42JJ T 

CPI S rsit@t - y2- Isin& = 0 

@‘2 = r cosrp, - (x* - I co4 = 0 

~3=x~+lCOScp~-x3=O ~ 

@4 Gy2+ /sin&=0 

(5) 

Again the procedure outlined is easily handled by MACSYMA (see the symbolic program 
given in Appendix 11). From the oulpul of this program we have the following equalions of 
motion for the system: 

J,;jl + [Al I’ cos+l - A2 r sing13 = 0 

rn$2 + [-X2 + A31 = 0 

tu2j2 + [-A, + A41 = 0 (6) 

J2;62 + [Al I COSC,~~ - A2 1 sin& - A3 1 sin& + A4 I cos&l = 0 

m& - A3 = $(I) 
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Note that (5),(6) are a differential-algebraic system consisting of nine equations in nine un- 
knowns. 

This problem has only a single degree of freedom. If this is chosen as $1, we find from 
(5) that x2, ~2, 92, and x3 can be expressed in terms o.f 41. If these are substituted in the 
kinetic energy (=TT) expression we find TT = TT(+,,+1). The equation of motion is now 
given by 

d aTT 

I I 

aTT 
---Q1 

dt z ah 
(7) 

i.e., one single differential equation in one unknown, with no constrainrs. A MACSYMA 
program for deriving this equation is given in Appendix III. 

Equation (7) must be equivalent to nine equations in (51, (61, though derived indepen- 
dently. To deduce (7) directly from (6) we can proceed as follows: 

Write (6) and (5) in matrix notation as 

Mij + AT( = f (8) 

@t(q) = 0 (9) 

A (q) is a 4x5 matrix, so that the equation A (q)x = 0 has a solution of the form 
x = Cx,(q), where C is an arbitrary constant. Multiplying (8) by XT obtaining 

xJ;M i = &* 

expresses x0(q) in terms of 41 only. This leads to the single differential equation given by 
(7). 

In this problem, another approach would be to choose two generalized coordinates with 
one side constraint. This would lead to two ordinary differential equations involving +1, @2 
and one Lagrange’s multiplier and one side constraint. These can be obtained either directly 
[as (7)1 or by eliminating three of the X’s in (6). 

3. JACOBIANS 

If, instead of looking at specific examples as in the last two sections, we consider general 
formulations, then the followipg type of situation arises. Suppose that Cartesian x- 
components xi (i- 1, . . - , n) depend on generalized coordinates qj (j = I , . . . , p> . Then 

” 3 . 
ii = c 

j-1 aqj ‘j 

p axi jri=x - a2xi 
j-1 aqj 

ii,+; i 
jDl kBl aqjaqk ‘j’Ik 

The quantity d@/dq in (4) has the same form as the Jacobian [axi/aqjl occurring above, and 
the MACSYMA command for a+/ay is given in the last line of Appendix II. 

It is convenient to use the MACSYMA subroutine, or BLOCK to obtain a2xi/aqj9qk, and 
this is done in Appendix IV. 
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4. SENSITIVITY ANALYSIS 

The objective of this section is to illustrate how MACSYMA deals with some aspects of 
sensitivity analysis, with particular reference to the paper by Haug and Ehle [71, Consider a 
dynamical system described by design variables b = [bi , . . . , bklT and a state variable 
r(r)= [z&), **- , zk(t)l T which is the solution of an initial value problem of the form 

z = J’(z,b) , O<I<T 

z(O) = h(b) 

where i = dz/dr and T is determined by the condition 

A(T,z(T)) = 0 

A typical function that may arise in a design formulation is 

lb = g(z(T),b) + J T F(f,Z,b)df 
0 

(10) 

It is required to find d$/db, which is a k-vector. This is done by considering an adjoint vari- 
able X satisfying 

i + J;‘rh = Fir 

and then 

&IL 
db = g.4 - hTtO)h6 +s T &, - h’&)dr 

0 
(11) 

The procedure outlined above is carried out by the MACSYMA procedure given in 
Appendix V. This also illustrates the MACSYMA solution of linear equations by Laplace 
transform. Consider an example given in Ref. [71, namely a simple oscillator governed by 
the equation 

3+kx=O 0-c l<W/2 
x(O) = 0 i(0) = u (12) 

with + = xh/2), b = [k,vlT= [bl,b21T. 

The results of the MACSYMA procedure give the lirsl derivative 01 the functional 4 as 

b2 n- h J- nb2 r J b, T 
-- 

2bfj2 
sin - + - 

i!L 
2 461 

cos 2 

db 1 R 61 xl-- 
(13) 

.J 
- sin I 2 

bl 

Higher-order sensitivity analysis requires the Jacobian for which a BLOCK MACSYMA 
command is given in Appendix TV as discussed in the last section. 

Nate: MACSYMA is awkward for differentiating functions having a definite integral; e.g., 
Tram (10) we have 

~=g~[z~(T)+i(T)(T)bl+g~+~~[FIz~+hldlfF(T)(T)) ’ db 
(14) 

However, MACSYMA does not perform the derivative under the integral sign (a possible di- 
alogue with MACSYMA is given in Appendix VI). 

148 



5. A SPACECRAFT PROBLEM 

Levinson [lOI has described in detail an application of the symbolic language FORMAC to 
formulate the spacecraft problem shown in Figure 3, consisting, of two rigid bodies with a 
common axis of rotation b. 

Figure 3. 

The equations are given in Ref. [lOI in complete detail, and are translated into 
MACSYMA in Appendix VII. To illustrate the point we give typical equations with 
MACSYMA equivalents: 

Equations from Ref. (101 I MACSYMA 

= cosy b2 + siny 63 

3 - - 

(1) R~Pl:COS(Q)‘B~2~+SIN(Q)‘B/3~; 

= u1 bl + u2 b2 + u3 b3 13) WB:U[ll*B[llfU~~I~B[2~+U[3~*BI31; - - - 

uq =i U[4l:DIFFQT); 

d (7) 

We could implement this last mathematical expression (7) (101 by converting the vector 
product into matrix form but it was simpler to write a BLOCK function to do this, as in 
Appendix VII. The MACSYMA equivalent of (7) is now 

ALPR:DIFF(WR.T) +CROSS(WB,WR): 

We discuss only one other correspondence. Equation (27) in Ref. 1101 is 

m, + g ’ (T)B (r=l, *A- ,7) 
r 

becomes in MACSYMA 

F(R):-DOT(DlFF(VBS,U[Rl),FB) 

+DOT(DIFF(WB,U[Rl),TB); 

Dot in the above is defined by another block in Appendix VII. The distinction between := 
and :, as used in this command, is discussed in Appendix B. 

The complele se1 of equalions given in Ref. [lo] is generated by Appendix Vll. The 
reader should compare the corresponding FORMAC program given in Levinson [lo]. 
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6. AN EXAMPLE OF MANIPULATION AND SIMPLIFICATION USING MACSYMA 

In previous sections we have not found it necessary to use powerful commands in 
MACSYMA concerned with the simplification of complicated expressions. As an introduction 
to the manipulation needed in the later sections, we present the following simple dialog: 

(C2) F:(X+Y+Z)-2/Y; 

(IX) 

CC31 EXPAND(%); 

(D3) 

(C4) COMBINE(%); 

(04) 

(C5) XTHRU(%); 

(D5) 

(C6) RATSIMP( 

(D6) 

(C7) EvPfh,z-p); 

(D7) 

(C8) SUBST(SIN(2*TH),X,%); 

(08) 

(Ca) TRIGEXPAND( 

(z+Y+x) 2 
Y 

z* 
Y+ 

y+2t+y+ q + 2x 

z2+2xyz+x2 +2zfYf2X 

z2+Y(2z+Y+2x)+2xz+x2 
Y 

z2+(2Y+2x)z+Y2+2xY+x2 
Y 

v*+2xy +x2 
Y 

Y2+2SINt2TH) YfSIN*(2TH) 
. Y 

(D9) Y2f4COS(TH) SIN(TH) Y +4COS’(TH) klN2(TH) 
Y 

(Cl01 TRIGREDUCE( 

(010) Y- cos’~H) + & + 2 SINtPTH) 
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7. THE FOUR-BAR LINKAGE COUPLER CURVE 

The objective of this section is to illustrate how MACSYMA performs algebraic and rrigo- 
nometric manipulations encountered in the analysis and synthesis of linkages. 

Figure 4. 

Consider first, following Hartenberg and Denavit 151 (p. 1501, the four-bar linkage 
AOA OnB shown in Figure 4, where the bars lie in a plane and are pin-jointed al A, O,, OB, 
and B, and the positions of 0, and 0,~ are fixed. MAB is a lamina, so that M is fixed rela- 
tive to A and B. If BOtl is rotated about O,, the point A4 will trace a planar curve, the equa- 
tion of which we wish to determine. 

Using the linkage parameter shown in Figure 4 we have: 
x’= x - bcos8 x ‘I= x - a cosol+y) 
y’= y - bsin& y”= y - zsin(tr+y) (15) 
,2 - x’2 -y’L() $2 - (x”- p)2 - f’2 = 0 

The requ,ired equation for the motion of M(x,y) is obtained by eliminating (x’,y’), (x”,y”), 
and 61 from (15). This is done in Appendix WI. Elimination of (x’,y’) and (Ply”) leads LO 
the equation of the form I 

N case - L sin8 = 4 
-P costi + M sin0 = 4 (16) 

where L = (x -p) siny - y cosy , N = (x-pP)cosy + ysiny 

M=Y, F=-x 

4= + cy2+x2-r2-b2), JI= & [(x-pF+y2+a2-r2] 

Eliminating 8 from (16) gives 

(PJ, + N+12 + (A@ + L4j2 = (LP- A4N12 (17) 
This sixth-degree polynomial in (x,y) is called the tricircular sextic. The determinant of (16) 
vanishes when LP- NM - 0, i.e., 
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x(x-p) + y2 - pycoty = 0 (18) 

The above equation is called a circle of singular foci. 
We next derive a basic relation used to synthesize four-bar linkages, namely the so-called 

displacement equation which gives the output angle 4 for a given input angle 4 in Figure 5. 

Figure 5. 
x2 = aIcos+, y2 = atsin+ 
x3 = -u4 + a3cosql, y3 = ajsin# 

a] - (XI- x312 - (y*-y3J2 = 0 
Eliminating (xz,yz) and Ixs,yl) from (19) leads to 

A sir@ + B cos$ = C 

where A = 2atajsin4, B = 2alaJcos$t + 2u3a4 

(19) 

(20) 

C = 2ula4cos4 + (4: + af - a# + 0:) 
To solve (20) for II, set 

sin4 = 2 lanl/r/ 2 1 - tan*l#Ll/2 
1 + tan2$/2 

cos+ = 
1 + tan2J1/2 

Substitution into (20) leads to a quadratic in tan+, 

tan IL = 
2 (B: C> 

A f dq2+B2-C2 
I 

(21) 

the solution of which is 

The two solutions correspond to the two ways to close the four-bar linkage shown in Fig- 
ure 6. 
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Figure 6. 
For the purpose of synthesis, (20) can be rewritten as: 

K1 co* - K2 cosql + K3 = cos(t#a - $1 (22) 

(23) 

Hartenberg and Denavit [51 (p. 297) discuss the problem of designing a planar four-bar 
linkage such that, to three given positions +1, &, and & of the crank 0, A, there correspond 
three prescribed positions +I, $2, and I/Q of the follower 0~s. The form of (22) is well- 
suited for this purpose. The tiolution in this case is obtained by solving the set of three 
simultaneous equations for Kl, Kl, and KJiobtaitied by substituting +=$;, += $I~, i= 1,2,3 
in (22), and then obtaining a3, al, and a2 from (23) (a4 can be selected equal to one). 
Appendices VIII and IX give the MACSYMA program lo carry out the above procedures. 
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8. DUAL-NUMBER QUATERNIONS 

Next, consider a laborious calculation contained in the appendix to the Yang and Freuden- 
stein paper [191 in connection with the analysis of a spatial four-bar mechanism. We are 
given 

A (il) sin& + BGJ co& = C(6,) 

where A (iJ = sinG12 sin& sin61 

B&l = - sin& (sin&l co&la + co&41 sin&lz cos81) 

C@,) = co&3 - 
n 

co&34 (cos& cosG12 - sin& sin&l2 co&J 

Here 
&12 = “12 + CD12 3 i, = 8lf ES11 

&23 = a23 + EC123 , i, = 02 + ‘$2 

G34 = a34 + -34 , i 3 = e3 + ES3 

&41 = ~~41 + ba41 5 ii, = 04 + ES4 

where e is a symbol with the property E’ = 0. This implies that, if 6 = 6 + es, then 

sini - sin0 + ES co& , co& = cost3 - ES sine , 

(24) 

(25) 

(26) 

It is then clear that (24) can be reduced to the form 

P+EQ=R+ES (27) 
where P, Q, R, and S are independent of E. It is required to find the explicit form of P, Q, 
R, and S. To calculate this by hand is ext’remely laborious, but straightforward in MACSY- 
MA. The program is given in Appendix X. 

Three-dimensional problems in kinematics and dynamics involve laborious calculations in- 
volving Euler angles and Euler parameters. (See, for instance, Nikravesh, et al. [131, and 
Wittenburg [lgl.) These calculations are easily handled in MACSYMA in a routine fashion. 
The techniques involved are illustrated in connection with other e?amples in this paper, so we 
do not elaborate further. 
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9. ROBOT ARMS - THE DIRECT PROBLEM 

Robot arm manipulators can be considered to consist of a series of links connected togeth- 
er by joints. It is convenient to use Cartesian coordinates by assigning a separate coordinate 
frame to each link. Without going into detail (which can be found in Paul [IS], for instance), 
the relation between the coordinate frames assigned to one link and the next, consisting of 
translations and rotations, can be derived by a 4x4 matrix of the form 

*u OY a, PY 
A= n 

z 0, az Pz 
-0 0 0 1. 

(28) 

where the elements of the top left 3X3 submatrix are the direction cosines representing the 
rotations and (px ,py ,p,) is the translation. 

The position and orientation of the coordinate frame of the end of the manipulator is 
specified by six parameters (3 translations, 3 rotations). A general manipulator can be 
designed using six links, each having one degree of freedom. If Tb denotes the A -matrix 
corresponding to the end of the manipulator, and Ai Ci = 1 , + . * ,6) are the A -matrices for 
the individual links, T6 is given terms of the Ai by 

TV= AIA~A~A~AsA~ 
A typical A-matrix for a link is 

cod2 0 sine2 0 
sin& 0 -cod2 0 

A2= 0 1 0 d2 
-0 0 0 l- 

If dZ is fixed and ti2 is a variable representing rotation of the second link, this is called a 
reuolute joint. If 02 is fixed and the translation d2 is varying, this is called a prismatic joint. 

The so-called “direct” problem is: given the Aiy find T6- this is obviously straightfor- 
ward, although algebraically laborious (see Paul [15], p. 59 and Appendix Xl.. 

The main computational problem connected with the direct problem is the question of 
differential motion discussed in Paul [151 (Chapter 4). These are important in connection 
with dynamic analysis of manipulators, sensitivity analyses, and small adjustments of the end 
manipulator. 

Without going into detail (which can be found in Ref. [15]), the computational problem. 
involved is the following. Suppose that the six parameters representing degrees of freedom 
are denoted by a &vector x, small changes in these parameters are denoted by Ax, and the 
corresponding small changes in the three displacements and three rotational parameters of the 
end point frame of the manipulalor are denoted by the &vector A, lhcn we have a relation of 
the form 

AA = JAx 

where the iLh column of J is 6. ; where, for i= 1 , w . . ,6, and for a revolute joint, 
II I 
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(-n,pjy + n,pJ 

4 = (-o&j + o&J 

(-wb + aivpix) 

and for a prismatic joint 

The MACSYMA program for the symbolic computation of A and the numerical example in 
Ref. [lS] are given in Appendix XI (see Ref. 1151, pp. 104-107). 

. 
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10. ROBOT ARMS - THE INVERSE PROBLEM 

The “inverse” problem consists of obtaining the A,, i- 1, e - - ,6, given numerical 
values of T6. In theory this can be done from 

A1A2A3A4A5A6= T6 (29) 

which gives 12 equations in 6 unknowns (the 6 degrees of freedom of the links). These 
equations are redundant, and there are only six independent equations in the six unknowns. 
However, the equations are highly complicated. The method used in practice is to consider 
also the following equations which are completely equivalent to (29): 

\ 
A2A3A4A5Aha Ai’Th 

AJA~A~A~= AF’Ai’Tg 

A4 As A6 m Al*AF*Ai’ T6 (30) 

A5 Ag = A~1A~‘A~‘Ai1T6 
A,5 = A~1A~1A31A~1Ai1T6 , 

[In practice lhe A,’ are usually easily obtained from the Ai. Equations (29) and (30) give 
72 equations for the 6 unknowri-s. The procedure is now to pick out the simplest 6 indepen- 
dent equations from the set of 72. The simplest solution occurs when one of the equations 
involves only one unknown, say XI, another equation involves xl and a second unknown x2, 
a third equation involves only x1, x2, x3, and so on. The system can then be solved sequen- 
tially. This is the solution with Stanford and the elbow manipulators described by Paul [151. 

A more complicated situation occurs in the robot arm discussed by Lumelsky 1111, where . 
such a simple sequence of equations cannot-be found. Instead, the simplest set is of the form 

x1 = f 1(+ 5x4) x2 = f&,x4) 
x3 = f 3 (XI 2x2) x4 = f4h 7x2) 

(31) 

These can be solved by straightforward iteration. 

In Appendix XII we give a MACSYMA program for selecting, the basic 6 equations from 
lhe 72 available. This can be done aulomatically by using the command FREEOF to print out 
a dependency table showing which of the variables occur in each of the 72 equations. Equa- 
tion (31) can be deduced directly from this dependency table. 
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APPENDIX I 
(C2l ~:[21,22,23,24,Z5l: 

(D2) [21.22.23.24.251 

(C3) DEPENOSQT): 

(03) lZ1~TI,Z2~T~.Z3~t~.Z41T~.25~tl1 

(CP) MASS:~Mi.M2.l.M4.M6!; 

(04) _ IMl, M2, I, M4. M51 

0) SPRING:tKl.KZ.K3,K~.K51: 

ml lK1.K2.K3.K4,K61 

(CEI DASH:~CCl.CC2.CC3.CC4.CC51: 

ml [CCl.CCP. cC3.cc4.cc5l 

IC7) 019P!122+L/12’23-21.24-22-L/3’t3,Z5-22+2’1/3’Z3,24-F1~t1.25-F2~t~~: 

(D7) 
I 
%+22-21.24-F-22.25+ y-22. 24-Fi(T), 25- F2fT) 

1 

(CS) DERIVABSREV:TRUE: 

IO81 TRUE 

lC8l tT:l/Z”(MASS. DIFF~O.t)‘Z~: 

ID91 
M6~t5T~2+M4~t4T~2+l~23T~2~M2~Z2T~2+Mi~ZlT~2 

2 

(Cl01 POt:1/2’1SPRINQ.DISP’2): 

10101 
I I 
K3 2+K5(Z5-F2~T)J2+K2(Z4-~-Z2]2 

+K4(24-Fl(t))2 12 +Kl Lt3+22-21 2 /2 
I II 

(Cl11 OW:-DlFF~OISP.TI’OIFF(OISP~: 

II 
OEL(Z2) I. v- DEL(21) 

I 

- Z4T-~-Z2T~[DEL~Z4~-DEL~Z2b~ 
I 

-(t4t-Fi(T)T)( OEL(Z4) + (Z4T-Fl(t)T] DEL(f)) . 

,-(Z5T-F2(t)T]( DEL(Z5) + (25T- RZ(T)T] DEL(T)]] 

(Cl21 FOR NTHRU 500Qo~NI:RATCOEF~OW.OEL~OINI)); 

(012) DONE 

(Cl31 FOR N THRU 5 00 LOISPLAY(EOUATIONIN1 
= OIFF~DIFFtTT.DlFF~O(N1.T)).f)-DIFFt~,Q~N~~+OIFF~POt.9~N~~-DASF .OOfNl): 

(El31 EOUATION1 - -Kl 
I 
++22-21 

I 
fMIZiTT 

cc1 (L23T+ 12zzT- 1221T3 
- 

12 

(El41 EQUATION2 = 

-K3 Z5+%-22 -2K2 Z4-?+2Kl 
I 1 I I 

F+Z2-Zl 
1 --- 

2 

-‘-M222tt- 
CC3(3Z5Tc2LZ3T-322T) CC2(324t-LZ3T-3Z2T) 

3 3 

cc1 rL23T+ 1222T- 1221,) 

12 

IE15) EOlJAl10N3 - 

4K3L Z6+V-E2 
I I I 

2K2L Z4-=-22 
3 1 I 

KIL LL3+22-21 
12 

3 3 
+ 

8 
2 

4. I ZEyT - 
CC2(3L24t-L223t-3L22t~ 

9 

+ 
CC3(SL25t+4L2Z+-BLZPT) CCl(L223T+12Lf2t-12LZit~ 

9 
+ 

144 

2K2 24-F-22 
I 1 

+2K4(24-Fl(t)) 
(ElB) EQUATION4 - M4t++ 

2 

cc2 (3t4T-LZ3t-322t~ 

3 
-CC4 -24t+Fl(T),) I 

2K3 

(El?) EOUATION5 - M8tltt+ 
I 
26+ 2L23 3-f2 +2K5(25-FZ(T)) 

1 
2 

CC3f325T+2L23T-3f2T) 

3 
- CC5 I- Z5T + F2(TjT] 

I* APPENDIX I (CONT.) MACSYMA PROQRAM *I 

/‘.....GENERALIZED COORDINATES...‘/ 
0:12132.23,24,251; 
OEPENDSlo.TI: 
/‘..... GENERALIZED MASS . ..<.<.... ‘I 
MASS:lMl.M2.l.M4,M6l: 
I’..... SPRING CONSTANT ‘I 
SPRlNG:IKl.KZ.K3.K4.K5~: 
I* ..,.. DAMPINQ CONStANT *I 
DASH!~CC1,CC2,CC3,CC4,CC51; 
/‘.....QENERILIZED DISPLACEMENT..‘/ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
DERIVABBREV:fRUE: 
/‘.,...KINETIC AND POTENTIAL ENERGIES..‘/ 
tT:1/2’MASS.DIFFtO,T)‘2: 
POT:l/Z’SPRINQ.OIS~2: 
I’........ DW .I 
DW:-DIFFfOlSP.tl’OIFFIDISPI: 
FOR N THRU 5 DO OOlNI:RATCOEFlDW,DEL~O[N1)): 
I’..... EOUATIONS OF MOTION ‘I 
FOR N:I THRU 6 DO LDISPLAY (EOUATION[N~- 
DIFFIDIFF(TT,DIFF(O(N1,T)).T) 
-DIFF(TT.OINII 
+DIFFIPOT.QINII 
-DASH.oO[Ntl: 

APPENDIX II 
f’ CO-ORDINATES ‘I 

O:lPHl,X2.Y2.PH2.X31: 
DEPENDS(Q,TI; 
MASS:IJl,MP,M2,J2,M31; 
CONSTRAINT:[R’SINIPHll-Y2+L’SINo. 

R’COSIPH1l-X2+L’COS~PH2~. 
X2+L’COS(PH21-X3, 
YZ+L’SlNtPH2)1: 

/’ LAGRANQE MULTIPLIERS ‘I 
LAM:[LAMl,LAMZ,LAM3,LAM41: 

/’ KINETIC ENERGY .I 
TT:11/2’DlFFlO.T~‘2~.MASS: 

I’ EOUATION OF MOTION ‘I 
FOR I:1 THRU 5 DO LDISPLAY IOOIII-DIFF~DIFFfTt.DIFF~O~I~.Tl~.Tl 

-DIFF~TT.Olll) + 
LAM.IDIFFtCONSTRAINT,O~l~))): 

n-1 
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APPENDIX III 

I’ ALTERNATE WAY TO Do SLIDER CRANK PRQBLEM l / 

APPENDIX IV 

I’.......,,.....< TEST FOR JACOBIAN.. HIQHER DERIVATIVES,. 
DIMENSION OF A X AND Y ARE P K AND M RESPECTIVELY 

AND SECOND ORDER OERIVATIES ARE FORMED *I 
JAC2tA.P,X.K,Y.M):-BLOCKl 
FOR L:1 THRU P 00 t 
PEPENDENT:DETERMINANTtAIU). 
FOR I:1 THRU K DO ( 
VARlABLEI:DEfERMlNANTtXtIl), 
FOR J:l THRU M 00 ( 
VARlABLE2:DETfRMlNANTIYIJI). 
PARTtL,IJt:DlFF~D~FFtOEPaNOENf,VARlAOLEl~,VARlA~LE2~l~~l; 

1’ FOLLOWINQ IS A SIMPLE EXAMPLE...... *I 
A:MATRIX~t21~B1”2-2’81~231,t6Z”2’22t.t3’81”2’23-81”3’21t): 
X:MAilRIX~1s11.1821.18311: 
Y:MATRIX~(Z11,t221.1231):’ 
JAC2tA,3,X3,Y,31: 
FOR i.:i THRU 3 Do t FOR \:I ~HRU 3 DO t FOR J:i THRU 3 00 
(L~PLAY tP~RTtL.l,~lll)); 

I’ IN THE FOLLOWING CASE A HAS DIMENSION Fj BY M 
AND 0 HAS P BY i AND FIRST DERlvATtvE9 ARE FORMED: *I 

JAC3tA,N,M,B,P):-ELOCKIFOA L:l THRU P DO I 
VARIABLE:DETERMINANTO, 
POR I:1 THRU N DO I 
FOR J:l THRU M DO t 
DEPENDENT:IAtI.Jl). 
PARTIL,I.JI:PIFFtDE~ENT.VARIABLE~~~~~: 
AA:MAtRIXtt21”2’83.22~~2*~1,23*B1t,122~~3*B3,21~22,~1~B31, 
[23”2+22 22’82’23 21’83*‘21)* 
JAWAA.3:3.X.3): ’ ’ 
FOR L:l THRU 3 00 t 
.FOR I: 1 THRU 3 00 t 
FOR J:l THRU 3 DO l.OlSPLAY( 
PARTIL.I.JI))): 

APPENDIX V 

/‘..THIs 1s THE FIRST PROBLEM OF HAUQ, SEE t71 
E IS THE DESIGN VARIABLE AND 2 I8 STATE VAAlAbLE 
F IS THE RIGHT HAND SIDE OF DIFFERENTIAL EOUATION 
AND h IS E.C *I 

H:MATRIXttOI,tBPl): 
E:MATRIXttBlt,tB2t): 
F:MATRIX~tZ2tT~t.t*El’Zl(flll: 
t:MATRlXtIZltT~l.t22tT)l~: 
/‘..SET UP OIFF EO AND SOLVE BY LAP TRANSFORM..‘/ 
I* . .._..............,.......................... *r 
E01:IJIFF~Z.f1-F: 
I* INITIAL VALUES ARE GIVEN HERE &I 
ATVALUEtZlcT),T-O,O): 
ATVALUE(t2(t),T-0.82): 
Pl:DETERMINANT~EOlt1I): 
PP:DETERMINANTtEOlf21): 
E02:LAPLACEtPl.T.S); 
E0S:LAPLACEtPP.T.S): 
LlNSOLVE~tEO2,EO3~.tLAPLACEtZltn.l 
L~F;LACE(Z2tT),T,S)ll; 
PPl:RHStFIRST(%)I: 

. 

PP2:RHStLASTt%THt2))1: 
r-wvmsE LAPLACE TRANSFORM *r 
ZlflI-ILTIPP1.S.T): 
22fT): - ILTlPP2.S.f): 
21(T): 
tllT):-“%; 

-,3, 

22(T): 
22hl: -“%c: 
JACtA,N.B.K):-OLOCKttPARfl, 
FOR I:1 TURU N DO ( 
DEPENDENT:DETERMINANTtAllI~, 
FOR J:l THRU K DO t 
VAR~AELS:~~TERMINANT~~~JI), 
PARTtl,Jt:PIFF~OEPENDENt.VARIABLE~~~, 
GENMATRIXtPART.N.K.1.1)~: 
I* NOW WE SOLVE FOR ADJOINS VARIAQLES *I 
PEPENDSttLAMl,LAMPl.tTI): 
1AM:MATAlXtRnMltT)t.t~~2~)J): 

EOI:OIFFtLAM.Tl+TRANSPOBEtJACtF.2,Z.2)).LAM: 
1’ BINGE LAPLACE TRANSFORM soLvE9 wife INITIAL VALUES 

ONLY WE ASUUME ALPHA AN0 BETA AS THE INITIAL VALUES 
AND SOLVE FOR ALPHA AND BETA FROM THE FINAL VALUES 
OF THE BOLUTON ‘I 

AfVALUEtLAMlCT).T-O,ALPHA): 
AtVALUEtLAM21TI.T-O,RETA); 
P1:OETERMlNANTtEOltl1): 
PP:DETERMINANT~EOit21~: 
EO2:lAPU\CEtPl.T.81; 
Eo3:LAPLACEtP2.T.SI: 
LINSOLVEIIEO2.E031.tLAPLACEtLAM1tT~.T.Sl, 
LAPLACEtLAM2tTl.TS)I~: 
PPl:RHStFIRSTt%~~: 
PP2:RHStLAST(%THtZl)); 
LAMlIT):-ILTtPP1.S.f); 
LAM2tTl:-ILTtPP2.S.t1; 
I’ THIS THE SOLUTION OF THE ADJOINT VARIABLES *I 
LAMltT); 
LAMlIT):-5%; 
LAMP(f): 
LAMP(T): -“%, 
LlNSOLVEtt~~M~t%Pl/~+l.LAMPRPl/2~~,tALPHA,BETAl~,QLOsALSOLVE:TRUE~ 
I’ ALPHA BETA HAVE TO BE SUBSTITUTED IN THE ABOVE SOLUTION ‘I 

APPENDIX VI 

I* DESIQN SENSITIVIPI ANALYSIO ‘I 
DEPENDSt~Tfl.IBI); 
DEPENPBtIZfl.tT.EI~: 
DEPENDSttQt.tZZ.EI~: 
PSI:G+INTEGRATEtFFtY.Z.B),Y,O.f): 
DIFFtPSl,B1: 
EVt%.DIFFI; 
I’ NOTE: THE LAST COMMAND GIVES UNDESIRABLE RESULTS. 

(SEE REF,t 11 THE PROBLEM CAN POSSIBLY BE HANDLED 
BY GRAQEF 171 COMMAND ‘I 

APPENDIX VII 

I’........ UNIT VECTORS ARE El 82 83 . . . . . . SEE LEVINSON *I 
I’........ DEFINE DOT AND CROSS PRODUCTS I,.. ‘I 
DOTtVl.V21:-BLOCKttP.PPI. 
FOR I:1 THRU 3 00 Ptlt:RATCOEFFtVl.Btll), 
FOR I:1 THRU 3 00 PPtlt:RATCOEFF(V2.Elll~. 
Pt4l!sUM~PtII’PPtII,l.1.3~. 
RETURNtPtII)lS 
CR08S(V1,V2I:-BLOCKttP.PP.PPPl, 
FOR I:1 THRU 3 DO PtII:RATCOEFFtV1.BtIl~~ 
FOR I:1 THRU 3 DO PPt~I:RATCOEFFtV2,BtII). 
PPPtll:rPt21’PPt3l-Pt3~~PPt21~, 
PPPr2l:c-Prl~~r31+Pt3l~PPtll~, 
PPPl31:tPt~l~PPlil.Pt2l~PPti~l, 
PpP!4l:B11I’ppP111+812~pPPl2~+Bt31*PPP131. 
RETURNtPPP141)lS 
r’....NOW WE INPUT EOUATIONS FROM LEVINSON’S PAPER ‘I 
0EPENOStU.T); 

A-2 
161 



I’........ SOLUTION BY HARTENSERG AND DENAVIT .,,, ‘I 
FF(pH.Pw): - K I*CO~~PH~K~COS~PSI) + K&COS(PH-PSI); 
I’ t t........... NOW A NUMERICAL EXAMPLE . . . . . . . . . . ‘I 
I* . . . CHEEYCHEV SPACINQ IS QIVEN BY 
XK-A+H’C08~2K-i~“PI/2N 

TSR:CROSSIIRRSWR,WR)-IRRSALPR: 
FB:Fl’Elll+F2’R12l+F3’Br31: 
TB:Tl’~iij+T2~B~2~+T~~~i~~ 
F~RI:-D0T~D1FFlvES,UIR~~,FB~+DOT~DlFF(WB,UIR~~,TB~: 
FS1R1:~DOTlDIFFIVBS,UIR1).FSB~+DOT~DIFF(VRS,UIRI),FSR) 
+DOT~DlFF~WB.UlRII,TSB~+DOT~DlFF(WR,UtRl~,TSR~: 
ECIlRI:-F[RI+FStRI; 
EQlll: 
FOR I:I THOU 7 DO LDISPLAY ( ~~i,ll:RAT~0E~~EOl~l.DtFF1U[ll,f))): 

APPENDIX VIII 

XP:X-B’COS(TH): 
YP:Y-B’SINITH): 
XPP:X-A’COSlTH+QAM): 
YPP:Y-A’SIN(TW+QAM); 
EQi:R”2-Xl-*2-YP*‘2: 
EO2:9”2-IXPP-P)*~2-YPP~*Z; 
EOl:EXPANDfEO1): 
EO1:RATSUsST(l:~INfTH)‘2,COS~TH)”2,%); 
EOl:EOl/@‘B1! 
EQPiiPAiliiiOP): 
EQP:TRIGEXPAND(EOL): 
E02:RATSUBSTd-COS~TH~?!,SINo’2,EQ2~: 
EQ2:RATSUBSTll-COS(GAM~“2,SlN(GAMl-2,%); 
EO2:EOZ/@*Al; 
LL:RAfCOEF(EQ2.-SINITH)): 
NN:RATCOEF(E02,COSITHI): 
tiM:RATCOEFlEOl.SlN(TH~~; 
PP:RATCOEFIEPl.-CUS(TH)): 
PHPH:EOl-MM’SIN~TH)+PP’COSo: 
PSIPSI:EO2+LL’SINITHI-NN:COS(tH); 
PSlPSl:RATSIMP(%): 

/’ APPENDIX VIII (CONT.) ‘I 

EOll:-P’COS(TH)+M’SIN(T~-~~-PH: 
E022:N’COS(THbL’SIN~THI-PSI: 
SET:LlNSOLVEIIEQll.EO22~,~COS~THl,SlN~TH~l~: 
CTH:RHS(PARTfEV(SETI,lll; 
STH:RHS(PARTIEV(SET).2)): 
STH’2+CTH*P: 
%-1; 
XTHRUW: ’ 
NUMW; 

APPENDIX IX 

I” SNTHESIS BY ANALYTIC METHODS ‘1 
XP:Ai’COS(PHI: 
‘YP:Al’SIN~PH): 
X3:-A4+A3’COS(PSl); 
YB:AS’SIN(PSI): 
Fl:A2-2-(X2-X31’2-(Y2-Y3)“2; 
EXPANDW: 
Fll:%: 
AA:RATCOEFIFll,SlN~Psl)): 
q B:RATCOEFlFil.COS(PSlll; 
Fll-AA’SINtPSlbBB’COS~PSI~: 
RATSUBSTtl-SIN(PH)-2,COStPH)-2.%): 
RAidUBST~l-SlNfPSl)-2.C08(PSll~2,%~; 
Tli:%: 
Tll!T11/(2’A1’A31: 
I* .,,,,,.,, 90LUft0N BYOENAVIT METHOD *,..,,, . . ..*I 
Fl:A’SIN(PSI)+B’COS(PSI)-C; 
RATSUBST(2*TAN~X,/tl+TAN~X)“2).SIN(PSl~,%~; 

WHERE A-MEAN H-HALF THE INTERVAL oc x.....:~ 
KEEPFLOATzTRUE: 
X1K~:-3/2+1/2~COS~~2’K-ll’%PI/S~; 
Xl:Xfd.NUMER: 
x2:x(2): 
XZX(lI,NUMER: 
Yl:LOG(Xl)lL0Qd0l,NUMER: 
YP:LOGIX2~ILOQtlO).NUMER: 
Y3:LOQIX3~/LOG~iO~.NUMEF); 
DELPH:swiBD*%PI: 
DELPSI:EDHSD’%PI; 
PHl:O: 
PB11:o: 
YF:LOGf2)/LOQdO~.NUMER: 

APPENDIX X 

I’..ALbEERA FOR OUATERNIONS FROM YANG’S PAPER..‘/ 
NNPRED(NI:-IS(N> -2): 
NNPRED(2): 
NNPREDIS): 
MATCHDECLAREINN,NNPRED): 
TELLSIMPAFfER(EP”NN,O): 
AL12H:AL12+EP”A12: 
AL23H:AL23+EP*A23: 
AL34H:AL344EPmA3*: 
AL4lH:AL4l+EP*AAl: 
TH1H!THl+EP’Sl1: 
TH2H:TH2+EP”S2: 
THsH!TH3+EP*B3: 
TH4H:TH4+EPa84: 

SALl2H: EXPAND~TAYLORISIN~AL12H),EP,O,l~): 
SAL23H: EXPAND~TAYLOR~SIN~AL23H~,EP,O,1~~; 
SAL34H: EXPAND~TAYLOR(SIN~AL34H~~EP,O,l~~: 
SAL4lH: EXPAND(TAYLOR(SlN(AL4lH).EP.O.1)): 
STHlH: EXPAND(TAYLOR~SIN(THlH).EP.O.1)): 
STHPH: EXPAND~TAYLOR(SIN(THPH),EP.O.l)): 
STH3H: EXPAND(TAYLOR(SIN(THW),EP,O,l1): 
STH4H: EXPAND~TAYLOR~SlN~TH4H~.EP.O,1~~: 
CALl2H:EXPAND~TAYLOR(COBIALl2H~,EP.O.1)); 
CAL23H:EXPANOtTAYLOR(C0S~AL23H~,EP,O,1)~: 
CAL34H:EXPAND~TAYLOR~COS(AL34H~,EP,O.l)~; 
CAL41H:EXPAND~TAYLOR(C08(AL4lH~,EP.O,l)~: 
CTHIH: EXPAND~TAYLORICOS~THlH~,EP.O,i~~; 
CTH2H: EXPAND(TAYLOR~COSnH2H).EP.O.lI): 
CTH3H: EXPAND~TAYLOR~COS(tH3H~.EP.O,1)): 
CTH4H: EXPANO~TAYLORlCOS~TH4H,.EP.O.1lI: 
AATWlH:SALl2H’SAL34H’StH1H: 
BBTHlH!-SAL34H*~SAL4lH~CALl2H+CAL4lU~SALl2H~CTHiH~~ 
CCTHlH:CAL23H-CAL34H’ICAL4lH~CALl2H-SAL4lH~sALl2H’CTHlH~: 
EOl:AATHlH’STH4H+BBTHlH~CTH~H-CCTHlH: 
PRIMARY:EV(EOl,EP-01: 
OUAL:RATCOEFFfEOl,EP); 
A:RATCOEFF(PRIMARV,SlN~TH4~~; 
B:RATCOEFF~PRIMARY.COs~TH4l): 
C:EXPANDIPRIMARY-A’SINo-B’COS(TH4b~; 
DUALl:DUAL-S4’(A*COs~TH4)-B’91N(TH4)); 
AO:RATCOEFF~DUALl,slN~TH4t1; 
BO:RATCOEFF(OUALl.COstfH1)): 
CCO:EXPANDfDUALl-AO’SIN(TH4~-B0’COSlTH4l~; 
CCO:RATSIMP(CCOI: 
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APPENDIX XL 
/‘....THlS PROQRAM SETS UP THE COMPLETE MATRIX 

EOATION FOR ROBOT....FOR DIFFERENTIAL MOTION....‘I 
/‘....modllled 107 Slenlwd manlpulator....‘l 
/‘CTHtII:-COSITHIII): 
STHtll:-SINtTHlII); *I 
QCPRINf:FALSE: 
CALIll: -COSIALtlI); 
SALtII: -SINtALtII): 
ALtll:ALt41:-%Pl12; 
ALt2l:ALtSl:%Pl/2; 
ALtd:ALt6t:O: 
AAtll:AAt3t:AAt41:AAtSt:AAtBI:O: 
AAt2k0: 
ootrl:oot4~:aot5l:Cotel:o: ’ 
GTHI3I:l: 
STHtd:O; 
AtII:-MA~IX~tCTHtl1.-Bfntd’CALtll,STHtl~~SALtl~,AAtl~*CTNtl~~, 
~~TH~II,CTH~~I~CAL~~I,-~TH~I~~SAL~~I.AA~~I~STH~~II, 
t0,~~~tit,~ALtiI.DDti11. 
10,0.0,1l): 
All); 
RATSUEStd-tSTHtll)“2.tCTHtll~*‘2,%); 
m---1: 
IAtll:%$ 
RATSUBSTtl-tSTHtll~“2.tCTHtll~“~2,%~: 
IAtll:%$ 
At21: 
m-*-1: 
RATSUESTtl-tStnt2~,~~2,tC~t2l~~~2,~l; 
IAt2l:%lb 
AM: 
y--,. 

RAt~~~STfi-(STHt311”2.tCTHt31)“2,%): 
IAW:%%’ 
At41: 
%“-I: 
RATSUSST~l-~STHt4l~“P.tCTHt41~“2,%~: 
IAt41:%5 
AtSl: 
%“+I. 
RATs’UESTtl-~STHt5t~*~2,lC~tSl~‘~2.%l; 
lAt61:%$ 
At61 : 
*--1. 
FlATS’UB8Ttl-~SfN161~‘2,tCTHtB1~”2,%~: 
IAM:%: 
TSB:AtBI: 
T46zAt51.At61; 
T3B:At4I.At5l.At6t: 
T26:At31.At41.AtSI.AtBt: 
flE:At21.At31.At4~.At51.At6I; 
TE:AI1I.At2l.At3I,At41.At51.AI6lb 
NX:TBtl.ilS 
NY:T6t2.11.5 
NZ:T6t3.11$ 
OX:T6tl.215 
OY:T6t2.215 
OZ:T6l2.31$ 
AX:Tetl.d$ 
AY:fEt2,31$ 
Af:TEI9,31$ 
PX:T8[1,4)$ 
PY:TBt2.4)$ 
PZ:TI3t3.4)$ 
l-M!MATRIX(tNNK;OOX,AAX.PPXt. 
INNY.OOY,AAY,PW, 
(NN~.ooz.AA~,PP~). 
l0.0.0.11~; 
IA1T6:IAt1I.TTG: 
IA2TE:IAt2t.%: 
IA3TB:IAt31.%: 
IA4TB:IAt41.%% 
IA6TB:IAtSJ.%$ 
IA~t6:IAt8l.%% 

I’....dlllcrentlaI relallens...lhla may be used 
lor obtaining the aenaltlvlly analysla...we 
follow Ihe agorllhm I)rovlded by A.P. Paul 
PA+36 no.l03....REVOLUTE-TDR PRISMATIC-TOP.,‘/ 

tRAN8P0SEtMATR~Xtt-NX*Py+Ny~PX,-0X*Py+0y’PX.-AX*PY+AY0PX~N2.02,A2l~~~; 
TDPtMAT):-BLOCKttNX.NY,NZ,PX.PY.PZ,OX.OY.OZ,AX,AY,AZ~, 
NX:MAttl.ll,NY:MATl2.11.Nt:MAlt3.1~. 
OX:MATt1.2l.OY:MATt2.2t.OL:MATt3,2~, 
AX:MATtl,31,AY:MATtP,3~,AZ:MATW,3I, 
PX:MATtl,4l.PY:MATt2.41,PZ:MATt3.41. 
‘TRAN8P08EtMA7RIXttNZ,OZ,~,O,O,O~l~~; 
/*....NOW WE SET UP COMPLETE DIFFERENTIAL MATRIX...:/ 
COLtll:TORtT8~: 
COLtPI:TDRtTlB): 
COLt3I:TDP(T2El: 
COLt4l:TDRtT3Sl: 
COLt51:TlYRtT45~: 
coLtsl:TDamek 
FOR J:I THRU e 00 (FOR I:I THRU e DO ~D~FFARF~AY~LJ~coL~J~~I~~ 
JACOBlAN!QENMAfRlXIDIFFARRAY.B.6~: 
/‘....NUMERICAL EXAMPLE PAGE 10t ROBERT PAUL....‘/ 
THtil:THt4l:o: 
TH12l:THI5I:THtEI:%Pl12: 
THt31:O: 
DDt31:20; 

FOR I:1 THRU 3 00 ~CTHtll:COS~THtlI,.STHlll:SIN~THtIl)~; 
JAC:EVtJACOBlAN.NUMER~: 
JAC:EVI%,NUMERk 
DO:~AN8POSEtMAtRlk(10.1,-0.i.2.0,0.1,0.1,0.1l)): 
JAC.DO: 

APPENDIX XII 
I’ EXAMPLE OF ROBOT CONSIDERD BY LUMELSKY ‘I 

CTHtlt:-COS(THtlI); 
STHtlk-SIN~Htll~: 
QCPRINT:FALSE; 
CALIll:-COStALtlk 
SAL(I):-SIN(ALtII): 
ALl11:ALt21:ALt4~:%Pl/~ 
ALt3l:ALtBt:O: 
ALt51:-%Pl/2; 
AA~~~:AA~~~:AA[~~:AA~I~I:AA~BI:O; 
AAt21:AZ: 
DOtl1:DOt2t:DDt4l:O: 
CTHt3I:l: 
sTHt31:o: 
API:- MATRlX~tCTHIll,-STHIII’CALtl~,S~tlll’SALtll,AAlll~CTHtl~l, 
~STH~I~.CTH~~~~CAL~I~,~~TH~I~*SAL~~~.AA~~~~STH~I~~, 
tO,SALtll.CALtll.DDtltt,t0,O,O,II~: 
All!; 
RATSU9STti-STHtl1’2,CTHtil~2,%~: 
%“(-11; 
Alll:%$ 
RATSUBSTtl-STHt11”2.CTHtl1’2.%l: 
AIil:%l 
At21: 
%“(-1). 
RATSu’ESTd-STHt21’2.CTHt2)-2,%): 
At21:%$ 
At31: 
%--t-11: 
RATSU88Tt1-9THt31’2.CTHt31”2,21; 
At31:%3 
A141: 
%-t-w 
RATSlkTt1-STHt41-2.CTHt41”2.%I; 
At41:%$ 
AI61; 
%“f-1); 
RATSUBST(1-STHt5~2.CTHt5i”2.%~: 
AtSl:%S 
Ate]: 
a’*(-lr. * 
RATSciBSTd-$THt8~2,C~t6~2.%): 
AleI:%: 
T5B:AtEI: 
T48:Akl Atal: 
T36:At4) At51 . AISI: 
T28:At31 A(4). At61 Ate]: 
TlB:AtPI At31 At41 , At61 t AtSl: 
T&At11 At21 At31 At41 AIS) AtatS 
NX:TBt1,11: 
NY:TEt2.11; 
NZ:T~t3.11: 
OX:TEtl.21: 



OY:TB[2.21: 
, OZ:TBt2,31: 

AX:TBI1,31; 
AY:T6[2,31; 
AZT6[3,31: 
PX:TBI1,41; 
PY:T’312,41: 
PZ:TB[3,41; 
TT6:MATRIX~INNX,OOX.AAX.PPX1,~NNY,00Y,AAY,PPY1.INNt.00t,AAZ,PPZ1,~O,O,O,11~: 
AlTB:IAI11 , TTB; 
A2TB:IAI21 t %; 
A3fE:IAI31 , %; 
A4TB:IA[41 %; 
AST&IAl51 %; 
ABTB:IAtBl %; 

\ 

EOl:TTB-TE5 
EC2:IAlTE.T18$ 
EC3:IA2TB-T28$ 
E94:IA3TB-T3W 
EQ6:IAdTEi-T485 
EOI:IABt8-t56$ 
TABLE~MAT,VAR~:~BLOCK~~E~~,FOR I THRU 4 00 (FOR J THRU 4 DO E~II.JI:o). 
FOR I THRU 4 00 (FOR J THRU 4 W (FOR L THRU B DO 
IIF FREEOF~VAR~L1.MAT~I.J]) - FALSE THEN EQ[l,JI:ECIII,J1+TILI 
ELSE FALSE),,,GENMATRIXfE0,4,4)); 

VARIll:THI11; 
VARl21:THM: 
VARM:DDf3l; 
VARI41:THt41; 
VARI6I:THISI: 
VARIBI:TH[BI; 
TABLE(EOl.VAR): 
TABLE(EOP.VARI; 
TABLE(EO3,VAR): 
TABLE(Eg4,VAR); 
tASLE(EQS,VAR); 
TAWLE(EQB,VAR): 

APPENDIX XII (CONT.) 

FOLLOWING I8 A PARTIAL OUTPUT FROM ABOVE PROGRAM: 
Tl T2 ETC REPRESENTS PRESENCE OF VARIABLE 1 2 ETC. 

TAELE(EQP.VAR); 

Ts+T5+T4+T2+T, Tg’T5+T4’T2’Tl 

Tg4Tg+T,4+T2 taCT5+t4+Tp 
COLI = Ts-l-t5tT4.1-Tl COLP- Tg-’ T5 -1. T4 + T, 

0 , 0 

T5+T4’T2”T, Tg+T,,+T3+T2+T, 

Tg+T4+T2 T5+Tq+T3TT2 
COL3 - Tg+T4”tl 

COLA- Tq’T4+T, 

0 0 

‘1 T6”T5fT4+T2+T, Tg+fg+T4+T2’T 

Tg+T5+T4+T1 Tg+T5+t4+Tl 
COLl- ‘Tg+T5+T2+Tl COL2 - Td+T5+tp’Tl 

0 0 

’ T5+T4+T2+Tl Tg+T4+T2+T, 

Tg+T4+Tl T5+T4+Tl 
COL3” T5+T2+T1 COL4- T6+t3+f2+T, 

0 0 

TABLE(EQQ.VAR); 

Tg’T5tT4i-T2+T, Ta-~T5fTpfT2+T 

T6+T5+f4+T1 T5+T5+T4+T1 
COLl- T0+TB+T2+T1 COL2 - Te+T5fT2+Tl 

0 0 

T5-\-T4-‘.T2’tl Tg-I.T4+T2+Tt 

Tg+T4+Tl Tg+T4+T, 

Y3 - Tg+T2+T, COL4” T5+T3+T2+Tl 

0 0 

TABLEfEOS.VARI: 

Ta+T5+T4fT2+T, ‘T5+T5+T4+Tp+T, 

T5+t,+t2+T, T5+T5+T2+Tf 
COLl- 

T5+T4+t2+T, COL2 - Tg+T4+t2+T, 

0 0 

T5+T4+T2+T, T5+T4+T2+T, 

T5+T2+T, T5+T3+f2+T, 
COL3 - T4+t2ff, col.4 - T4+f2+T, 

0 0 

TABLEfEQB.VAR): 

Tg4Tg+T4+T2+T, tgfTgfT4+T2tTl 

Te+T4+Tpft, T5+T4+T2+T1 
COLI - Tg’T4+T2+f, COL2- t6+T4+Tp+T1 

0 0 

tg+T4+T2fTl T5+T4+T3+T2+T, 

T4+T2+T1 T4+t2”T, 
COL3- TS+T4+T2ST 

GOL4- 
\l 

T5+T4+T3+T2+T, 

0 0 

A-5 
164 



Appendix B 

SOMF, REMARKS ON MACSYMA COMMANDS 

We assume that the reader is familiar with the introduction given in lhe MACSYMA 
Primer, which is an introduction for beginners (see Reference [81). 

- 

We will use EXPR to denote any symbolic expression such as X+ Y, SIN(X), etc. 

F; EXPR; 

assigns EXPR to the variable F. (In the reference manual, F would be called an atomic vari- 
able.) Note that F(X) has no meaning in this context. However, if we write 

F(X):= EXPR 

we are now defining a function F(X). For example: 

F(X):= SIN(X); 
F(Z); (Machine prints SIN(Z)) 

This can also be achieved by the LAMBDA notation 

F: LAMBDA([Xl,SIN(X)); 

We can now use F;(Z). For example: 

F(Z): (Machine prints SIN(Z)) 

One advantage of this procedure is that F can be an argument to another function, for exam- 
ple as in SIMPSON in the text (Section 6). 

An abbreviated, partial list of the commands that have been used in this report follows, 
For details, see the MACSYMA Manual. 

DEPENDS([R,Pl,[RHOl); G R and P are functions of p. 

DEPENDENCIES(R(RH0)); s R = R(p), as in the last command. 

DIFF(SIN(X),X); E il sin(x)/ dx 

EV(EXPR,X=O); E Evaluate EXPR with x=0. EV is a powerful command in 
MACSYMA and takes multiple arguments. See Manual. 

GRADEF(R,RHO,P/R); 
aR E set - = 
af 

FIR 

INTEGRATE(SIN(X),X); s 8 sin(x) & 

LDISPLAY - Display with equation numbers. 

LINSOLVE([EQl,EQ21,[X,YI); = Soive set of linear equations &q, = 0, EL/~= 0, 
for x and y. 

GLOBALSOLVE:TRlJE; I= Assigns the values to the variables obtained by 
LINSOLVE command. 

MAP(FACTOR,EXPRl); - Factors each part of EXPR 1 separately. 

RATCOEFF(EXPR,X^I) z Obtain the coefficient of xi in EXPR. 
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RATCOEFF(EXPR,X,I) 

RATSIMPfEXPR); 

SUBST(O,X,EXPR); 

RATSUBST(O,X,EXPRl); 

SUM(P[IIX*I,I,O,M); 

TAYLOR(SIN(X),X,O,S); 

TRIGEXPANDtEXPRl); 

E Same as above. If the third argument is not 
specified, as in the last command, it is taken 
as 1 by default. 

s Obtain rational simplification of expression EXPR. 

= Substitute 0 for x in the expression EXPR. - 

E Same as SUBST after expansion. 

= f P,x’ 
i=o 

E Obtain Taylor expansion of sin x around x = 0 up to 
the fifth power. Can also be used for multivariate 
functions. 

- Expand the trigonometric functions in the 
expression EXPR 1. 

FOR I:1 STEP 1 THRU N DO (ANY MACSYMA COMMAND); (Involving set of 1’s) 
- This is a DO loop for 1 lo n in steps of 1. Note 

that the default for starting is 1 and that the default 
step is 1; FOR I THRU N Dot...) will accomplish 
the same task. 
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ON THE CONVERSION OF LINPACK TO ADA 

Benjamin J. Martin 
Department of Mathematical and Computer Sciences 

Atlanta University 
Atlanta, Georgia 30314 

Robert Bozeman 
Department of Mathematics 

Morehouse College 
Atlanta, Georgia 30314 

ABSTRACT, The authors demonstrate the feasibility of converting 
the LINPACK routines for analyzing and solving systems of linear 
algebraic equations from FORTRAN to Ada. This is done with minimal 
alteration of the original program structure, thus requiring very 
little re-orientation by current users of LINPACK. Sample programs 
are included. 

I. INTRODUCTION. In a paper entitled "Can Ada Replace FORTRAN for 
Numerical Computation?", Alfred Morris, Jr., of Naval Surface 
Weapons Center in Dahlgren, Virginia, argues that Ada is an inade- 
quate substitute for FORTRAN. He presents several points which he 
considers to be critical deficiencies of Ada. Among these "criti- 
cal deficiencies" is the failure of the Ada specifications to 
include the internal representation of arrays. The FORTRAN stan- 
dard requires that arrays be stored in column major form, that is, 
columns are stored together one after the other. This standard 
along with the absence of strong typing allows the programmer to 
access the elements of a matrix as if it were a vector and always 
get the right element. It is this standard, among others, that 
has permitted the development of the LINPACK routines. 

Mr. Morris points out that this problem leads to the necessity 
of abandoning a large selection of fully developed algorithms and 
routines. Says he, "it is clear that a considerable portion of a 
quarter of century accumulation of logic and code could not be 
adapted to Ada, This would include software packages such as 
Argonne National Laboratories' LINPACK . . . which is highly refined 
and quite widely used on avariety of computers." It is the aim of 
this paper to demonstrate the feasibility of recoding the LINPACK 
routines in the Ada language. 
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!-CL -- METHODS OF CONVERSION. There are three approaches to the 
recoding of the LINPACK routines which seem obvious and straightfor- 
ward. The first approach is to merely insert the appropriate 
codes for the various BLAS routines in the various places where 
the subroutine calls are made. This would reduce the work required 
in performing the conversion. The effect of this insertion on 
execution time should be minimal since no extra code is being 
executed. In fact, the overhead of the subroutine call is saved, 
However, it would significantly increase the space requirements 
for the program code. It would also destroy the modularity and 
the readibility of the routines. 

The.second approach is to process the matrices and vectors 
prior to the BLAS subroutine call and postprocess them after the 
BLAS subroutine call. The preprocessor would remove the appropriate 
portion of the column of the matrix or the appropriate portion of 
the vector. * This approach is placed back in its place in the matrix 
or vector. This approach maintains the readability and modularity 
of the program. The increase in space requirements is minimal in 
that only four short routines are needed in addition to the usual 
ones. The increase in time requirements is also minimal since the 
only thing these routines do is transfer several data items back 
and forth. 

The third approach is to define the matrix to be an array of 
vectors. After the matrix to be used is properly defined the 
appropriate vector is sent to the BLAS subroutine. In order to use 
this technique the vectors to be transferred must be the columns of 
the matrix. This may require a routine to compute the transpose of 
the matrix before proceeding. Therefore, the increase in space 
requirements and in execution time should be minimal. The Ada 
concept of slices may prove useful in this approach. 

III. THE IMPLEMENTATION. The first alternative was dismissed as 
being the least attractive alternative. The second alternative 
appeared to be the easiest to implement quickly, and so was consi- 
dered first. The third alternative is presently being pursued. 

In order to implement the second alternatives, LINPACK and BLAS 
routines for a general system were coded in Ada. The changes made 
in the programs were of ,two types. The first type of changes 
simply involved the use of structured programming technique making 
use of control structures not available in FORTRAN. The second 
type of change involved writing four new routines called CONVRTM, 
RECONVRTM, CONVRTV, and RECONVRTV. The first two routines work on 
matrices. CONVRTM takes a given portion of a column from a matrix 
and stores it in a vector. RECONVRTM takes a portion of a column 
from a vector and replaces it in a matrix. The other two routines 
do similar things for a vector. The routines are used in conjunc- 
tion with the BLAS routines as follows: 
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The FORTRAN statement CALL SAXPY(N-K,T,A,(K+l,K),l,B(Ktl),l) 
is replaced by the Ada sequence CONVRTM(N-K,K+l,K,A,X,l); 

CONVRTV(N-K,K+l,B,Y); 
RECONVRTM(N-K,K+l,K,A,X,l); 
RECONVRTV(N-K,K+l,B,Y); 

Attached is the program which resulted from this implementation 
and which clearly defines the action of each of these routines. 
These routines were coded under ADAED, version 16.3. They may or 
may not run under other versions of ADAED. Because of the nature 
of ADAED, extensive testing is not possible. A simple system of 
five equations in five unknowns took 30 minutes of CPU time to 
compile and execute. 

IV. CONCLUSIONS. While it may not be possible to retain all of 
the characteristics of the LINPACK routines in a conversion to Ada, 
it has been demonstrated that such a conversion is possible. 
Because of the limitations of ADAED, especially its execution speed, 
any real testing must await a compiler. Nevertheless, it is clear 
that the routines can be fairly easily recoded in Ada. The costs 
incurred in this recoding cannot be determined at this time. Other 
approaches may also be available besides the ones indicated above. 
The third alternative may be the nest of the three. There are 
indeed unanswered questions, but we must conclude that it is feasi- 
ble to salvage at least a portion of a -"quarter century accumula- 
tion of logic and code." 

Bibliography 

Dongarra, J.J., LINPACK User's Guide Siam Press, Philadelphia, 
PA., 1979. 

-me- 

Morris, A.H.,Jr., "Can Ada Replace FORTRAN for Numerical Computation?" 
ACM, Sigplan Notices, ~01.16, number lZ,(Dec. 1981). 

169 



WITH TrXTiIO: 
PR+?DffRE TEST IS 
t!SF: TEXT:En: 
TYPE REAL IS NEW FLOAT; 
PACKAGE HIS,IO IS NEW INTEGER,IucINTEGERI: 
PACKAGE MY& TS NEW. FLOAT-10 [REAL) : 
USE HI.s,IOt USE MY-IO: 
$.UITYPF: TNOEX IS INTEGER RANGE l;.st 
TY8E INTVEC IS ARHAY (INDEX1 OF INDEX; 
TYPE YeCTuR 1s ARRPY (INDEX) OF REAL ; 
TYPE MATRIX IS ARRAY (INDEX.INDEXI OF REAL: 

AiMATRIX: 
E? VFCTOR; 
1PVT:TNTVK: 
T~lFfl,JOR:XNTEcER:=O: 
SIZE: tl\lnEX:=5: 

;jNCTIbN ISAHAX(N:SNDEX:X:VgCTa~) RETURN INDEX IS 

IMAX:tNbEX:=l; 

XMAX:REALI 
REGIN 

IF N<l THEN RETURN 0: END IFt 
IF N=l THEN RETlfRN 1: END IF: 
XWAX:=ARS(X(l)): 

F’OR I IN 2..N LbOe 
IF ABS(XCI)I>X~AX THEN 

IMfiX:=I: 
XMAX :=AfjS(X(f)l: 

FN 0 T c- : 
END L?OP; 

R!?TllRN IMPX: 
END ISAf?iPXt 
I_ 

&TIbN SASIIW(N:INUEX:X!V~CTOR) RETURN REAL IS 

:&ES Ty4: SUF i?F THE ARSOtIlTF VALUES: 
L-t&ES UPRt+LLED I,O+S. 
;-ADAPTED FRbM THE 3/11/78 VERSION BY JACK DONGARRA 

LNTECEH: 
n,nl:INwX? 
SU’.!:UEPL:rO.O; 
BEGIN 

tF, N=O TFrEN RETURN SUM: END IF: 
!g2:,N MOD 6: 
IF M2 /= 0 THEM 

M :=hl2; 
FOR T TN l..r Lunp 

SUM::SUM+A@S(X(I) 1: 
EN0 LOOP: 

ENO TF: 
TF N >= 6 THEN 

IF M2=6 THEN Ml’=l: . ELSE Mi:=i4il:EN11 IF; 
‘4iifLE Vl<N LOOP 

SUM.- .-SU~+A~StX(M~)l;A~S(X(~lt~))+A~StX(~~~~2))~ARS(X(Ml+3)~ 
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+ABS(Xt~l+4,,+bbS(X(~l~5)); 
MZ:=MltS: 
IF MZ<N THEN Ml:d2r ELSE Hl:=N: 

END LOOP? 
END IF? 
RETURN SUMI 

f$Nr) SASUM1 
II 

END ~FI 

PROCFDIIRE SAXPY(N:INDEX#S:REALrXiVECTDR:Y: IN OUT VECTbRl IS 

::COMP?JTlTS A CbNSTANT TIMES A VECTOR PLUS A VECTOR. 
,-I~SeS UNRCfLLED LObpS. 
I-PDAPTED FRbH THE 3/11/78 VERSION BY JACK DtiNGARRA 

N2:INTEGER: 
BEGIN 

IF N C= 0 THEN RETURN; END IF8 
IF.S=O.O THEN RETURN; END IPI 
w2:=N POPI 4; 
TF M2 /= 0 THEN 

M:=M2; 
FOR I IN l..U LOtiP 

YcI~:=YcIIts*x~I)~ 
EN0 LOOP1 

END IF? 
IF N >= 4 THEN 

IF M2=0 THEN.Ml:=lr ELSE Ml:=M~l: END IF1 
WHtLF MiCN mUQ 

tF M2CN THEN Mi:=M2: ELSE Nl:=Ni EN0 IF; 
END totiP 

END tF: 
FKCIEPTION 

-HEN CtiNSTRAINT,ERROR=b 
PUT ("CONSTRAfNT ERROR IN SAXPY N, Ml, M: "It PUT(N]7 
PUT(~fi);PUT[Kl: 

FND SAXPY; 
L1I 

$&CTI~N SDOTCN:TNDEX:X,Y:VECTOR) RETURH REAL TS 
*a 
+FOWS THE DOT PRiJDUCT OF TWO VECTORS; 
--IISES IJnvROLtED LOhPS. 
S-ADAPTED FRIIM THE J/11/78 VEHSITJW BY JACK ObtJGARRA 

;;: ILTFGFR: 
M,vl:INDSX: 
TE~P:RFAt:=O.O: 
REGIN 

IF nJ<=O TWEN RETURN 0.07 END IF7 
M2:=l\l i*lnD 5: 
IF M2 /= 0 THEN 

tJ:=h(2; 
FOR 1 TN l..M LOtiP 

T~~P:=TEHP+X(~~*Y(II: 
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FTNO t&PI 
END IF: 
IF N>=5 THEN 

IF n2=a THEN Ml:=lt ELSE Ml:=M+i:END IF: 
WHILE Wl<N LbDP 

TEwP:oTEMP+X(Mll*Y(Ml~~ 
f42:mits; 
IF H2CN THEN #l:=R2: ELSE Mii’NI ENi3 IF; 

END LObP; 
END IF: 
RET!?RN TEk’P? 

END SDOTI 
-I 

&FDURP: SSCALcN:iNoEX:S:REALrX;IN OUT VECTOR) tS 
*I 
++CILES A VECTOR RY A CbNSTANT. 
-flSRS UNROLLED LOOPS 

. --ADAPTEn FRbM THE 3111/78 VERSION BY JACK DbNGARRA 

LNTFGW 
w,rliINDEX: 
BEGIN 

I$ N<=Q_THEN RETURNl END IF: 
M2:=N MOD 51 
IF y2 /= a THEN 

H:=K!; 
FnR I IN t..fl LbOP 

xcI?:=s*x(Il; 
END LOOP? 

END IFI 
IF NZ=5 THEN 

IF M2=0 THEP Ml:=11 ELSE M1:=fd+i;FtiD IF; 
WHILE Hl<P Lobe 

Xc~ll:=s*XtMllr 
X[*1+11:=S*XCMt+11: 
X(~~ltZI:=S*XCMttSl: 
XCH193I :=S*X(M1+3); 
xcw1+41 :=S*X(M1+4): 
Y2 :=w1+5: 
1~ M2CN THEN Ml:=f.d2: ELSF: Ml:=NS EP’D IF; 

END L&P: 
END IF: 
RETWtN I 

FNI-J SSCALt 

;;&D,,RE CONVRTM(N,K,L:INDEX:A:~ATRIX;V~OUT VECTOR8 INC:INDEX) IS 
BEGIN 

IF IWC=l THEN -- PIrACE C~LUHN IN VECTOR 
FOR I IN I,.! LOOP 

V(T]:=fi(Ktt-l,Llt 
END Lune: 

ELSIF TIIC>I THEN -- PLACE ROW IN VECTOR 
FOR I IN i.,y tmP 

V(I) :=A(K,r,*I-l]; 
END LObP? 

SND TF: 
FND CONVRTU; 
-I 
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BEGIN 
FOR f IN 1. .N LOtiP 

v(I):=R(KtI-11; 
END tOr?Pt 

ENP CONVRTV: 
PROCEDURE RECONVRTM~N.K.L:INDEX~A:+JUT ~ATRIX;V:VECTOR;INC:INDEX) IS 
REGfN 

SF I?JC=l THEN -- PLACE Ci$lJHN tN VECTOR 
FOR I IN l..N LOOP 

A(K+I-i,L~:=v(r]t 
END LODPr 

EL&IF fNC>t THEN -- PLACE ROW IN VECTOR 
FOR I IN 1. .N LOOP 

AtK,L+I-ll:=v(f)l 
END LO!+?: 

RNO IFI 
END RECONVRTY; 
-1 

;;tiCeDf!RE RECONVRTVtN,K:INDEXtR:nUT VECTOR~VZVECTOR~ IS 
BEGIN 

FOR I fN 1r.N GOtiP 
B(KtI-ll:=V(Ilt 

ENO to&: 
FN? RECONVRTV? 
PROCEDURE SGESL[A:iN OUT MATRIX:LDA,N:INDEXttPVriIN hUT INTVECr 

B:III OUT VECTOR:JOB:INTEGER) IS 

SGESL SOLVES THE KEAL SYS’CEH A*X=B 
QU TRANS(A1 * X f B 

USIhiG THE FACTORS COMPUTED BY SGECO OR SGEFA, 

‘+;\l ENTRY l 

a THE bUTPUT FPOM SGECb iR SGEFA. 

I#UA INDEX 
THE LEAUII~G DIP‘6NS1Ub’ ;?F THE ARRAY A. 

N TNDEX 
THE ORDER OF THE MATRIX A. 

IPVT THE INDEX PIVOT VECT~U FROM SGECb bR SGEFA. 

R THE: REAL KIGHT HANO SIDE VSCTOR. 

JO8 INOEX 
= n TO SOLVE A*X=8; 
C>O TO SOLVE TRANSIA)*X=R WHERE TRANS(A) IS THE TRANSPilSE. 

fiN EXIT 

R THE SOLUTION VECTOR X. 

ERROR CONDITION 

A nIVISIirN BY 7.ERU kfLL tiCCUP IF THE LB’PlJT FACTOR CONTAINS A ZERO 6N 
THE DIAGk’NAL. TF.CffPICALLY TPIS INDICATES SINGULARITY BUT IT IS OFTEN 
CAUSED BY IMPHIlPER ARGUMENTS OR T:lPAIIPER SETTING OF LUA. IT WILL NOt 
OCCUR TF THE SUBPOflTINES ARE CALLED CORRECTLY AND IF SGECO HAS SET 
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-9 RCirND>O.fl bR SGEFA HAS SET INFO=O. 
-9 

TO Ch~PUTE INVFRSEtA)*C WHEME C IS A MATRIX WITH P CGLUMNS 
SGECOL~,LDA,N.I~V~~.RCUMD.Z): 
IF CRCflND NOT IS TOO SYALL) THEN 

FOR J IN I..P LDOP 
SGFSLtA,LDA.N.TPVT,C[IrJ); 

END LOOP: 
END IFI 

.I 
I" 
II 

LINPACK. THIS VERSIbN IS BASEn bN THE 00/14/78 VERSION BY 
CLFVE CoLER, UNIVERSITY OF NEW HEXICb, ARGbNNE NATIONAL LAR. 

-9 PRDCEDURES AND FUNCTTDNs: BLAS. SAXPY, SObT 
-9 
K,KB,&.NMl:INDEX; --INTERNAL VARIABLES 
‘I’: REAIa; 
X,Y:VECTtiRt 
BEGIN 

NMli=N-1: 
IF Jm=o THEN -- SOLVE A*X=B 

IF N”l>O THEN -- FIRST SOLVE L*Y=B 
FOR K IN l..NMl LCOR 

L:sIPVTtKI: 
T:=BtL): 
IF L/=K THEN 

BtLI:=BrK): 
BtK):=T: 

END IF? 
CDNVRTMtN-K,Ktl,K.A,X.I)I 
CONVPTV~N-K,K+l,R,Y)1 
SAXPYtN-K,T,X.Yl? 
RECONVRT~(~I-K,K+~.K,U,X,~): 
RECONVRTV~N-K,K+l.B,Yl: 

END L&P: 
ENn IF: 
FOR KB IN l..N-1 LOOP -- NCIW StiLVE u*x=y 

K:="!+l-KBI 
a[K):=B(K)/A(K.Kl: 
T:=-O(K)? 
Ci~r~VRTM(K-lrl,K,A.X.l~: 
CilNVRTVCK-lrl.HrY): 
SAX!'Y[K-~,TIX,YI: 
HECONVRTMCK-lrl,K.A,X.1): 
RECnNVRTV(K-l,l.d.Yl: 

FND LOOP: 
R(l):=B~ll/Atl,ll: --THlS AVOIDS A CALL Tb SAXPY WITH K-l=0 

ELSE -- JOBoO. SOLVE TRANStA)*X=S 
R(l):=R~ll/AClrl): -* THIS AVDIDS A CALL TO SDOT WITH K-1=0 
FOR K IN Z..N LOOR -- FIRST SOLVE TRANs(UI*Y=R 

C~NVRTM~K-~.~,K.A.X,~~: 
CI~NVRTV~K-~~~,H.Y): 
T:=SDbT(K-l,X,M): 
B(K):=(B(KI-T)/A(K,Kl: 

F.lun I&?: 
IF NPIl>O THEN -- NOW SOLVE TRAN$[LJ*X=~ 

FOR KR IN l..NMl LDOP 
K:=N-KR: 
CUNVRTMCN-K,K+l,K,A,X,ll# 
CONVWTV(n-K,K+l,R,Y)r 
E(KI:=RtKl+SDDT[N-K,X,Yl; 
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L:=IPVT(K): 
IF L/=M THEN 

T:=R(L) l 

btL):=b;K,: 
b(K1 :=TI 

END IF: 
END LOOP: 

MD IF; 
EM0 IF! 

FNP SGEijL; 
PROCEDURE SGEFA(A:IN GUT HATRIX:LDA,N:INDEX;IPVtiIN bUT INTVECJ 

INFO: UUT INTEGER1 IS 
Ia 

“ I  SGEFA FACTbRS A PEAL MATRIX RY GAUSSIAN ELIMINATION 
r r  

II SGEFA YS USUALLY 
r- A SAVING 1N TfME 
“I CTIME FOR SEGCOI 
I- 
-1 irN ENTRY 
-c 
w- A THE REAL 
mm 
I- LPA INDEX 

CALLED PY SGECO, RUT IT CAN BE CALLED DfRECTLY UfTH 
IF RCUND 1s NOT NEEDED; 
= [I + 9/tll*(TIHE FOR SGEFAlr 

MATRIX TO BE FACTbRED. 

I -  THE LEAD’ZNG DIMENSION bF THE ARRAY A; 
II 
-e N INDEX 
ww THE ORDER OF THE MATRIX A. 
m- 
-r bN RETURN 

AN UPPER TRIANGULAR MATRTx AND-THE HULTIPL~ERS WHICH WERE USED 
TO OBTAIN IT. THE FACTORIZATION CAN BE WRITTEN A = L*U WHERE 
1, TS A PRODUCT UF PERMUTATTNS AND UNYT LOYER TRIANGULAR HATBICP 
AND JJ IS UPPER TRIANGULAR, 

AN INOEX VECTOR OF PIVbT XNDtCES. 

INTEGER 
=o NORMAL VALUE. 
=K IF U(K,KI = 0. THIS IS NOT AN ERRbR CbNDITIbN FbR THIS 

SUBROUTIME, RUT IT D&S INDICATE THAT SGESL OR SGEDI WILL 
DIVIDE DY ZEPU IF CALLED, USE RCONO IN SGECU FOR A AELIAbti 
INDICATION OF SINGULARTTY. 

LINPACK. THKS VERSION BASED ON THF 00/14/78 VERSION BY 
ELEVE’ MOLER, UNIVERSITY OF NEd HEXXCti, ARGbNNE. NATIONAL LAB. 

wm SIJRR~UTIMES AND FUNCTIONS: BLAS. SAXPY, SSCAL, IShMAX 

;:K,KP~,~,~wI:INDEX: -- tNTERNAL VARfAPLES 
T:PEAL; 
X,Y:VECTUR? 
REGIN 
Mm 

GAUSSIAN ELIMlNATInN WITH PARTTAL PIVOTING 

INPO:=O: 
‘IN 1 :=N-1: 
IF NMl>O THEN 

FOR K IN l..PIHl LtiC’P 
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KPl:=Ktlr 

mm 
mm 

PULL OUT THE APPROPRIATE COtNuN VECTCR FOR LSAMAX 

CONVRTMCN-K+l,K,K,~.X,l); 
L:=ISAMAX(N-Ktl,X]+K-it -- FIND L = PIVOT INDEX 
IPVTCKI:=L# I- ZERO pIV?lT IMPLIES THIS COLUMN ALREAQY 

TF ACL.K1=O.OEO THEN INFO:=INTEGER(KI: -- TRIANCULAr( 
ELSE 

IF L/=K THFN -- INTERCHANGE IF NECESSARY 
T:=ACL,Kl: 
AcL,Kl :=A(K,Kl? 
ACK,K):=Tj 

END IFr 
T:=-I.OEO/ACK,K]: -- CCMPUTE HULTIPLIER5 
CONVRTMCN-K,K+t,K,A,X,l)! 
SSCALCN-K,T,X]: 
RECOYVRTMCN-K,Ktl,N,A,X,l); 
FOR J IN KPl.,V LOr)P -- ROW ELIMINATION WITH 

T:=A(L,J)j -- COLUMN INDEXING 
IF L/=K THEN 

AClo,Jl :=A(K,JI; 
A(K,J):=T: 

END IF? 
CONVRTMCN-K,Ktl,K,A,X,l)? 
CONVRTN(N=K,Ktl,J,A,Y,l1~ 
SAXpY(N-K,T,X,YI: 
RECUNVRT!7(N-K,Ktl,K,A,X,l)? 
RECONVRTYCN-K,Ktl,J,A,Y,l)? 

END LOOP? 
EN! IF: 

END LOOP: 
EHn TF? 
fPVTCNI:=N: 
IF A(N,N>=O.OEo THEN INFO:=rJr END IF? 

FND .xw'A; 
REGIN 
PUT,LIIE(“TYPE 11 THE MATRtX A”]? 

FOR I Irl INDEX LOOP 
i-h ,I IN INDEX LOOP 

GETCACI,JI): 
END LOUPZ 
GPTCBCIII: 

END LOOP; 
FDR> I IN INDEX Lb@ 

FOR J IN INDEX LOOP 
PUT(ACI,JIIIPUT~” “I: 

END- LrlOP: 
NNW,LINEt 
P!lT(BCIllt 
NFW,LINE: 

ENn LOtip: 
SGEFACA,S~ZE,SIZE,IPV~,~~~FU~: 
SGESLCA,STZE,SIZE,IPVT,~,JOPI~ 
fhR I IW TNDEX LUUP 

PUTCY[II):WTC" "I? 
ENO+L'luP; 
N~,LTNF: 

END TEST: 
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AUTOMATIC GENERATION OF TAYLOR SERIES IN PASCAL-SC: 
BASIC APPLICATIONS TO ORDINARY DIFFERENTIAL EQUATIONS 

George Corliss 
Department of Mathematics, Statistics, and Computer Science 

Marquette University, Milwaukee WI 53233 

and 

L. B. Rail* 
Mathematics Research Center 

University of Wisconsin-Madison, Madison WI 53706 

ABSTRACT. Taylor series have a long history of usefulness in numerical 
analysis, especially for the numerical solution of the initial-value problem for 
systems of ordinary differential equations. Recurrence relations for 
coefficients of Taylor series are well-known, for arithmetic operations and 
various standard functions with ser,ies arguments. Compilers for languages such 
as Pascal-SC, Algol 68, and Adam (a trademark of the U. S. Department of 
Defense) have built-in facilities for the support of user-defined data types and 
operators which allow automatic generation of machine code to evaluate Taylor 
coefficients. In addition, Pascal-SC (Pascal for Scientific Computation) offers 
accurate floating-point and interval arithmetic for numerical calculations. In 
this language, series with real (interval) coefficients are introduced as type 
TAYLOR (ITAYLOR). The operators f, -, l , /, ** and the functions SQR, SQRT, 
EXP, SIN, COS, ARCTAN, and LN are implemented for arguments of types TAYLOR, 
ITAYLOR, INTEGER, REAL, and INTERVAL. An initial-value problem for an ordinary 
different.ial equation is solved using types TAYLOR and ITAYLOR. A stability 
analysis shows that the recurrence relations for the series generation exhibit a 
mild instability which has no significant effect on the values of the solution 
computed by analytic continuation. 

AMS (MOS) Subject Classifications: 65-04, 65G10, 65~05, 65LO7, 65VO5 

Key Words and Phrases: Taylor series, recurrence relations for Taylor 
coef f-icients, automatic differentiation, numerical solution of ordinary 
differential equations, stability, error analysis, interval arithmetic 

1. TAYLOR SERIES, POLYNOMIALS, AND FORMS. A fundamental tool of numerical 
analysis is the expansion of a real function f of a real variable x into a 
Taylor series at x = x0, which gives the expression 

(1.1) f(X) = 7 f(i-')(xo)(x - xo)(i-')/(i-l)!, 
i=l 

valid for Ix - x01 < p, where p is the radius of convergence of the infinite 
series on the right-hand side of (1.1). Of course, in actual numerical 
computation, the Taylor polynomial 

*Research sponsored by the U. S. Army under Contract No. DAAG29-80-C-0041. 
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(1.2) f,(X) = F f(i-'+x 0 )(x 
i=l 

- x,)(i-'hi-1)!, 

is used in place of the infinite series. This results in the truncation error 

(1.31 Rn(f,x;x,,) = f(x) - f,(x) = f 
(n) 

(C)(x - x,)*/n!, 5 @ x, 

where X denotes the interval X = [min~x,xO~,max~x,xO) I, and the remainder term 
R 

P 
(f,xO;xI is expressed in Lagrange form. This approximation of f(x) by f,(x) 

g ves rise to a problem of error estimation which can be solved by the methods 
of interval analysis. 
,h) 

ff Ffn) is,an interval inclusion of the real function 
, then 

(1.4) f(x) - f,(x) = Rn(f,xo;x) e F(n)(X)(x - xOIn/nl; 

this allows automatic computation of guaranteed error bounds by the use of 
interval arithmetic 1131, LIeI. 

In order for Taylor serias methods to be useful in scientific 
computation, it must be possible to automate the calculation of the normalized 
real Taylor coefficients 

(1.5) c(i + 1) = f (i) (x,)(x - xoli/il, i = l,...,n-I, 

and the corresponding interval quantities 

(1.6) C(i + 1) = F(i+X)(x - xoji/i!, i=l ,...,n -1. 

These calculations can be carried out by means of well-known recurrence 
relations [II, 1133, [141, 1171 for functions defined by subroutines or 
expressions involving arithmetic operations and a variety of standard functions 
for which library subroutines are available. A very important application of 
automated generation of Taylor series by recursion is the numerical solution of 
the initial-value problem for ordinary differential equations. That is, it is 
required to find y = y(x) = (y,(x),y,(x),...,y,(x)) such that 

(1.7) y; = fi(X,YL Yi(XO) = YiO' i = l,...,m, 

for values of x in an interval containing x0 [ll, 131, [61, 1131, [141. 

Another application of the methods in this paper is to the automatic 
generation of interval inclusions of real functions by means of their interval 
mean-value and Taylor forms [13], [14], [20]. Suppose, for example, that f(x) 
is a real function, such as 

(I.81 f(x) = (x + 3)/(x2 + 21, 

which can be evaluated by the corresponding expression 

(1.9) f := (x + 3)/(x+*2 + 2); 

in a Pascal-SC program. An interval inclusion F of f on an interval X, for 
which 

(1.10 1 f(X) = {f(x) 1 x e X) c F(X) 
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can be obtained simply by declaring the variables F and X to be of type 
INTERVAL, and then evaluating the expression corresponding to (1.91, 

(1.11) F := (X + 3)/(X**2 + 2) 

using interval arithmetic, a standard feature of Pascal-SC [24]. An inclusion 
obtained in this way may be too coarse in the sense that F(X) is a much larger 
interval than needed to contain f(X). In this case, an interval inclusion 
provided by the mean-value form 

(1.12) F,(X) z f(x) + F'(X)(X - x), x e x, 

can be better, particularly if the width of X is not large 1131, 1141, 1201. In 
(1.12), F' denotes an interval inclusion of the derivative f' of f; F'(X) is 
obtained automatically by evaluating (1.11) with F and X of type ITAYLOR, as 
will be explained below. Interval inclusions of f are also provided by Taylor 
forms of higher order [20], in general, 

(1.13) F (x) = ni'f(i)(x)(X - x)i/i! + F(I1)(X](X 
n - xln/n!, x e x. 

i=o 

These forms can be generated automatically from the expressions (1.9) and (1.11) 
by the use of types TAYLOR and ITAYLOR, respectively. Recursive generation of 
real and interval Taylor coefficients makes possible an adaptive method for 
calculation of interval inclusions of real functions, in which n is increased 
until F,(X) includes Fn-,(X). It is also possible to reduce the width of 
computed inclusions by making use of the fact that the intersection of interval 
inclusions is likewise an interval inclusion. 

Previous implementations of automatic generation of Taylor coefficients 
in computer languages such as FORTRAN have used interpretation [2ll or pre- 
compilation [Ill to activate the necessary subroutines [171. In more modern 
languages, the coIllpiler itself can be used to produce the necessary routines, 
leading to a saving of programming effort and an increase in clarity of the 
source code. The use of Pascal-SC, a language of this type, will be explained 
in the next section. 

2. PASCAL-SC. The method for automatic generation of Taylor series given in 
this report is based on computation with the coefficients of Taylor polynomials 
of arbitrary length, considered as specific mathematical entities. This 
requires that the language support i) user defined data types, as do descendents 
of ALGOL-60 such as Pascal and ADA" (ADA is a trademark of the U.S. Department 
of Defense]; and ii) user defined operators, as do ALGOL-68 and ADA. 

Pascal-SC [2] is an extension of Pascal which provides both user-defined 
data types and user-defined operators. This paper assumes a modest familiarity 
with standard Pascal [9]. For the remainder of this Section, we outline some of 
the extensions which make Pascal-SC well suited to the applications in this 
paper. The reader who wishes to omit the discussion of proqramminq lanquaqe 
issues may proceed directly.to the definition of the data types TAYLOR and 
ITAYLOR in Section 3. 

Pascal-SC was developed with the needs of scientific computation in mind. 
It is an implementation of Jensen and Wirth Pascal [9] which also provides 
intervals, complex numbers, complex intervals, as built-in elementary scalar 
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‘data types [241. A full range of stand&d operators is provided to manipulate 
the elementary scalar data types, as well as vectors and matrices built of these 
types WI. 

Standard Pascal supports user-defined data types built from elementary data 
types. This feature will be used to define variables of type TAYLOR and ITAYLOR 
(interval Taylor) in Section 3. 

Pascal-SC allows the user to define operators. Most computer languages 
allow programmers to define functions, subroutines, or procedures, but except 
for APL, the languages most often used for scientific computation require that 
such user-defined functions be called using a prefix notation (eg. SIN (Xl), 
while built-in operators are called using an infix notation (eg. A + B). 
Programmers can define operators in Pascal-SC to extend the language in a 
uniform way, retaining the familiar infix notation for operators whose operands 
are variables of user-defined types (eg. A + B, where A and B are variables of 
type TAYLOR). 

Operators, functions, and procedures in Pascal-SC can be overloaded. That 
is, the name of an operator, a function, or a procedure can have different 
meanings, depending on the type or number of its operands. For example, the 
standard Pascal or FORTRAN operator n+n is said to be overloaded because "A + B" 
for integer variables A and B has a different meaning from nA + B" for real 
variables A and B. The support of Pascal-SC for overloading of user defined 
operators is essential to the uniform extension of the language because we wish 
to define the meaning of "'A + B" for variables which represent Taylor series 
with real or with interval coefficients. 

The support of Pascal-SC ror user-defined operators and for overloading is 
very similar to that provided by ADA. ADA's PACKAGE concept would allow a more 
secure implementation of data abstractions [lOI for real and interval valued 
Taylor series. The operations .on intervals, however, also require support for 
directed rounding of floating-point results in order to guarantee that the 
desired answer is contained in the interval computed. The early implementations 
of ADA do not provide an accuracy of floating-point computations which can 
compete with Pascal-SC. 

Pascal-SC features a highly accurate arithmetic based on a general theory 
[121 for real and complex numbers , real and complex intervals, and vectors and 

matrices over these types. Operations on floating-point numbers are rounded to 
the closest floating-point number to the true result, or upward or downward to 
the closest neighboring floating-point number under the control of the usex. 
This accuracy meets the proposed IEEE standard for floating-point arithmetic 
r151. In addition, scalar products of vectors 

(2.1) 
N 

SCALP(A,B,ROUND) = c Ai*Bi 
i=l 

are calculated with the same accuracy (to the closest floating-point number), 
and with the same options for rounding [241. A sufficiently long accumulator is 
used to store intermediate results in the evaluation of the scalar (or inner) 
product. This capability can also be used 'to obtain results of the same high 
accuracy in evaluation of a given arithmetic expression so that l.oE+gg + l.OE- 
99 - l.OE+W yields l.OE-99. 
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3. TYPES TAYLOR AND ITAYLOR. We wish to provide the developer of scientific 
software with a set of tools with which Taylor series methods can be implemented 
easily fox a variety of numerical problems. The ability of the computer to 
perform formula translation is used. Compilers since the first FORTRAN compiler 
have produced ma&ine code for the evaluation of an expression such as 

(3.1) F := (X*Y + SIN(X) + 4.0) l (3.0 * (Y**2) + 6.0). 

This is done by analysis of the expression and application of the rules for 
evaluation of formulas. If the rules for differentiation or recursive 
generation of Taylor coefficients are applied in the same way, then code for the 
evaluation of the corresponding quantities results [171. In this way, fast and 
inexpensive operations performed by the compiler avoid the overhead involved in 
invoking symbolic differentiation software. This leads to a more efficient . 
implementation of Taylor series generation all the way from initial coding 
through program execution. 

The normalized Taylor coefficients of a function f(x) expanded at x = x0 
are defined by 

(3.2) f.TC[K + I] = f(K+xO)tK,R!, t = x - x0, K = 0,1,2,... . 

Then 
DIM 

(3.3) f DIM(~) = Ki, f .TC[Kl , 

where DIM is the length of the truncated series which is actually stored. This 
real or interval vector of normlized Taylor coefficients is the basis fox the 
data types TAYLOR and ITAYLOR. For the remainder of this paper, the term 
llseries" is used to refer to the Taylor polynomial given by equation (3.3) or 
its interval analog. 

In what follows, the general rule will be adopted that all variables or 
.expressions of the scalar types INTEGER, REAL, or INTERVAL are treated as 
constants for the purposes of differentiation. 

To form the real data type TAYLOR, the DIM normalized Taylor 
coefficients in (3.3) are stored as a vector of floating-point numbers. The 
appropriate declarations in Pascal-SC are: 

(3.4) 

CONST DIM = n; { User supplies n 1 
TYPE DIMTYPB = ~..DIM; 

RVECTOR = ARRAYIDIMTYPEI OF REAL; 
TAYLOR = RECORD LENGTH : DIMTYPB; 

T : REAL: 
TC : RVECTOR END; 

These declarations axe the same as those given in [lgl, except for the field 
named LENGTH. Let F be a variable of type TAYLOR (declared by: VAR F: 
TAYLOR), then F.LEN$TH denotes the actual length of the truncated series (1 5 
F.LENGTH 5 DIM). It may happen that F.LEN6TH < DIM if F is being built up 
recursively, if F has been defined by term-by-term differentiation of another 
series, or if F has been defined as a quotient of two series both of whose 
leading terms are zero (see Section 4.2). This field has been added to the 
record for type TAYLOR given in [lg] for internal documentation and so that 
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i1 only series ter& actually used need to be processed; and ii) 1'Hospital's 
rule can be applied to certain indeterminant f&rms O/O which may appear. 

The normlized Taylor coefficients themselves are stored in the array of 
real numbers named TC, that is, 

(3.5) F.TC[K] = p(K-lJ(Xo)(X - Xo)(K-')/K!, K = l,...,DIM. 

The size of the step being used for expansion is F.T = X - X0. Series are 
generated using a fixed stepsize for which the series might even be divergent. 
The series for F at a different point Z is readily computed at a cost 
proportional to DIM: 

(3.61 F.TC[K] := F.Tc[K]*((z - Xo)/F.T))**(K-1); K = 2,...,DIMa 

while the cost of series generation is usually proportional to DIM2. The 
presence of the stepsize in the record also makes it possible to check that an 
operation is not being performed on two series with different stepsizes. 

One of the important problems to which interval analysis has been applied 
since its beginnings is the problem of controlling the truncation error of 
Taylor series methods [13l. Hence it is natural to support Taylor series whose 
normalized coefficients are intervals. The appropriate declarations in Pascal- 
SC are 

(3.7) 

CONST DIM = n; 1 User supplies n 1 
TYPE DIMTYPE = l..DIM; 

INTERVAL 7 RECORD INF, SUP : REAL END; 
IVECTOR = ARRAY[DIMTYPE] OF INTERVALt 
ITAYLOR = RECORD LENGTH : DIMTYPE; 

T : REAL; 
Tc : IVECTOR END; 

The types ITAYLOR and TAYLOR are the same, except that the normalized 
coefficients of the former are intervals. The same recurrence relations are 
used to generate series of each type. 

The stepsize T remains real. This corresponds to bounding the range of 
values of a function f at one real number x. There are some applications for 
which it is necessary to bound the range of f on an interval, as in (1.13). In 
this case, one can take T = 1 and form the noxmalized coefficients by computing 
the needed powers of (X - x) by interval arithmetic, or else introduce a new 
data type in which T is of type INTERVAL, and a set of operators corresponding 
to those given here. 

The declarations (3.6) and (3.7) of types TAYLOR and ITAYLOR, respectively, 
are basic to the discussion of operators in the next section. 

4. IMPLEMENTATION OF OPERATORS AND FUNCTIONS FOR TYPES TAYLOR AND ITAYLOR. As 
indicated above, the ability of a compiler to perform formula translation can 
also be used to produce machine code for the evaluation of the normalized Taylor 
coefficients [11, [31, 1111, [131, [141, [161, [171, [191. If the value of 
function f is obtained by a composition 

(4.1) f = E, 0 f2 0 . . . 0 f, 
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of a finite number of elementary functions, then derivatives of f can be 
computed by the chain rule from the derivatives of f,,...fm. This is a tedious 
and error-prone calculation to do by hand, but the computer does it not only 
rapidly, but also accurately. 

Recurrence relations for calculating the normalized Taylor coefficients for 
the basic arithmetic operations and for the elementary functions are well known 
(see t171, for example). Hence machine code can be generated to expand the 
Taylor series for f at any point x = x0 at which f is analytic. These 
recurrence relations are both more efficient and more accurate than numerical 
differentiation 1181. Recursive generation of the series may be mildly unstable 
[61, but the interval-valued Taylor series introduced in Section 3 can give 
guaranteed bounds for the effect of any such instability. In Section 6, we show 
that any instability in the series generation has no significant effect on the 
series sum. 

Rall 1191 outlines an approach to abstract data types for real and 
interval-valued Taylor series. Our implementation generally follows that 
outline. This paper discusses extensions and some of the implementation 
details. The operators and functions implemented are listed in Appendix C. 
Source code in Pascal-SC is given in the report 171. First of all, in order for 
expressions to be evaluated correctly when they include variables of type TAYLOR 
or ITAYLOR, the arithmetic operations and the standard functions mst be defined 
in a manner which incorporates the appropriate recurrence relations for the 
generation of the normalized Taylor coefficients. Our implementation in Pascal- 
SC attempts to follow the principles of uniformity, compactness, locality, and 
linearity for a good programming language design 1231. Next we attempt to 
justify significant departurea from two of these principles. 

The principle of uniformity in programming language design says that the 
same things should be done the same way whenever they occur. Thus "A + B" means 
"add", regardless of the types of the variables A and B. The other arithmetic 
operators enjoy the same uniformity, but the standard functions do not. For 
example, exp(x) is EXP(X) if X is REAL, IEXP(X) if X is INTERVAL, TEXP(X) if X 
is TAYLOR, and ITEXP(X) if X is ITAYLOR. EXP and IEXP are built-in functions 
which were designed to suggest the type of their operand and result as an aid to 
reading the code. That is especially useful since Pascal tends to violate the 
principle of locality by placing the declaration of a variable far from its use. 
We chose to maintain uniformity of our extensions with the built-in functions. 
It is important to be able to determine the type of a variable, and it would be 
quite non-uniform if IEXP were the only function in this family which requires a 
prefix. 

The principle of locality suggests that all relevant parts of the proqcam 
are found in the same place. We attempt to follow this principle in each of our 
program units, but the use of the global constant DIM and the global types 
RVECTOR, IVECTOR, TAYLOR, and ITAYLOR is a violation. The use of such global 
types needed in the headings of the operators and functions is very difficult to 
avoid. Their use has the advantage that all of the information about the length 
of the series to be used is located in only one place, CONST DIM = n, so it is 
easy to change. 

In roughly their order of importance, the goals of this implementation 
are: 
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0 Consistent set of software tools. 

0 Correct anawer whenever possible. 
0 Useful error messages when no correct answer is possible. 
0 Readable code for future adaptations. 
0 Efficient execution. 
0 Compact code. 

For example, this implies that although efficient, compact code is sought, 
efficiency and compactness are sometimes sacrificed for higher goals. In 
particular, it is important that other programmers be able to read the code, 
perhaps in order to improve its efficiency. 

Binary operations with one operand of type TAYLOR may appear with the other 
operand of type INTEGER, REAL, or TAYLOR; and the two operands may appear in 
either order. Similarly, binary operations with one operand of type ITAYLOR can 
have a second operand of type INTEGER, INTERVAL, or ITAYLOR. The operators 
built into Pascal-SC do not support the mixing of REAL and INTERVAL operands 
because real numbers are viewed as being potentially inexact 1241. Our 

extensions of the arithmetic operators to interval valued Taylor series maintain 
uniformity with this convention. This is recognized, but not explicitly stated 
in [191. If a programmer is certain that a real number X is exact so that it 
may safely be mixed with an intexval, INTPT 1x1 converts X into the interval [X, 
Xl l 

The library of subroutines to support computations with types TAYLOR and 
ITAYLOR includes operators (+,-,*,/,**), special power functions (sqr, sqrt, 
e-1, standard functions (sin, coa, In 
and the Runge function f(x) 1 

arctan), and additional functions (tan 
= l/(1 + x 1, to which the user can add more 

functions and procedures as desired. The analytic operations of term-by-term 
differentiation of real and interval series, as well as term-by-term 
differentiation of interval series are also provided by means of functions for 
the given purpose. Thexe is also a set of utility functions and procedures to 
perform frequently needed tasks , such as reading and writing real and interval 
series, taking the midpoints of the coefficients of an interval series to obtain 
a real series, and so on. 

The following abbreviations are used in the code to make it as easy as 
possible to locate a desired operation with any text editor: 

K INTEGER 

R REAL 

I INTERVAL 

T TAYLOR 

IT ITAYLOR. 

Using these abbreviations to distinguish between instances of overloading, the 
operators which are needed to support variables of type TAYLOR and ITAYLOR 
are: 

Addition (Section 4.1): 
+ T, K+ T, T + K, R+ T, T + R, T+ T 
+ IT, K + IT, IT + K, 1 + IT, IT + I, IT + TT 
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Subtraction (Section 4.1): 
- T, K- T, T-K, R- T, T-R, T- T 
- IT, K - IT, IT - K, I - IT, IT - I, IT - IT 

Multiplication (Section 4.2): 
R* T, T*K, R* T, T * R, T* T 
K l IT, IT l K, I l IT, IT l I, IT l IT 

Division (Section 4.2): 
K/ T, T / K, R/ T, T / R, T/ T 
K / IT, IT / K, 1 / IT, IT / I, IT,/ IT 

Power (Section 4.3): 
K ** K, R l * K, K ** R, R l * R 

I l * K, K l * I, I l * f 

K** T, T l * K, R** T, T l * R, T** T 
K l * IT, IT ** K, I ** IT, IT l * I, IT l * IT 

Implementation details of each operator are discussed in the Sections shown. 
Pascal-SC provides no power operator, so l * must be defined for the scalar types 
before it can be extended to types TAYLOR and ITAYLOR. The discussion of ** is 
postponed to follow the introduction in Section 4.3.1 of special cases of 
exponentiation: aqr, sqrt, and exp. 

The priorities of the operators given in this Section are: 

Highest: Unary addition and subtraction, functions; 
Multiplication, division, and powers: l , /, l * 

Lowest: Binary addition and subtraction: +, - 

In particular, note that the priority of l * relative to l and / is different 
than in FORTRAN. 

For types TAYLOR and ITAYLOR, implementation has been provided for the 
standard functions which are supported in Pascal-SC for types INTEGER, REAL, and 
INTERVAL. They are: 

Special powers (Section 4.3.1): 
TSQR 1 T), TSQRT ( T), TEXP ( T) 

ITSQR (IT), ITSQRT (IT), ITEXP (IT) 

Standard functions (Section 4.4): 
TSIN ( T), TCOS ( T), TLN ( T), TARCTAN ( T) 

ITSIN (IT), ITCOS (IT), ITLN (IT), ITARCTAN (IT) 

Additional functions (Section 4.5): 
TRUNGE ( T), TTAN( T) 

ITRDNGE (IT), ITIAN 

Differentiation and integration (Section 4.6): 
TDIFF( T), TINTGRL( T) 

ITDIFF(fT), ITINTGRL(IT) 
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Miscellaneous utilities (Section 4.7): 
VRNULL, T-IDZNT_ZERO( T), T-IDE'NT_CONSTANT( T), ITMIDPT(IT), 

IVRNULL, IT-IDENT-ZERO(IT), IT IDENT-CONSTANT(IT), WRITE-SERIES( T), 
READ-INTERVAL SERIES(IT), WRrTE_INTERVAL( I), WRITE_INTERVAL=ERIES(IT) 

A brief description of the method for introduction of user-defined 
functions will be given in Section 4.5. Some implementation details of the 
operators and functions will now be discussed. The recurrence relations are 
taken from 1171. In following the conventions of Pascal-SC, minor differences 
from the indices found there are due to our starting the series indices at 1 
instead of starting at 0. In each Section, operations involving the scalar 
types are discussed before turning to types TAYLOR and ITAYLOR. The Pascal-SC 
source code for the operators, functions, and utilities listed in Appendix C are 
given in [71. 

4.1. Addition and subtraction. The ten addition and ten subtraction 
operators are quite straightforward. 

Addition: 
+ T, K+ T, T + K, R+ T, T + R, T+ T 
+ IT, K + IT, IT + K, I + IT, IT + I, IT + IT 

Subtraction: 
- T, K - T, T - K, R - T, T - R, T - T 
- IT, K-IT, IT-K, I - IT, IT - I, IT - IT 

Addition and subtraction of a constant alters only the value of a variable, not 
the values of any of its derivatives. Interval constants only require that the 
appropriate built-in interval operator be used. Otherwise, addition or 
subtraction of series is done term-by-term. 
If u := F 2 G, then 

(4.1.1) U.TC[K] := F.TC[K] 4 G.TC[K], K = l,...,UIM. 

4.2. Multiplication and Division. 

Multiplication: 
K" T, T*K, R* T, T * R, T” T 
K * IT, IT l K, I * IT, IT * I, IT * IT 

Multiplication and division of two Taylor series is done by the well- 
known Leibniz rule for the Taylor coefficients of a product [17]. 
If U := F * G, then 

K 
(4.2.1) U.TC[K] = c F.TC[I]*G.TC[K-I+l], K= 1 ,...,DIM. 

I=1 

The scalar product of two vectors is evaluated in Pascal-SC by the standard 
function SCALP to the closest floating point number. Fast series multiplication 
techniques were not used here because 

0 In many applications of l , the series for U is being generated 
recursively. That is, the variables F or G involve U itself. 

0 The accuracy of SCALP would not be available. 
0 The speed of SCALP, especially when some terms are zero, makes 

these techniques less attractive. 
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Multiplication or division of 
term. Division of a constant by a 
for C/F(x). 

Division: 
K/T, 'I! 
K/IT, IT 

If u := F / G, then U * G = F, and 

a series by a constant is done term-by- 
series is done by generation of the series 

/ K, R/ T, T / R, T/ T 
/ K‘ I / IT, IT / I, IT / IT 

Leibniz' rule applies: 

U.TC[l] = F.TC[ll / G.TC[ll, 

(4.2.2) 
for K = 2,...,DIM, 

K-l 
U.TC[K] = ( C U.TC[I]*G.TCtK-I+11 ) / G.TC[ll, 

I=1 

If G(x0) = G.TC[ll = 0, then we attempt return the correct answer whenever 
possible. If F(xo) = F.TC[l] is also 0, then we can apply 1'Hospital's rule 

because the series for both F and G are known. 
F.TC[2l/G.TC[21, if this quotient exists, 

U.TC[l] = F'(xO)/G'(xo) = 
but U # F’/G’ as functions. 

If u := F/G, and F(xo) = G(xo) = 0, then let 

(4.2.3) V.TC[Kl := F.TC[K+ll; W.TC[Kl := G.TC[K+l]; K = I,...,D~M-1. 

Then, 

(4.2.4) u := v / w. 

Thus, 1'Hospital's rule is implemented as a recursive call to the division 
operator with operands whose series length has been reduced by one. This 
approach would not be possible in a language which does not support recursion. 
Further, cases in which the series for both f and g have several leading zeros 
are handled automatically by the language. 

L'Hospital's rule is applied in a similar manner when a constant quotient 
or divisor is equal to zero. 

4.3. Power Operators. The power operator l * defined by F l * G = FG is 
not standard in Pascal or Pascal-SC, but can be implemented in the latter for 
data types for which it is meaningful by the use of the operator concept. 
Coding of l * is simplified by the introduction of a set of basic power 
functions. These are implemented separately 

0 for uniformity with Pascal-SC which provides these functions 
for standard data types, 

0 to provide tighter bounds for interval operands, and 
0 for efficiency. 

4.3.1. Special Power Functions This set of functions consists 
of the square, square root, and natural exponential function of variables of 
types TAYLOR and ITAYLOR: 

TSQR ( T), TSQRT ( T), TEXP ( T) 
ITSQR (IT), ITSQRT (IT), ITEXP (IT) 
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These functions are called by the operator ** when appropriate. For example, if 
X is of type ITAYLOR, then both X ** 2 and X ** INTPT(2.0) are actually 
performed by a call to ITSQR (X). The use of this function rather than X * X is 
important in interval 'computations, since, for example, [-1,+112 = [O,l] while 
r-1,+13 l [-l,+l] = C-1,+1]. Further, the squaring functions TSQR and ITSQR are 
twice as fast-as the multiplication Y * Y for variables of the corresponding 
types. 

The recurrence relations to generate the series terms for these functions 
can be derived easily using Leibniz' rule. The squares of real and interval 
Taylor series are computed as follows. 
If u := SQR(F), then Leibniz' rule for a product can be shortened to: 

For K = 1, ,.., DIM, 

K DIV 2 

(4.3.1) U.TC[K] = c F.TC[I]*F.TC[K-I+l]; 
I 1 = 

if K is odd, then U.TC[K] = U.TC[K] + SQR (F.TC[(K+1)/2]). 

The inner product contains only TRUNC(K/2) terms. If F is of type ITAYLOR and 
includes negative numbers, then ITSQR (F) provides tighter bounds than does F * 

F. The SQR functions axe named TSQR and ITSQR to indicate the type of operand 
accepted and value returned. 

A similar function was written for CUBE. Its summations had length 
TRUNC(Ki3) but they were nested to yield a cost proportional to DIM3. CUBE is 
not included in the library because F * SQR (F) is faster. 

The functions in the next set calculate square roots of real and interval 
Taylor variables. 
If u := SQRT (F), then U * U = F. The algorithm runs as follows: 

U.TC[l] := SQRT (F.TC[II); 

U.TC[2] := F.TC[2] / (2 * U.TC[l]); 

for K = 3, . . . . DIM, 

(4.3.2) K DIV 2 
PROD := c U.TC[I]*U.TC[K-I+l]; 

I=2 

if K is odd, then PROD := PROD + SQR (U.TC[(K+1)/2]); 

U.TC[K] := (F.TC[Kl - PROD) / (2 * U.TC[l]). 

If No) = 0, and F is not a constant series, then SQRT (F) tannot be computed 
unless F is the constant 0, because F'(xo) is not defined. The SQRT functions 
are named TSQRT and XTSQRT to indicate the type of operand accepted and value 
returned. 

The 'natural exponential functions (base = e) are now defined for types 
TAYLOR and ITAYLOR. 
If u := EXP (F), then U' = U * F'. This gives the algorithm: 
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U.TCtl] := EXP (F.TCtll); 

for K = P,...,DIM, 

(4.3.3) 
K-l 

U.TC[K] := ( c ‘U.TC[I]*F.TC[K-I+l]*(K-I) ) / (K-l); 
I=1 

Although this formula would appear slightly simpler with the change of index J = 
K - I, it was implemented in this way so that the U.TC terms remain stationary 
in the inner product as K increases. Thus, only the vector F.TC needs to be 
"reversed". The EXP functions are named TEXP and ITEXP to indicate the type of 
operand accepted and value returned. 

4.3.2. The Operator l *. The family of power operators l * seems 
to be the most difficult to implement as suggested by IS]. None of the 
operators are especially difficult, but there are many minor details to be 
considered. The implementation of l * for types TAYLOR and ITAYLOR is based on 
the standard power functions above, and the power operators ** for the scalar 
types INTEGER (K), REAL (RI, and INTERVAL (I). 

Scalar Powers: 
K ** K, R ** K, K l * R, R ** R 

I ** K, K ** I, I ** I 

Integer powers are implemented using repeated squaring. Real and interval 
powers which fit no special cage are computed by F ** G = EXP (G * LN(F)). We 
have not attempted optimal implementations of the scalar power operators because 
it is hoped that they will be provided as standard operators in a later release 
of Pascal-SC, an approach that is especially attractive for interval operands 
because the interpretex hides information from programmers which can be used for 
correctly directed roundings. 

Real and Interval Taylor Powers: 
K l * T, T l * K, R ** T, T ** R, T** T 
K ** IT, IT l * K, I ** IT, IT ** I, IT ** IT 

The power operators for a constant to a variable pllwer follow the pattern 
of TEXP or ITEXP, as appropriate. A series which represents a constant (only. 
its first term is non-zero) is handled as a special case for accuracy 
(especially for interval series) and for efficiency. 

The operators T l * K and IT l * K take care to return the correct answer 
whenever that is possible and to produce an appropriate error message when it is 
not possible. The resolution of various cases is shown in Table 4.1. 

Consider a series whose first term is zero, but which has other terms which 
are non-zero. Raising such a series to a negative power is undefined because it 
is equivalent to dividing by zero, but raising such a series to the power 0 
defines a function which is identically equal to 1, except for a removable 
singularity at x = x0. Hence it is appropriate to give 1 as the answer. 
Raising the series to a positive integer power is implemented by repeated 
squaring because the recurrence relation which is most often used [all requires 
division by BASE.TC[ 11, which is zero. 
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Exponent: 0. 1 2 >2 < 0 
+-------*-+--"------+----I-------+-----+--------~+---------+ 

Base.TC = 0 ) Undef. = 0 = 0 = 0 Undef. I 
+---------+---------+-----------I+--------------------~-+ 
I I 

Rase.TC[ll = 0 I 1 1 = BASE 
I I 

I I 
Base.TC[l] 0 0 1 1 1 = BASE 

I I 

sQR (BASE ) By mult. Undef. I 
I I 
C-------------------f 
I 

SQR (BASE 1 1 By recurrence I 
I I 

+---------+---------+------------+---+------------------~+ 

Table 4.1. Resolution of Cases for **. 

The special cases of an exponent equal to 1 or 2 are singled out for 
individual treatment in order to achieve the maximum possible accuracy 
(especially when the base is an interval series) and for efficiency. 

Except in the special cases shown in the table, if U = F ** E, where E is 
of type INTEGER, then F l U' = E * U * F'. This gives the algorithm 

U.TC := 0; 

U.TC[l] := F.TC[l] ** E: 

(4.3.4) For K := 2 to DIM, 

K-l 
U.TC[Kl := ( c (E*(K-I) - I + 1) * U.TC 

I=1 
I] * F.TC[K-I+l]) / ((K-l)*F.TC[I] 1. 

The integer exponent appears in the recurrence only as a multiplier. Hence the 
speed of this algorithm is nearly independent of the size of the exponent. That 
is why this algorithm is preferred to repeated squaring. 

The operators T ** R and IT ** I are similar to T l * K and IT ** K, 
respectively, except that the additional special cases of an exponent equal to 
l/2 or to an integer are handled. 

The operators T l * T and IT l * IT are included primarily for completeness; 
the authors have never seen a differential equation containing a variable to a 
variable power, for example. Perhaps any such problems which arise are at once 
simplified by logarithmic differentiation. With the tools described here, it 
may be advantaqious to attack the problem in its original form. 

Within the operators T ** T and IT ** IT, the cases in which either the 
base or the exponent series represent a constant function are treated as special 
for reasons of accuracy and efficiency. Otherwise, F +* G = EXP (G * LN (F)), 
using TEXP and TLN or ITEXP and ITLN, as appropriate. 

4.4. Standard Functions. There are many useful library functions which 
could be provided. We have chosen to implement the functions which are built 
into Pascal-SC for the standard scalar data types, and a few others. Additional 
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functions can be added as they are needed by following the models provided by 
this paper. In addition to the standard power functions of Section 4.3.1 (which 
include EXP and IEXP], other standard functions implemented for types TAYLOR and 
ITAYLOR are: 

TSIN ( T), TCOS ( T), TLN ( T), TARCTAN ( T) 
ITSIN (IT), ITCOS (IT), ITLN (IT), ITARCl'AN (IT) 

If u = sin (F) and V = co6 (F), then U' = V * F* and V* = - U l Ft. 

U.TC[l] := SIN (~.TCtll); V.TC[ll := COS (F.TC[ll); 

for K := 2,...,DIM, 

K 
(4.4.1) U.TCIK] := ( C V.TC[I] l F.TC[K-I+11 l (K-I) ) / (K-1): 

I=2 

K 
V.TC[K] := - ( 1 U.TC[I] l F.TC[R-I+11 l (K-I) ) / (K-l). 

I=2 

The SIN and COS functions are named TSIN and TCOS or ITSIN and ITCOS to 
indicate the type of operand which they accept and value they return. Since the 
series for SIN and COS are always colnputed together, the library also contains 
procedures T_SIN_COS and IT_SIN_COS which return both the SIN and COS of 
variables of type TAYLOR and ITAYLOR, respectively, in the same call. 
If u := In (F), then U' l F = F’. 

U.TC[l] := LN (F.TC[l]); 

(4.4.2) for K := P,...,DIM, 

K-l 
U.TC[K] := (F.Tc[KI - ( C U.TC[I] l F.TC[K-I+11 l (I-l) ) / (K-1)) / F.TC[l]. 

I=2 

There is a misprint in this recurrence relation in ((171, pa 42), but its 
implementation is straightforward. 
If u := arctan (F) and V := 1 / (1 + F2], then U' = V * F’. 

V :" 1 / ( 1 + SQR (F) ); 

U.TC[l] := ARCTAN ( F.TC[l] 1; 

(4.4.3) for K := 2,...,DIM, 

K 

U.TC[K] := ( c V.Tc[I] l F.TC[R-X+1] l (K-I) ) / (K-l). 
I=2 

Since the series for the Runge function V(F) ([El, p. 78) is required to 
compute the series for arctan( functions TRUNGE and ITRUNGE are included in 
the library along with the functions TARCTAN and ITARCTAN. 
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4.5. User Defined Functions. If a proqrammer requires an operation or 
a function which is not included in this report, the requirement can be met 
either by a composition of operators and functions which are already provided, 
or by a careful derivation of the necessary recurrence relations following the 
models in this report. For example, the tangent functions TTAN( T) and 
ITTAN are implemented essentially by 

TTAN( T) := TSIN( T) / TCOS( T), 
(4.5.1) 

ITTAN := ITSIN / ITCOS(IT), 

respectively, in the set of additional functions provided in the library. The 
tangent functions can also be implemented directly by recurrence relations, 
using the fact that y = tan(x) satisfies the differential equation 

(4.5.2) Y’ = 1 +y2, y(q) = tan(xo), 

r131, [141. Thus, for U := TTAN( T), for example, 

(4.5.3) U.TC[l] := TAN(T.TC[l]), U.TC[Z] := (1 + SQR(T.TC[l])) l T.T. 

The succeeding coefficients can be obtained in a simple way from the recurrence 
relation (4.3.1) for TSQR( T), and ITTAN is computed analogously. 

The Runge function f(x) = 1 / (1 + x2), which is an auxiliary function for 
the series expansion of the arctangent, is implemented in the library by 

U :=.TSQR(IT): 

(4.5.4) U.TC[ll := 1 + U.TC[ll: 

TRUNGE := 1 / U. 

ITRUNGE is computed similarly. 

4.6. Differentiation and Integration. Functions which return the 
results of term-by-term differentiation and integration of TAYLOR and ITAYLOR 
series are also provided. For series with 1 < LENGTH L DIM, differentiation 
decreases the lenqth of the series by one: 

(4.6.1) U.TC[K] := T.TC[K + 11 * RATIO / (K + I), K=l ,...,T.LENGTH - 1, 

where RATIO = 1 / T.T if U = TDIFF (T), and RATIO = 1 / INTPT (T.T) if U = 
ITDIFF (T). Integration results in a series with its first coefficient set to 0 
and its length increased by one: 

(4.6.2) U.TC [K] := T.TC[K 

with U.TC[l] = 0 and RATIO = 
and RATIO = INTPT(T.T) for U 
series of Length DIM will be 

- I] l RATIO / (K - l), K = 2,...,T.LENGTH, 

T.T for U = TINTGRL(T), while U.TC[l] = INTPT(0) 
= ITINTGRL(T). The result of inteqration of a 
truncated to lenqth DIM. 

4.7. Miscellaneous Utilities. Some useful functions and procedures are 
provided for convenience. These are the transfer function TMIDPT (IT), the 
special functions VRNULL, IVRNULL, the comparison functions T-IDENT-ZEFO, 
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T-IDENT-CONSTANT, IT_IDENT-ZERO, IT-IDENT-CONSTANT, and the input/output 
procedures WRITE-INTERVAL (I), WRITE-SERIES (T), READ-INTERVAL-SERIES (IT), 
WRITE-INTERVAL_SERIES (IT), The purposes of most of these utilities are 
indicated by their names, 

The transfer function TMIDPT (IT) forms a TAYLOR series from a series of 
type ITAYLOR. The coefficients of the result series are the midpoints of the 
corresponding coefficients of the interval series. 

The parameterless functions VRNULL, IVRNDLL yield zero real and interval 
vectors, respectively, of length DIM. They are standard in Pascal-SC. 

The comparison functions yield the BOOLEAN value TRUE if their argument 
satisfies the stated condition (the series is identically equal to zero or a 
constant), otherwise, FALSE. 

The input/output procedures are also self-explanatory. The procedure WRITE 
INTERVAL is included, since the standard Pascal-SC procedure IWRITE only prints 
the digits of the lower and upper endpoints of intervals which agree up to the 
last d241. WRITE-INTERVAL, however, prints all digits of each endpoint. 

5. THE INITIAL-VALUE PROBLEM FOR ORDINARY DIFFERENTIAL EQUATIONS. Taylor 
series methods for the numerical solution of initial-value problems for systems 
of ordinary differential equations have been studied by many authors (see 161 or 
[141 for summaries), and have been used for applications such as dynamics and 

parameter identification. Each component of the solution of 

Yi’ = fi(x#Y)# Yi(x6) = YiOr i = l,...,m, 

is expressed as a Taylor series expanded at x = x0 using recurrence relations 
derived from the differential equation. Various error control strategies have 
been employed. The strategy of analyzing the radius of convergence of each 
component series has the desirable side effect of producing such analytic 
information as the location and orders of the singularities in the solution. 
Once the radius of convergence is known, a stepsize can be chosen which is as 
large as possible subject to error control and stability constraints. Then each 
component of the solution is extended by analytic continuation and the process 
is repeated at the next integration step. This algorithm is discussed in 
greater detail in f61. 

A program RDEQ-SOLV for solving equation (5.1) is given as Appendix A of 
this report. The program is written for the case m = 1, but can be modified 
easily to handle systems of several equations. The variables Y and YPRIME are 
declared to be of type TAYLOR, and the equation is written in a natural way. To 
solve a different equation, it is only necessary 

o to change the line in RDEQ-SOLV which contains the differential 
equation? 

o to copy from the library into the source program any operators 
ox functions required by the new differential equation. 

Because the differential equation is written using the types and operators 
discussed in the preceding Sections, the needed recurrence relations are 
implemented by the Pascal-SC compiler and need not be derived explicitly by the 
user. 
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The program prints the seriks terms, extends the solution by analytic 
continuation to compute the initial condition at the next step, and repeats the 
process. The program RDEQ-SOLV in Appendix A is intentionally simple to 
illustrate the use of the Taylor operators and to explore the stability of the 
series generation. It would require an error control mechanism in order to be 
of.practical value for the solution of initial value problems. Either scalar 
[6] or interval [13] error control techniques can be used. 

The program IDEQ SOLVE listed as Appendix B of this report computes 
interval-valued appro&ate solutions to equation (5.1) for the case m = 1, but 
can be modified for systems of several equations. It differs from the program 
RDEQ-SOLV only in that 

i) the variables Y and YPRIME are of type ITAYLOR instead of type 
TAYLOR, and 

ii) additional code has been added to monitor the relative error 
introduced by instability in the series generation process. 

These two programs are designed to serve as examples of one way in which 
the tools of this report can be used. They are simple, menu-driven programs 
which allow direct user intervention at each integration step. By observation 
of the outcome of each step, the user can experiment with error control 
strategies. 

The bounds computed by IDEQ-SOLV are for the interval-valued Taylor 
polynomial (3.3). They are not global error bounds for the solution of the 
differential equation. Global error bounds are readily computable using 
interval remainder terms (see [13]), but, for simplicity, the programs qiven 
here contain no error bounding or control strategy. 

6. AN APPLICATION: STABILITY OF SERIES GENERATION. In this section, we 
present an example which uses the Taylor and interval Taylor operators. This 
example was chosen because it illustrates the uses of these operators and 
because it addresses the issue of stability in the generation of the series. The 
latter issue is central in showing that Taylor series methods are reliable for 
practical computations. 

A numerical computation is said to be unstable if its relative error grows 
without bound as the computation proceeds. It is possible that the recurrence 
relations being used might be unstable, although instability has never been 
observed in practice. This example uses the Taylor and interval Taylor 
operators to explore the stability of the recurrence relations in one 
application. In this example, there is instability in the generation of the 
terms of the series, but that does not seriously affect the accuracy of the 
series summation. The stability of the recurrence relations in other 
applications can be handled similarly. 

Consider the initial value problem 

Y’ = Y2# y(O) = 1, 

whose solution is y(x) = 1 / (I - x1. A program (RDEQ-sOLV) for solving 
equation (6. I) using the Taylor function TSQR is given as Appendix A of this 
report. The effect of program PDEQ'OLV is to qenerate the normalized Taylor 
coefficients (4.3.1) of the solution recursively. This recurrence is 

194 



accomplished automatically by the Taylor function TSQR in the statement 
YPRIME := TSQR (Y). In this case, the same solution is obtained if Y ** 2 or 
Y * Y is used instead.of TSQR (Y); however, the use of Y ** 2 requires the 
compilation of much more code, while Y * Y is not as fast as TSQR (Y). 

We wish to explore the stability of the recurrence relation (4.3.1). This 
issue is separate from the issue of the stability of Taylor series methods for 
solving initial value problems. If an infinite Taylor series were used, the 
method would be A-stable, but when a truncated series is used, the region of 
stability is bounded. Stetter [22] showed that the region of stability for 
truncated Taylor series methods is the same as that for related Runge-Kutta 
methods. The real interval of stability is relatively large here because long 
series are used. For example, the real intervals of stability are [-8.85, 01 
and I-16.29, 01, respectively, if DIM = 20 and 40 terms of the series are 
used. 

We will outline the theoretical analysis of the stability of recurrence 
(4.3.1). A more complete discussion appears in [6]. Let U(K) denote the actual 
and Y(K) denote the computed normalized Taylor co;fficients. Let Y(1) = 
U(1) (1 + E) = (1 + E) from (6.1). Then U(K) = h - , and 

(6.2) Y(K) = U(K) (1 + Ef, 

so the series generation is unstable. However, the summation of the series is 
unaffected by this instability since 

DIM DIM 
y(x,) = c Y(K) = (1 + El C (h(l + E))=' . 

K=l K=l 

(6.3) 

= (1 f E) y(h(1 + E)) + o(hDrM) 

= (1 + s)(y(h) + y'(<)h) + O(hDIM), h < 4 < h(1 + E). 

That is, the instability in the series generation is equivalent to a small error 
in the point at which the series is evaluated. 
convergent series, 

This is because CKY(K) is a 
so the terms for which instability causes the relative error 

to be largest are themselves very small. 

This suggests using interval arithmetic to keep track o.E the potential 
growth in the series. The program IDEQ_SOLV listed as Appendix B of this report 
does so. 

By declaring Y and YPRIME to be of type ITAYLOR, the statement YPRIME := 
ITSQR(Y) invokes the function ITSQR for interval valued series to generate 
interval normalized Taylor coefficients according the recurrence relation 
(4.3.1). The lengths of successive coefficients measure the-stability of the 
recurrence. Table 6.1 shows the interval valued series solution of equation 
(6.1) for DIM = 15, y(xo) = y(0) = [O-99 , 1.011 (E = + 0.0111, and h = 0.5. 
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READ INTERVAL INITIAL CONDITIONS X0, Y(X0): 

INITIAL CONDITIONS AT. X0 = [ 0.00000E+O0, 0.00000E+00], 
YO = [ 9.90000E-01, 1.01000E+001. 

ENTER STEPSIZE X - X0: 0.5 
Computing series terms . . . 

Step Left 
Endpoint 

1 [ 9.900OOE-01, 1.01000E+OO] 

2 [ 4.900503-01, 5.10050E-011 
3 [ 2.425753-01, 2.575753-011 
4 [ 1.200753-01, 1.300763-013 
5 [ 5.943693-02, 6.568813-021 
6 [ 2.94213E-02, 3.317253-023 
7 [ 1.45635E-02, 1.675213-023 
8 [ 7.208943-03, 8.459823-031 
9 [ 3.568433-03, 4.272213-033 

10 [ 1.766373-03, 2.157473-031 
11 [ 8.743543-04, 1 l 08952E-031 

12 [ 4.328053-04, 5.502083-041 
13 [ 2.142393-04, 2.778553-043 
14 [ 1.060483-04, 1.403173-041 
15 [ 5.24938E-05, 7.085993-051 

Right 
Endpoint 

Computed Theoretical 
Instability Instability 

. OlOE+OO 

.020E+00 

.030E+00 

.040E+00 

.05OE+OO 

.060E+oo 
1.070EiOO 
1.O8OEc00 
l.O90E+OO 
l.lOOE+OO 
1.110E+00 

l.l19E+oo 

l.l29E+OO 
1.139E+OO 

l.l49E+OO 

THE VALUE AT X = [ 5.00000E-01, 5.000OOE-011 
IS Y = [ 1.960343+00, 2.040333+00]. 

Table 6.1. Interval bounds for instab,ility. 

l.OlOE+OO 
l.O20E+00 
l.O30E+00 
l.O41E+00 
1.051E+00 
l.O62E+OO 

l.O72E+OO 
l.O83E+OO 
l.O94E+OO 
l.l05E+00 
1.116E+OO 
l.l27E+OO 
l.l38E+OO 
l.l49E+OO 
l.l61E+OO 

The computed instability is equal to 

(6.4) 
length (Y.TC[Kl) 

YComputed r 
midpoint (Y.TC[K] ) 

a measure of the relative error in Y.TC(K) which appears to grow as K 
increases. The theoretical instability is equal to 

(6.5) ETheoretical = (1 + #' 

Table 6.1 shows that these two values are very close, and that the theoretical 
bound is slightly larger than the actual bound, as it should be. The interval 
estimate for ~(0.5) agrees well. with the interval [y(O.46), y(O.54)] = 11.8518, 
2.17391. 

7. IMPLEMENTATION DETAILS. The software described in this report was created 
and tested using the Pascal-SC compiler developed at the University of Karlsruhe 
for the Zilog MCZ-1 microcomputer with the RIO 2.06 operating system. No other 
claims of correctness or usability are made. 
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APPENDIX A 

PROGRAM RDEQ-SOLVE (INPUT, DATA, OUTPUT): 

(* SOLVE A FIRST ORDER DIFFERENTIAL EQUATION: Y' = SQR (Y) *) 

CONST DIM = 30; 
TYPE DIMTYPE = l..DIM; 

RVECTOR = ARRAYrDIMTYPE) OF REAL; 
TAYLOR = RECORD LENGTH : DIMTYPE; 

T : REAL; 
Tc : RVECTOR END; 

CHOICE = 1..3; 

VAR FLAG : CHOICE; 
I, IMl : DIMTYPE; 
x, Y, YPRIME : TAYLOR; 
DATA : TEXT; 

FUNCTION VRNtJLL : RVECTOR; 
VAR I: DIMTYPE; U: RVECTOR; 
BEGIN 
FOR I := 1 TO DIM DO U[I] := 0.0; 
VRNULL := u 
END; (* FUNCTION VRNULL l ) 

FUNCTION TSQR (T: TAYLOR) : TAYLOR: 
t* Requires: VRNULL, SCALP, SQR l ) 
VAR I, J, K, HALF: DIMTYPE: 

X, Y: RVECTOR; 
U : TAYLOR; 

BEGIN 
X :=VRNUIL; Y :=VRNDLL; 
U.LENGTH := T.LENGTH; 
U.T :" T.T; 
U.TC := VRNULL; 
U.TC[l] := SQR (T.TC111); 
X[ll := T.TC[l]; 
FOR K := 2 TO U.LENGTH DO 

BEGIN 
x ml := T.TC[K]; 
HALF := K DIV 2; 
FOR J := lMHALFD0 

BEGIN 
I . .= K-J+l; 
Y[Jl := T.TC[I] 
END; (* FOR J l ) 

U.TC [K] := 2.0 l SCALP ( x, Y, 0); 
IF K MOD 2 = 1 THEN 

BEGIN 
HALF := HALF + 1; 
U.TC~IC] := U,TC[K] + SQR (T.Tc[HALFI ) 
END (* IF l ) 

END; (* FOR K l ) 
TSQR := U 
END; (* FUNCTION TSQR (TAYLOR) l ) 
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FUNCTION MENU-CHOICE : CHOICE; 
VAR I: INTEGER; 
BEGIN 
WRITELN; - 
WRITELN ('ENTER: 1 - GIVE NEW INITIAL CONDITIONS'); 
WRITELN (' 2 - CONTINUE ExTENDING THE SOLUTION'); 
WRITELN (' 3 - STOP'); 
READ (I); 
IF ((I >= 3) OR (I C= 0)) THEN I := 3; 
MENU_CHOICE := I 
END7 (* FUNCTION MENU-CHOICE *) 

PROCEDURE PRNT_TAY_COEF (Y: TAYLOR7 INDEX: DIMTYPE); 
BEGIN 
WRITELN ('Y(', INDEX:5, ') = ', Y.TC[INDEx]) 
END; (* PROCEDURE PRNT_TAY_COEF l ) 

FUNCTION SUM (VAR A: RVECTOR; DIM, ROUND: INTEGER) : REAL: 
EXTERNAL 480; 

BEGIN (*MAIN PROGRAM RDEQ-SOLVE*) 
t* . . . ...*.... INITIALIZE *) 
FLAG := 2; 
X.LENGTH := DIM; 
Y.LENGTH := DIM; 

RESET (DATA); 
WHILE FLAG <= 2 DO 

BEGIN 
FLAG := 2; 

X.TC := VRNULL; 
Y.TC := VRNULL; 

(* LOOP FOR NEW INITIAL CONDITIONS *) 

WRITELN ('READ REAL INITIAL CONDITIONS x0, Y(x0):'); 
READ (DATA, X.TC[~] 1; READ (DATA, Y.~c[ll); 
WRITELN; WRITELN; 
WRITELN ('INITIAL CONDITIONS AT X0 = ', X.TC[ll, ','I; 
WRITELN (' YO = ', Y.TC[l], 1.'); 
WHILE FLAG = 2 DO (* LOOP FOR ANALYTIC CONTINUATION "1 

BEGIN 
t* . . ...*.... READ STEP SIZE *) 
WRITELN ('ENTER STEPSIZE X - X0: '1; 
READ (X.T); 
Y.T := X.T; 
WRITELN ('Computing series term ..-.'I; 
FOR I := 2 TO DIM DO (* LOOP FOR SERIES GENERATION.*) 

BEGIN 

t* YOUR FIRST ORDER DIFFERENTIAL EQUATION GOES HERE: l I 
YPRIME := TSQR (Y); 

IM1 := I - 1; 
Y.TC[I] := YRRIME.TC[IMl] * Y.T / IMli 
END: (*FOR*) 

(* . . ...*.... PPINT TABLE *) 
WRITELN; WRITELN; 
NRITELN ('THE TAYLOR COEFFICIENTS OF Y ARE:'); 
FOR I := 1 TO DIM DO PRNT TAY-COEF (Y, I): - 
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t* .,........ PERFORM THE ANALYTIC CONTINUATION l ) 

Y.TC[l] := SUM (Y.TC, DIM, 0); 
FOR I:= 2 TO DIM DO Y.TC[I] := 0.0~ 
X.TC[l] := X.TC[l] * X.T; 
WRITELN: 
WRITELN ('THE VALUE AT X = ', X.TC[l] ); 
WRITELN (' IS Y = ', Y.TC[l], '.I); 
FLAG := MENU_CHOICE 
END (*WHILE*) 

END (*WHILE*) 

END. (* MAIN PROGRAM RDEQ-SOLVE l ) 
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APPENDIX B 

PROGRAM IDEQ-SOLVE (INPUT, DATA, OUTPUT); 

t* SOLVE A FIRST ORDER DIFFERENTIAL EQUATION *) 
(* Y' = SQR (Y) *I 

t* SOLUTION IS IN INTERVAL FORM *) 

CONST DIM = 15; 

TYPE DIMTYPE = l..DIMr 
INTERVAL = RECORD INF, SUP : REAL END; 
IVECTOR = ARRAY[DIMTYPE] OF INTERVAL; 
ITAYLOR = RECORD LENGTH : DIMTYPE; 

T : REAL; 
TC : IVECTOR END; 

CHOICE = 1..3; 

VAR FLAG : CHOICE; 
I, IMI : DIMTYPE; 
X, Y, YPRIME : ITAYLOR; 
DATA : TEXT: 
EPSILON, 
COMPOUND : REAL; 

t* Transfer Functions *) 

FUNCTION INTPT ( RA:REAf, ) : INThVAL; 
EXTEQNAL 41; 

FUNCTION INTVAL ( RA,RB: REAL ) : INTERVAL; 
EXTERNAL 42; 

FUNCTION IINF ( A: INTERVAL) : REAL; 
EXTERNAL 43; 

FUNCTION ISUP ( A: INTERVAL) : REAL: 
EXTERNAL 44; 

(* Comparisons *) 

OPERATOR C= (A,B: INTERVAL ) RES: BOOLEAN ; 
EXTERNAL 48; 

OPERATOR >= (A,B: INTERVAL ) RES: ROOLEAN ; 
EXTERNAL 50; 

OPERATOR IN (RA:RE&; B: INTERVAL) RES: BOOLEAN; 
EXTERNAL 47; 

OPERATOR IN (KA: INTEGER; B: INTERVAL) RES: BOOLEAN‘; 
EXTERNAL 46; 

OPERATOR >< (A,B: INTERVAL ) RES: BOOLEAN ; 
EXTERNAL 52; 

(* Lattice Operators *) 

OPERATOR ++ (A,P: INTERVAL) RES: INTERVAL: 
EXTERNAL 63; 

OPERATOR ** (A,B: INTERVAL) RES: INTERVAL; 
EXTERNAL 60; 
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(* Arithmetic Operators l ) 

OPERATOR + ( A: INTERVAL 1 RES: INTERVAL: 
‘EXTERNAL 67; 

OPERATOR - ( A: INTERVAL ) RES: INTERVAL; 
EXTERNAL 66; 

OPERATOR + ( A,B: INTERVAL ) RES: INTERVAL; 
EXTERNAL 68; 

OPERATOR + ( KA: INTEGER: B: INTERVAL ) RES: INTERVAL; 
EXTERNAL 69; 

OPERATOR + ( A: INTERVAL; KB: INTEGER ) RES: INTERVAL; 
EXTERNAL 70; 

OPERATOR - ( A,B: INTERVAL ) RES: INTERVAL; 
EXTERNAL 73; 

OPERATOR - ( KA: INTEGER; B: INTERVAL ) RES: INTERVAL; 
EXTERNAL 75; 

OPERATOR - ( A: INTERVAL; KB: INTEGER ) RES: INTERVAL; 
EXTERNAL 74; 

OPERATOR * ( A,B: INTERVAL ) RES: INTERVAL; 
EXTERNAL 78; 

OPERATOR * ( KA: INTEGER: 8: INTERVAL ) RES: INTERVAL; 
EXTERNAL 79; 

OPERATOR l ( A: INTERVAL; KB: INTEGER ) RZS: INTERVAL; 
EXTERNAL 80; 

OPERATOR / ( A,B: INTERVAL ) RES: INTERVAL; 
EXTERNAL 85; 

OPERATOR / ( KA: INTEGER: B: INTERVAL ) RES: INTERVAL; 
EXTERNAL 83; 

OPERATOR / ( A: INTERVAL; KB: ENTEGER ) RES: INTERVAL; 
EXTERNAL 86; 

FUNCTION ISCALP (VAR A, B: IVECTOR; AKDIM : INTEGER) : XNTERVAL; 
EXTERNAL 88; 

t* Standard Functions l ) 

FUNCTION IABS ( Y: INTERVAL ) : REAL; 
EXTERNAL 101~ 

FUNCTION ISQR ( Y: INTERVAL ) : INTERVAL: 
EXTERNAL 102; 

FUNCTION ISQRT ( Y: INTERVAL ) : INTERVAL; 
EXTERNAL 105; 

FUNCTION IEXP ( Y: INTERVAL ) : INTERVAL; 
EXTERNAL 106; 

FUNCTION ILN ( Y: INTERVAL ) : INTERVAL; 
EXTERNAL 107; 

FUNCTION IARCTAN ( Y: INTEEZVAL ) : INTEPS7AL; 
EXTERNAL 108; 

FUNCTION ISIN ( Y: INTERVAL ) : INTERVAL; 
EXTERNAL 109; 

FUNCTION ICOS ( Y: INTERVAL ) : INTERVAL; 
EXTERNAL 110; 
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(* Input / Output l ) 

PROCEDURE IREAD ( VAR F:TEXT: VAR A: INTERVAL 1; 
EXTERNAL 92; 

PROCEDURE IWRITE ( VAR F: TEXT; A: INTERVAL 1; 
EXTERNAL 91; 

FUNCTION ISUM (A: IVECTOR? DIM: DIMTYPE) : INTERVAL; 
VAR B: IVECTOR; 

I: DIMTYPE; 
BEGIN 
FOR I := 1 TO DIM DO B[I] := INTPT (1.0); 
ISUM := ISCALP (A, B, DIM) 
END; (* FUNCTION ISUM *) 

FUNCTION IVRNULL : IVECTOR; 
' VAR I: DIMTYPE; U: IVECTOR; 

BEGIN 
FOR I := 1 TO DIM DO U[I] := INTPT (0.0); 
IVRNULL := U 
END; (* FUNCTION IVRNULL *) 

FUNCTION ITSQR (T: ITAYLOR) : ITAYLOR; 
(* Requires: IVRHULL, ISCALP, ISQR l ) 
VAR I, J, K, HALF: DIMTYPE; 

X, Y: IVECTOR; 
U : ITAYLOR; 

BEGIN 
X := IVRNULL; Y := IVRNULL; 
U.LENGTH := T.LENGTH; 
U.T := T.T; 
u.Tc := IVRNULL; 

U.Tc[ll := ISQR (T.TC[l]): 
x111 := T.TCfl]; 

FOR K := 2 To U.LENGTH DO 
BEGIN 
x WI := T.TC[K] i 
HALF := K DIV 2; 
FOR J := 1TO HALF DO 

BEGIN 
I .- K 
Y& 

-J+l; 
:= T.TC[I] 

END; (* FOR J *) 
U.TC[K] := 2 l ISCALP ( X, Y, HALF); 
IF K MOD 2 = 1 THEN 

BEGIN 
HALF := HALF + 1; 
U.TC[K]:= U.TC[K] + ISQR (T.TC(HALF] ) 
END (* IF *) 

END; (* FOR K l ) 
ITSQR := U 
END; (* FUNCTION ITSQR (ITAYLOR) *) 
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FUNCTION MENU-CHOICE : CHOICE; 
1 VAR I: INTEGER; 

BEGIN 
WRITELN; 
WRITELN ('ENTER: 1 - GIVE NEW INITIAL CONDITIONS'): 
WRITELN (' 2 - CONTINUE EXTENDING THE SOLUTION'); 
WRITELN (' 3 - STOP'); 
READ (I); 
IF ((I >= 3) OR (I <= 0)) THEN I := 3; 
MENU_CHOICE := I 
END; (* FUNCTION MENUSHOICE l ) 

PROCEDCIRE WRITE-INTERVAL (INT: INTERVAL); 
BEGIN 
WRITE ('[', INT.INF:lZ, ', ', INT.SIJP:12, 'I'); 
END; (* PROCEDURE WRITE-INTERVAL *) 

PROCEDURE PRNT_ITAY_COEF (Y: ITAYLOR; INDEX: DIMTYPE); 
BEGIN 
WRITE ('Y(', INDEX:E, ') = '); 
WRITE-INTERVAL (Y.TC[INDEX] ); 
WRITELN 
END; (* PROCEDURE PRNT ITAY-COEF *) 

FUNCTION INTERVAL-LENGTH (INT: INTERVAL) : REAL; 
BEGIN 
INTERVAL LENGTH := INT.SUP - INT.INF l 

END; (= FUNCTION INTERVAL_LENGTH l ) 

FUNCTION RELATIVE-LENGTH (INT: INTERVAL) : REAL; 
BEGIN 
RELATIVE-LENGTH := 2.0 l (INT.StJP - INT.INF) 

/ (INT.SUP + INT.INF) 
END; (* FUNCTION RELATIVE-LENGTH l ) 

FUNCTION RELATIVE-ERROR (INT: INTERVAL) : REAL; 
BEGIN 
RELATIVE ERROR := 2.0 l INT.SUP / (INT.SUP + INT.INF) 
END? (*- FUNCTION RELATIVE ERROR *) 

BEGIN (* MAIN PROGRAM IDEQ-SOLVE *) 

t* . . . . . . . . . . . INITIALIZE l ) 
FLAG := 2; 
X.LENGTH := DIM: 
Y.LENGTH := DIM; 
RESET (DATA); 
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WHILE FLAG <= 2 DO (* LOOP FOR NEW INITIAL CONDITIONS *) 
BEGIN 
FLAG := 2; 

X.TC := IVRNULL; 
Y.TC := IVRNULL; 

WRITELN ('READ INTERVAL INITIAL CONDITIONS X0, y(X0):'); 
IREAD (DATA, x.Tc[~]); IREAD (DATA, Y.Tc[~]); 
WRITELN; WRITELN; 
WRITE ('INITIAL CONDITIONS AT X0 = ')I 
WRITE-INTERVAL (X.TC[l] ); WRITELN (','I; 
WRITE (' YO = 1); 
WRITE-INTERVAL (Y.TC[l] ); WRITELN ('.'I; 
WHILE FLAG = 2 DO (* LOOP FOR ANALYTIC CONTINUATION *) 

BEGIN 
(* . . . . ...*.. READ STEP SIZE *) 
WRITELN ('ENTER STEPSIZE X - X0: '1; 
READ (X.T); 

Y.T := X.T; 
WRITELN ('Computing series terms . ..'I. 
FOR I := 2 TO DIM DO (* LOOP FOR SERIES GENERATION *) 

BEGIN 
(* YOUR FIRST ORDER DIFFERENTIAL EQUATION GOES HERE: "1 

YPRIME := ITSQR (Y): 

IMl := I - 1; 
Y.TC[I] := YPRIME.TC[IMl] l INTPT (Y.T / IMl); 
END; (*FOR*) 

t* . ..*...... PRINT TABLE *) 
EPSILON := 0.5 * RELATIVE-LENGTH (Y.TC[l] 1; 
COMPOUND := 1.0; 
WRITELN; WRITELN; 
WRITELN. ( 'Step Left Right Computed 

Theoretical'); 
WRITELN (' Endpoint Endpoint Instability 

Instability'); 
WRITELN; 
FOR I := 1 TO DIM DO (* LOOP FOR ERROR MEASUREMENT *) 

BEGIN 
COMPOUND := COMPOUND * (1.0 f EPSILON); 
WRITE (I:3); WRITE (' '1; 
WRITE-INTERVAL (Y.TC[I] 1; 
WRITE (' ', RELATIVE-ERROR (Y.TC[II):lo); 
WRITE (' ', COMPOUND:lO); WRITELN 
END; ( *FOP*) 

(*......**.. PERFORM THE ANALYTIC CONTINUATION *) 
Y.TC[l] := ISUM (Y.TC, DIM); 
FOR I :=2 TO DIP DO Y.TC[I] := INTPT (0.0); 
X.TC[l] := X.TC[l] + INTPT (X.T); 
WRITELN; 
WRITE ('THE VALUE AT X = '1; WRITE-INTERVAL (X.TC[l] 1; WRITELN: 
WRITE (' IS Y = '1: WRITE-INTERVAL (y.TC[l] 1; WRITELN ('..'I; 
FLAG := MENU CHOICE 
END (WHILE? 

END (*WHILE*) 
END. (*MAIN PROGRAM IDEQ-SOLVE*) 
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APPENDIX C 

PASCAL-SC REAL AND INTERVAL'TAYLOR OPERATORS, PROCEDURES, AND FUNCTIONS 

The operators, procedures, and functions are grouped into seven files. Source 
code can be found in the report [i'l. 

1. RIT ADD.LIB - REAL AND INTERVAL TAYLOR ADD AND SUBTRACT <<<<<< 
2. RIT-MUL.LIB - REAL AND INTERVAL TAYLOR MULTIPLY 
3. RITIDIV.LIB 

c<<<<cc<<cc<< 
- REAL AND INTERVAL TAYLOR DIVIDE <<c<<<<<<<<c<<< 

4. RT-POW.LIB - REAL TAYLOR POWERS <‘c-c<<<<<<<<<<<<<<<<<<<<<< 
5. IT-POW.LIB - INTERVAL TAYLOR POWERS <<<<<<<<<<cc<<<<<<<<<< 
6. RIT FNS.LIB - REAL AND INTERVAL TAYLOR FUNCTIONS <<<c<<<c<<<< 
7. UTI:.LIB - UTILITY PROCEDURES & FUNCTIONS <c<<c<<<<<<<<<<< 

The contents of each library are: 

C.1. Addition and Subtraction Operators 

RIT ADD.LIB 
-+ T 

K+T 
T+K 
R+T 
T+R 
T+T 
+ IT 
K + IT 
IT + K 
I + IT 
IT + I 
IT + IT 

.-T 
K-T 
T-K 
R-T 
T-R 
T-T 
- IT 
K - IT 
IT - K 
I - IT 
IT - I 
IT - IT 

REAL AND INTERVAL TAYLOR ADD AND SUBTRACT <<cc<< 
OPERATOR + (T: TAYLOR) RES : TAYLOR: 
OPERATOR + (K: INTEGER; T: TAYLOR) RES : TAYLOR; 
OPERATOR + (T: TAYLOR; K: INTEGER) RES : TAyLOR; 
OPERATOR + (R: REAL; T: TAYLOR) RES : TAYLOR; 
OPERATOR + (T: TAYLOR; R: REAL) RES : TAYLOR; 
OPERATOR + (TA, TB: TAYLOR) RES : TAYLOR; 
OPERATOR + (T: ITAYLOR) RES : ITAYLOR; 
OPERATOR + (K: INTEGER; T: ITAYLOR) RES : ITAYLOR; 
OPERATOP + (T: ITAYLOR; K: INTEGER) RES -: ITAYLOR; 
OPERATOR -+ (K: INTERVAL; T: ITAYLOR) RES : ITAYLOR; 
OPERATOR + (T: ITAYLOR; K: INTERVAL) RES : ITAYLOR; 
OPERATOR + (TA, TB: ITAYLOR) RES : ITAYLOR; 

OPERATOR - (T: TAYLOR) RES : TAYLOR; 
OPERATOR - (K: INTEGER; T: TAYLOR) RES : TAYLOR; 
OPERATOR - (T: TAYLOR; K: INTEGER) RES : TAYLOR; 
OPERATOR - (II: RBAL; T: TAYLOR) PES : TAYLOR: 
OPERATOR - (T: TAYLOR: R: REAL) RES : TAYLOR: 
OPERATOR - (TA, TB: TAYLOR) RES : TAYLOR; 
OPERATOR - (T: ITAYLOR) RES : ITAYLOR; 
OPERATOR - (K: INTEGER; T: ITAYLOR) RES : ITAYLOR; 
OPERATOR - (T: ITAYLOR; X: INTEGER) RES : ITAYLOR; 
OPERATOR - (K: INTERVAL; T: ITAYLOR) RES : ITAYLOR; 
OPERATOR - (T: ITAyLOR; K: INTERVAL) RES : ITAYLOR; 
OPERATOR - (TA, TB: ITAYLOR) RES : ITAYLOR; 

) c.2. Multi lication 

RIT-MUL.LIB - REAL AND INTERVAL TAYLOR MULTIPLY <<c<c<<<<<<c< 
K*T OPERATOR l (K: INTEGER; T: TAYLOR) RES : TAYLOR; 

T*K OPERATOR * (T: TAYLOR: K: INTEGER) RES : TAYLOR; 
R*T OPERATOR * (R: REAL; T: TAYLOR) RES : TAYLOR; 
T*R OPERATOR l (T: TAYLOR; R: REAL) RES : TAYLOR; 
T*T OPERATOR l (TA, TB: TAYLOR) RES : TAYLOR; 
TSQR(T) FUNCTION TSQR (T: TAYLOR) : TAYLOR: 
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c.2. Multiplication Operators (Continued) 

K * IT OPERATOR * (K: INTEGER; T: ITAYLOR) REX : ITAYLOR'; 
IT * K OPERATOR * (T: ITAYLOR; K: INTEGER) RES : ITAYLOR; 
I * IT OPERATOR * (K: INTERVAL: T: ITAYLOR) RES : ITAYLOR; 
IT * I OPERATOR * (T: ITAYLOR; K: INTERVAL) RES : ITAYLOR; 
IT * IT OPERATOR * (TA, TB: ITAYLOR) RES : ITAYLOR; 
ITSQRtIT) FUNCTION ITSQR (T: ITAYLOR) : ITAYLOR; 

c.3. Division Operators. 

RIT DIV.LfB 
-K / T 

T/K 
R/T 
T/R 
T/T 
K / IT 
IT / K 
I / IT 
IT / I 
IT / IT 

REAL AND INTERVAL TAYLOR DIVIDE <<c<<<<<<<<<<<< 
OPERATOR / (K: INTEGER; T: TAYLOR) RES : TAYLOR; 
OPERATOR / (T: TAYLOR; K: INTEGER) PES : TAYLOR; 
OPERATOR / (R: REAL; T: TAYLOR) RES : TAYLOR; 
OPERATOR / (T: TAYLOR; R: REAL) RES : TAYLOR; 
OPERATOR / (TA, TB: TAYLOR) RES : TAYLOR; 
OPERATOR / (K: INTEGER; T: ITAYLOR) RES : XTAYLOR; 
OPERATOR / (T: ITAYLOR; K: INTEGER) RES : ITAYLOR; 
OPERATOR / (K: INTERVAL; T: ITAYLOR) RES : ITAYLOR; 
OPERATOR / (T: ITAYLOR; K: INTERVAL) RES : ITAYLOR; 
OPERATOR / (TA, T'B: ITAYLOR) RES : ITAYLOR; 

C.4. Real Power Operators and Functions. 

RT_POW.LIB - REAL TAYLOR POWERS <<<<<<<<<<<<<<<<<<c-c<<<<< 
TSQR(T 1 FUNCTION TSQR (T: TAYLOR) : TAYLOR: 
TSQRT(T) FUNCTION TSQRT (TJ TAYLOR) : TAYLOR; 
TEXP(T) FUNCTION TEXP (T: TAYLOR) : TAYLOR; 

K ** K 
R ** K 
R l * R 
K ** R 
T ** K 
T ** R 
R ** T 
K ** T 
T ** T 

OPERATOR *+ (BASE, EXPONENT : INTEGER) RES : INTEGER; 
OPERATOR ** (BASE: REAL; EXPONENT: INTEGER) RES : REAL: 
OPERATOR ** (BASE, EXPONENT: REAL) RES : REAL: 
OPERATOR ** (BASE: INTEGER; EXPONENT: REAL) RES : REAL: 
OPERATOR ** (BASE: TAYLOR; EXPONENT: INTEGER) RES : TAYLOR: 
OPERATOR ** (BASE: TAYLOR; EXPONmT: REAL) PES : TAYLOF; 
OPERATOR ** (BASE: REAL; EXPONENT: TAYLOR) RES : TAYLOR; 
OPERATOR ** (BASE: INTEGER: EXPONENT: TAYLOR) RES : TAYLOR; 
OPERATOR l * (BASE, EXPONENT: TAYLOR) RES : TAYLOR; 

c.5. Interval Power Operators and Functions. 

IT_POW.LIB - INTERVAL TAYLOP POWERS <(<<<<<<<<<<<<<<<<<<cc 
ITSQR(IT) FUNCTION ITSQR (T: ITAYLOR) : ITAYLOP; 
ITSQR( IT) FUNCTION ITSQR (T: ITAYLOR) : ITAYLOR; 
ITSQRT(IT) FUNCTION ITSQRT (T: ITAYLOR) : ITAYLOR; 
ITEXP(XT) FUNCTION ITEXP (T: ITAYLOR) : ITAYLOR; 

I ** K 
K ** I 
I ** I 
IT l * K 
IT ** I 
K ** IT 
I ** IT 
IT ** IT 

OPERATOR ** (BASE: INTERVAL; EXPONENT: INTEGER) RES : INTERVAL: 
OPERATOR ** (BASE: INTEGER: EXPONENT: INTERVAL) RES : INTERVAL; 
OPERATOR l * (BASE: INTERVAL: EXPONENT: INTERVAL) RES : INTERVAL; 
OPERATOR ** (BASE: ITAYLOR; EXPONENT: INTEGER) RES : ITAYLOR; 
OPERATOR ** (BASE: ITAYLOR; EXPONENT: INTERVAL) RES : ITAYLOR; 
OPERATOR ** (BASE: INTEGER; EXPONENT: ITAYLOR) RES : ITAYLOR; 
OPERATOR l * (BASE: INTERVAL; EXPONENT: ITAYLOR) RES : ITAYLOR; 
OPERATOR ** (BASE: ITAYLOR; EXPONENT: ITAYLOR) RES : ITAYLOR; 
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c.6. Real and Interval Functions and Procedures. 

RIT-FNS.LIB - REXL AND INTERVAL TAYLOR FUNCTIONS <<c<<<<<<<<< 
TSQR(T) FUNCTION TSQR (T: TAYLOR) : TAYLOR; 
TSQRT(T) FUNCTION TSQRT (T: TAYLOR) : TAYLOR; 
TEXP(T) FUNCTION TEXP (T: TAYLOR) : TAYLOR; 
TLN(T) FUNCTION TLN (T: TAYLOR) : TAYLOR; 
T SIN COS 
TTIN (y, 

PROCEDURE T-SIN_COS (T: TAYLOR; VAR S, C: TAYLOR); 
FUNCTION TSIN (T: TAYLOR) : TAYLOR; 

TCOS(T) FUNCTION TCOS (T: TAYLOR) : TAYLOR; 
TRUNCE(T) FUNCTION TRUNGE (T: TAYLOR) : TAYLOR; 
TAXTAN FUNCTION TARCTAN (T: TAYLOR) : TAYLOR; 
TTAN(T) FUNCTION TTAN (T: TAYLOR) : TAYLOR; 
TDIFF(T) PrJNCTION TDIFF (T: TAYLOR) : TAYLOR; 
TINTGRL(T) FUNCTION TINTGRL (T: TAYLOR) : TAYLOR7 

ITSQR(IT) FUNCTION ITSQR (T: ITAYLOR) : ITAYLOR; 
ITSQRT(IT) FUNCTION ITSQRT (T: ITAYLOR) : ITAYLOR; 
ITEXP(IT) FUNCTXON XTEXP (T: ITAYLOR) : ITAYLOR; 
ITLN(IT) FUNCTION ITLN (T: ITAYLOR) : ITAYLOR; 
IT-SIN_COS PROCEDURE IT-SINJOS (T: ITAYLOR; VAR S, C: ITAYLOR); 
ITSIN FUNCTION ITSIN (T: ITAYLOR) : ITAYLOR; 
ITCOS(IT) FUNCTION ITCOS (T: XTAYLOR) : ITAYLOR; 
ITRDNGE(TT) FWCTION ITRUNGE (T: ITAYLOR) : ITAYLOR; 
ITARCTAN(IT) E'tJNCTION ITARCTAN (T: ITAYLOR) : ITAYLOR; 
ITTAN FUNCTION ILTTAN (T: ITAYLOR) : ITAYLOR; 
ITDIFF(T) FUNCTION ITDIFF (T: ITAYLOR) : ITAYLOR; 
ITINTGRL(T) FUNCTION ITINTGRL (T: ITAYLOR) : ITAYLOR; 

c.7. Utilities. 

Dl?IL.LIB - UTILITY PROCEDURXS f FUNCTIONS <<<<cc<<<<<<<<<< 
FUNCTION VRNULL : RVECTORt 
FUNCTION IVRNDLL : IVECTOR'; 
FUNCTION T-IDENT-ZERO (T: TAYLOR) : BOOLEAN; 
FUNCTION T-IDENT-CONSTANT (T: TAYLOR) : BOOLEAN; 
FUNCTION IT_IDENT-ZERO (T: ITAYLOR) : BOOLEAN: 
FUNCTION IT-IDENT-CONSTANT (T: ITAYLOR) : BOOLEAN: 
PROCEDURE WRITE-INTERVAL (INT: INTERVAL); 
PROCEDURE WRITE-INTERVAL~ERIES (sER: ITAYLOR); 
PROCEDURE READ-INTERVAL-SERIES (VAR F: ITAYLOR); 
PROCEDURE WRITE-SERIES (T: TAYLOR); 
FUNCTION ITMIDPT (F : ITAYLOR) : TAYLOR; 
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ON THE EXTREMUM OF BILINEAR FUNCTIONAL 
FOR HYPERBOLIC TYPE P.D.E. 

C. N. Shen 
U.S. Army Armament, Munitions, and Chemical Command 

Armament Research and Development Center 
Large Caliber Weapon Systems Laboratory 

Benet Weapons Laboratory 
Watervliet, NY 12189 

ABSTRACT. Transient solutions of the hyperbolic type partial 
differential equations are needed for solving many engineering problems such 
as computing stress waves for gun dynamics or determining shock behaviors of 
penetration mechanics. 

Variational procedures using the bilinear formulations with adjoint 
variables can serve as the theoretical basis in the derivation of algorithms 
for the finite element methods, giving direct numerical solutions for partial 
derivatives of the functions to be found for these problems. The adjoint 
system can be arranged in a manner that it is a reflected mirror of the 
original system in time. Generalized boundary conditions employ many types of 
"springs" relating the various spatial partial derivatives. They are defined 
to satisfy the boundaries of the concomitant for the bilinear expression. 
Algorithms for use in the finite element method are simplified since the 
adjoint system gives exactly the same solutions as that of the original 
system. The second necessary condition for an extremum is satisfied by 
showing that the second variation is positive semi-definite. 

I. INTRODUCTION. Transient solutions of the hyperbolic type partial 
differential equation, for example the wave equation or the beam equation, are 
important for solving engineering problems such as stress wave for gun 
dynamics or shock behavior of penetration mechanics. At present these 
equations are usually solved numerically by the finite difference method or by 
the Galerkin method. Considerable advantage may be obtained if the finite 
element method can be directly employed instead. Variational procedures using 
bilinear formulation with adjoint variables can serve as the theoretical basis 
for the derivation of algorithms using the finite element method for 
hyperbolic type p.d.e. 

II. TEE VARIATIONAL PRINCIPLE. A dynamical system can be modeled by the 
following partial differential equation. 

with appropriate boundary and initial conditions. In the above equation L is 
a linear operator in both spatial and temporal domain, y is the dependent 
variable, Q is a forcing function, and < represents all independent variables, 
both spatial and temporal. 

The inner produce < > of an adjoint forcing function Q and the solution 
(y(5)) of Eq: (I) can be used for the purpose of estimation. This inner 
product is <Q,y>. 
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An accurate estimation can be made by constructing a variational 
principle [ll. By Esing the adjoint variable y as a Lagrange multiply for 
Eq., (1) adding to <Q,y>, we have 

Jl[y,;l 4 &y> + <r,wLyD = <Q,y> + <y,Q> + <y,Ly> (2) 

To keep the system symmetrical, let us define the adjoint system as 

L(E);(E) = -9(E) (3) 

By using the original variable y as a Lagrange multiply for Eq. (3) adding to 
<Q,T>, we have 

Jz[y,;I i <Q,;> + <y,&)> - - 
m- 

= <Q,Y> + <Y ,Q> + <Y&Y> (4) 

By definition, the relationship of the adjoint system to the original system 
IS 

A - - 
D= <Y SLY> - <y,Ly> = 0 (5) 

where,D is the bilinear concomitant [ll. Combining Bqs. (21, (41, and (5) one 
obtains 

JI = J2 (64 

In order to keep the functional symmetrical, we have 
A 1 

hJ = ; [Jl f J21 (6b) 

which is of the form 

w  * l- -- 
J = <Q,y> f <y,Q> f ; <y&y> f ; <YJY> (6~) 

To show that the above functional satisfies both the original and the 
adjoint systems, let us take the first variations of Eqs. (5) and (6) which 
gives 

-5J = 6J(6;) + 63(&y) (7a) 

where 

6J(6y) = <By,Q> + i 
-- 

2 (GY,LY) + 1 <y,LGy> = 0 (7b) 

and 

Also 

1 -- 
6J(ay) = <6y,Q> + ; <Gy,Ly> + ; <y,LGy> = 0 (7c) 

6D = 6D(6y) + 6D(6y) (W 
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where 

and 

6D(6y) =I <Gy,Ly> - <y,LGy> = 0 (8b) 

-- 
6D(6y) = - <Gy,Ly> + &L&y> = 0 (8~) 

From Eqs, (7b) and (8b) we obtained 

&J(6y) = <6y,Q) + i 2 <GY,LY> + k <6y Ly> -I - = <Gy,(QtLy)> = 0 (9) 

For arbitrary 6y satisfying certain general limitations on the boundaries it 
can be shown that the Euler-Lagrange Equation for the original system in Eq. 
(1) is satisfied. From Eqs. (7~) and (8~) we get 

-- 
6J(6y) = <6y,Q> - f <Gy,Ly> + ; csy,G = (Gy,(&L<)> = 0 (10) 

For arbitrary variation 6y, the Euler-Lagrange Equation for the adjoint system 
in Eq. (3) is also satisfied. 

III. INTEGR4L OF BILINEAR EXPEESSION. The integral of a bilinear 
expression for a two dimensional problem having second order partial 
derivatives in time and fourth order partial derivatives in space can be 
written as 

I = ,"" jb O[y(x,t),;(x,t)ldtdx 
x0 to 

(11) 

where n[y,y] is a given bilinear expression in the form 

WY,;1 = YtYt - ” w2yL - a2yxy, - b2YxxYxx (12) 

The subscripts t and x indicate the partial derivatives for the functions y 
and 7. 

Equation (12) can be integrated by parts. Two different forms of 
integration and end conditions are given. The first form of the integral is 
obtained by integrating by parts on the adjoint variable. 

*b - tb 
;Lydtdx + / x, YtYltodx 

+I 
tb 

t0 

+b2yxx;x 1 
- Xb 

xb + (b2yx&y) 
x, x0 

- a2yx~~:~Jdt 
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On the other hand, we can perform integration on the original variable to give 

tb xb - xb- tb 
12 = -I I yLydtdx + / 

to x0 x0 
YtYlrodX 

+X 
tb 
to I-&xxYx 1 

*b 
f d2Gxx)xYI 

Xb 

X0 x0 
- a2ixy 1; )dt (13b) 

To keep the form symmetrical, we take the average of the above two expressions 

1 
I=- 

2 11 f -i" Itb ;(;Ly+yi;)dtdx + ; i," (yt>;ty)I:; dx 
x0 to 0 

+ f I:" (-b2)(yxx;xGxxyx)jXb dt - 1 I:" H-b2yxx)x; + (-b'&x)xyl; dt (14) 
0 x0 0 

where 
Ly = Ytt + JY - a2yxx + b2yxxxx (1%) 

and 
LY = yrt + w2y - a2yxx * b'yxxxx (15b) 

For a fourth order spatial partial and a second order temporal partial system 
Eq. (5) becomes 

D = I:; 1;: ;Lydtdx - < I;: - yLydtdx (164 

By equating Eqs. (13a) and (13b) and solving for D in Eq. (16a) we are 
converting the double integral into single integrals in terms of the boundary 
conditions. 

We can express the quantity D as the sum of three parts for end 
conditions D1, D2, and D3 as 

D = D1 + D2 + D3 

The terms in D1 involve the initial conditions of y and y as 

(16b) 

D1 = IXb {yt;ltb - ;tylfbIdx 
x0 t0 t0 
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h’” / Xb dx{[yt(x,tb)y(x,tb) - Yt(x,tb)Y(x&b)l 
X0 

- Gt(x,t,);(x,t,) - ;t(x,to~Y(x,to)l I (17a) 

The Lerms in D2 involve the boundary conditions from the second partials of y 
and y as 

02 = JIl (-a2){yx;lxb - ixylxbjdt 
x, x0 

tb 
D2 = I 

t0 
dt{-a2[Yx(xb,t)Y(xb,t) - YX(Xb,t)Y(Xb,t) 

+ a2[yx(xo,t)y(xo,t> - Yx(xo,t)Y(xo,t)l) (17b) 

The terms in D3 involve the boundary conditions from the fourth partlals of y 
and 7 as 

+ (b'yxx)xy 1 - Xb + (-b2;xx)xyi:;1dt 
x0 

tb 
D3 = f 

to 
dt{-b2[Yxx(Xb,t)YX(Xb,t) - Yxx(xb4)Yx(Xb*t)] 

+ b2[yxx(xo,t)yx(xo,t) - Yxx(xolt)Yx(xo*t)ll 

+I 
tb 

t0 
dt{-b2[-Yxxx(xb,t)Y(xb,t) + yxxx(xb,t)y(xb,t)] 

+ b2[-Yx,(xo,t);(xo,t) + ;X(xo,t)y(Xg,t)ll (17c) 

In order that D g 0 in Eq. (16b) it is sufficient that 

Dl G 0 (18a) 

D2 = 0 (18b) 

and D3 = 0 (MC) 

IV. THE SYMMETRICAL ADJOXNT SYSTEM. The adjoint independent variable- 'c 
in Figure 1 can be expressed as 

‘Cl, - -i t - to -= 
r’b-ro tb-‘to (19) 
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which gives 

and 
t = rb for t = to 

f' To for t - tb 

It is noted from Eq. (19) that 

rb - To = tb - to 

rsrb+to’t 

and 

d-c = -dt 
d d -c$-- 
dz dt 

y(x,t) = Y(x,r = rb+to-t) 

Let us assume that the adjoint system shown in Figure 1 gives 
- - 
y(x,t=t) * = y(X ,t=tb+to-t> 

yt(x,;'t) 
* 

= -yt(X, t=tb+to-t) 
e h 

y& ,t=t) = y,(X, t=tb+t,-t) 
* 

where t is a dummy variable for t. 

(20a) 

(20b) 

(21a) 

(21b) 

(21c) 

(21d) 

(21e> 

(22a) 

(22b) 

(22c) 

We may define the adjoint system as the image reflection in the time 
domain of the original system. Equation (22) yields the following known 
initial conditions: 

I  * 

Y(X,tptb) = y(x,;=to) (known) (23d 

The interpretation of 

__ 

Yt(X ,t=tb) = Yt(X ,t=to) (known) (23b) 

the above equations gives the initial conditions of the 
original system as the far end conditions for the adjoint system, since the 
adjoint system is a reflected mirror of the original system in time. 

v. INITIAL CONDITIONS FOR THE ADJOLNT SYSTEM. We take a symmetry 
approach for the initial conditions of the adjoint system as 

Y(x,t=tb) = y(x,t=t,) , yt(x,t=tb) = 'yt(x,t=to) 

y(x,t=t,) = y(X,t'tb) , yt(X,t=to) = -Yt(x,t'tb) 

(24) 

(25) 

Thus Eq. (17a) becomes 
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Dl = I 
Xb 

dX{[yt(X,t=tb)Y(X,t=to) + Yt(X,t=to)Y(XJ'tb) 
*0 

- [yt(X,t=to)y(X,tatb) + yt(X,t=tb)y(X,t=to)l) = 0 (26) 

Since the integrand of Eq. (26) is zero , the above satisfies Eq. (18a). The 
initial conditions in Eq. (25) are given. Therefore 

&X ,t=tb) = Gy(x,t=t,) = 0 (27a) 

GYtbLt=tb) = -6yt(x,t=t,) = 0 (27b) 

VI. THE GENERALIZED BOUNDARY CONDITIONS. Let us consider the operator L 
in Eq. (15a) for two different cases as follows. 

A. For the wave equation we have 

LY = Ytt - a2yxx (28) 

Let us assume that elastic springs are installed at the ends such that 

Yx(Xb,t) = kby(xb,t) , Y&b,t) = kbY(xb,t) (29a) 

Y&o,t) = -koy(xo,t) , yx(xo,t) = -kcay(x,,t) (2%) 

This is equivalent to state that the fiXed end condition for a prismatic bar 
is kb = k, + m and the free end condition is kb = k. + 0. If Eq. (29) is 
substituted into Eq. (17b) we have 

D2 = 0 (30) 

13. For the beam equation we have 

LY = ytt + b2yxxxx (31) 

Two sets of springs are incorporated at the ends. They are: 

(1) Torsional springs relates the moments (the second partials) with the 
slopes (the first partials) 

YXX(Xb,t) = nbJ'&b,t) ;&b,t) = nbYx(Xb,t) (324 

Yxx(XoJ) - -%Yx(Xo St) Yxxho ,t) - = -oyx~:Xo,t) (32b) 

(2) Linear springs relates the shears (the third partials) with the 
deflection (no partials) 

YXXX(Xbrt) = CbY(Xb,t) y,(Xb,t) - = CbY(xb,t) (33a) 

Yxxx (xo,t) = -Coy(x,,t) Yxx&ort) = -c,y(.xo , t > (33b) 
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~~ substituting Eqs. (32) and (33) intO Ego (17c) we have 

D3 = 0 (34) 

Table I shows the assignment of the spring constants for various physical end 
conditions. 

TABLE I. GENEWLIZED BOUNDARY CONDITIONS 

At Fixed End , At Hinged End At Guided End 

y=y=o 

- 0 YX’YX’ 

Sy=dy=O 

6yx=6yx=0 

Torsional Spring 
A 

Yxx'n Yx rl+- 

Deflection Spring 
yxxx=cy lZ+= 

Spring 
yx=W Gy=By=O 

6yx=6y,=0 

FY'O 

Yxx'Yxx'0 

6y=&y=O 

by,,= dYxx=O 

c+* 

k+= 

YX’YX’O 

Yxxx’Yxxx’0 

6Yx=6Yx=O 

dYx,= ~Yxx*=O 

c+o 

k+O 

At Free End 

Yxx"Yxx"0 

Yxxx'Yxxx'0 

dYxx= 6Yxx=O 

6Yxxx= 6Yxxx=O 

n+O 

c*o 

k = undetermined 

VII. THE FIRST VARIATION. The sum of the two functlonals is obtained by 
adding Eqs. n 

where 

J + I = i" Itb (&y~)dxdt + T + w + B 
x0 to 

T = i fp (Yt>;tY)Ifb dx , W = i it," (-az)(yx>~xy)jXbdt 
0 to 0 X0 

and 

B = 1 I:” (-b2)(yxxyx+sxxyx) 
0 

I 
xb 1 tb 

dt - ; It [(-b2yxx>x; + (-b2;xx)xr 
xa 0 

(351 

xb 
dt (36) 

X0 
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Ey taking the vkations 6y and 6y separately, we let 

6.J = SJ(6;) f SJ(GY) (37) 

Then one obtains from Eqs. (35) and (36) that 

6J(6;) = -6I(6;) + (1 Q6; dxdt f bI(6;) + aW&) + 6BG;) = 0 

where 

WRY) = ; J; (yt6;ty6;t)lfb dx , 
t0 

6W(6;) = i i:" (-a2)(yx&6Tx)IXbdt 
0 x0 

- ; I:" [(-b2)yx&; + (-b2)Y6;xxxIxb dt 
0 x, 

where -61(6y) can be derived from Eqs. (11) and (12) as 

tb - 
-61(6y) = -,"" ( (yt6yt-w2y+-a yx yx-b2yx~%ddxdt - 2 6- 

x0 to 

The second term on the right side of Eq. (37) is 

dJ(6y) = -61(6y) + I[ ;;&y dxdr. + 6TC6y) + 6W(6y) + &B(~Y) = 0 

where 

GT(By) 

and 

6B(6y) = ; 

I 
tb tb 

dx , 
t0 

SW(Sy) = 1 j 
2 to 

I 
Xb 

dt 
X0 

- ,:I ~(-b2y,,~~y-b2;~yx,IXbdt 
x, 

Xb tb - 
-61(6y) a - 1 l (Ytdyt-w2Ysy-a2yx6yx(-b2)Yxx&yxx)dxdt 

x0 to 

(38) 

(39) 

Xb 
I dt 
x0 

(40) 

(41) 

It is noted that Eqs. (38) and (40) are exactly the same form, where Eqs. (39) 
and (41) are also similar. 

!’ 
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For the beam equation it is noted that the high partials in Eqs. (38) and 
(39) can be replaced by Eqs. (32) and (33). The variations of the adjoint 
higher partials from these equations can be written as 

&(xb ,t ) = +Y&b,t) 6Yx&Xb,t) = +y(Xb,t) (42a) 

6Yxx(Xod) = -@y,(x,,t) ~;,xx(xo,t) = -c,6y(x,,t) ’ (42b) 

Equations (38) and (39), tith the aid of Eqs. (32), (33), and (42), are 
the key equations to be used for the finite element method. It is noted that 
the first variation 6J( Sy) is the same as the first variation 6J(by) by adding 
or dropping the bar on top of the variables and their variations. We do not 
need to solve for the adjoint system in Eqs. (40) and (41) since they give 
exactly the same solutions as that of the original system. 

VIII. SECOND VARIATIONS. The functions y and y and their partials are 
written in the form in terms of a small parameter IA 

y(x,t ,P) = y(x,t) + Gy(x,t,!l) , 6y(x,t,u) = VG,t) (43a) 

Yt(X,LUO = yt(x,t) + bt(x,t,lJ) , Gyt(x,t,u) = WIt(x,t) 

Y&,wJ) = Yx(x,t) + ~Yx(X,W) , Gyx(x,t,u) = u*(x,tl 

Y(x,t,U) = ;cx,t1 f Gy(x,t,IQ , wx ,t ,u> = lm(x,t) 

Yt(X,LP) = yt(x,t) + Qt(x,t,d , bt(x,t,u) = !-mt(x,t) 

Yx(x,t,v) = ;x(x,t> + ~yx(x,t,ld , 6y,(x,t,u) = lJ*(x,t> 

Similar expressions can be derived for higher partials in x. Thus, the 
functional J(t.11 can be expressed [21 as 

J(u) = J(u=O) + 6J + 62J (44a) 

where 
6J = p(aJ) 

alJ PO 
(44b) 

and 

2 p2 a25 
~J=T(--$ 

u=o 
(44c) 

By taking variations of BJ(Gy) in Eqs. (38) and (39) and some for 6J(6y) in 
Eqs. (40) and (411, we have 

625 = d2T f (5’B + d2W - ~5~1 (@a) 
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and 

62B = ; (" (-b2)(6yxx6y,+6yx6;xx)IXbdt 
0 x0 

+ ; I:bb2~~yxxxay+aysy,,)lXbdC 
0 X0 

62W = ; i;" (-a2)(6y,6y+6y6y,)lXbdt (45d) 
0 x, 

(45c) 

The second variation of I is obtained from Eqs. (39) and (41) as 

= i lx," /:I (6yt6;t-w2SysL-a2syxs;,-b26yxxGy,x)dxdt 

1 xb tb - 
+ ; /+/to ( 6yt6yt-w26;6y-a26y,6y,-b26px,GYxx)dxdt 

621 = sxb lfb (6;tbyt-w2b;by-a26;x6yx-b26y,xGy,)dxdt 
x0 to 

(45e) 

Substituting Eq. (27) into Eq. (45b) we have 

62T = 0 (46a) 

For all the end conditions in Table I either the variations &yx, and 6yxx must 
vanish or 6yx and 6yx must vanish. Thus, the first term on the right side of 
Eq. (45~) is zero. Similarly, for all the end conditions in Table I either 
the variations 6yxx and Syxx must vanish or 6y and By must vanish. Thus the 
second term on the right side of Eq. (45~) is also zero. The third term is 
zero except at the guided end. Thus, in general 

d2B = 0 (46b) 

In Table I, except the free end, either the 6yx and Cy, must vanish or 6y 
and 6y must vanish. Thus, one obtains 

62W = 0 (4th) 
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This reduces the second variations 62J to 

623 = -&2X (47) 

as given in Eq. (45e). 

Substituting Eq. (45e) into Eq. (47) gives 

62J = Ifb i” t-ht(X,t)G;t(X,tl + w28y(x,t)6J(x,t) + 
to x0 

+ a2Q@x,t)6yx( x,t) f b26yxx(x,t)6yxx(x,t)ldxdt (48) 

In order that the functional J is an extremum [3,41, the second variation 62J 
must be either positive semi-definite or negative semi-finite, i.e., 

62J > 0 (or 6'5 G 0) (49) 

The above is a necessary condition for a minimum (or a maximum). 

The adjoint variations in Eq. (48) may be obtained by the relations given 
in Eq. (22) as 

6y(x ,i=t) = 6y(X, ;=tb+t,-t > (50a) 
* A 

~yt(x,t=t) = -+'t(X,t=tb+t,-t) (50b) 

ay,cx,;=t, 

P. 

= 6yX(X,t=tb+t,-t) (5W 

.The variations of adjoint initial conditions can be derived from Eq. (23) as 
- - * 

Gy(X,t=tb) = '+(X,t=tb) = 0 for all x (51a) 
* 

h't(X ,t"tb) = -6yt(x,t=to) = 0 for all x (51b) 

By substituting Eq. (51) into Eq. (48), we have 

62J = J;; JI; P(x,t)dxdt (52a) 

where 

P(x,t> = 6yt(X,t)6yt(X,tb+to't) + u26Y(x,t)6Yx(x,tb+to-t) 

+ a26yx(x,t)Qx(x,tb+to- t) f b2sy,x(x,t>syxx(x,tb~to-t) (52b) 
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. IX. SENSITIVITY ~LATIONSHIP. In order to shorr that the rsccond 
variation of the functmnal J is positive semi-definite, one needs to obtain 
the variations of the function and its partials together with that of tile 
adjoint functions and its partials as indicated in Eq, (48). We can get these, 
variations through the study of the sensitivity coefficients [5] and its 
relationship to the parameters given in Eq. (43). 
Eq. (1) be 

Let the forcing function in 

Q(x,t) = qf(x,t) (53) 

It is assumed that the forcing function parameter q is subject to a small 
constant perturbation bq as 

Then the variation of the Eunction y is 

aytxst1 
6y(x,t) = - 

aq 
6q = u(x,t)-5q (SkL) 

where 
aY 

v(x,t) = -- 
aq 

(5.511) 

The quantity v is the sensitivity coefficient for the variation Gy(x,t) due to 
a small constant perturbation 6q. 

The original p.d.e. in Eq. (15a) can be written as 

4=Ly+Q 

= ytt + w2y - a2yxx + b2yxxxx + qf(x,t) = 0 (56) 

Due to the perturbation of q the change of 4 obejrs the following. relationship 

a+ wtt 34 ayxx 
--+&Y-f- --+- 

a4 a Yxxxx 

aYft aq ;fq aJrxx aq 
- -I- f(x,t) = 0 

ayxxxx a4 
(57) 

It is also noted from Eq. (56) that 

a4 
-= 1 a4 2 

aytt 
, -=w 

aY 

a4 2 a4 - = -a 2 

ayxx 
, -=b 

a Yxxxx 

(58a) 

(58I.3) 
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Using the definition in Eq. (55b) the partials can be interchanged as 

and 

3Ytt a2 
- (2, = wt. 

a4 =.at2 aq 
(SW 

aYxx a2 
-=- (ay, = vxx 

aq ax2 aq 
(5%) 

ayxxxx a4 ay -= - (-) = wxxxx 
aq ax4 ag 

(59c) 

Substituting Eqs. (58) and (59) into Eq= (57) we have 

vtt + w2v - a2tix + b2uxxxx + f(x,t) = 0 (60) 

If we compare the definitions of variation in Eq- (43a) with the definition of 
sensitivity relationship in Eq. (55a) we have 

Gy(x,t) = lm(x,t) = (Q)u(x,t) (61) 

which gives 

I?(x,t) = w(x,t) (baa) 

and 

6q = IJ (62b) 

Thus Eq. (40) becomes 

ntt f w2rl - a2rcxx + b2qxxxx f f(X,t) = o (63) 

which gives the p.d.e, of the variations of the original system. 

If we compare Eq. (63) with E q. (56) we see that the variation n(x,t> = 
p”gy(x,t) in Eq. (63) takes the place of the function y in Eq. (56) with q = 
1. Therefore, the 0.d.e. for the variations is unchanged except by a scale 
factor, Thus the solution of the variation Gy(x,t) has the same form as that 
of the original function y. 

Similarly for the adjoint system one can obtain 

&x,t) 
w- em 

= wl(x,t) = (&q)u(x,t) 

q(x,t) = Nx,t> 

a;; = ; 

(64) 

(65a) 

(6%) 
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and 

qtt + w211 - a2%x + b2qxxxx + f(x,t) = o (66) 

which is the p.d.e. of the variations of the adjoint system. 

X. RXTRRMAL OF FUNCTIONAL FOR A SIMPLE OSCILLATOR. To show that d2J 
must be positive semi-definite we start with an'example by a simple harmonic 
oscillator with no forcing function. Thus from Eq. (63) we have the ordinary 
differential equation [61 , 

'Itt + w2rl = d (67) 

The solution for the above equation is 

&y = vn = A cos(wt+e) (6Sa) 

6Yt = pnt = -di sin( fdt+e) (68b) 

Both A and 0 can be determined from the following given initial conditions 

6y(t=O) = by(O) = A cos Q (69a) 

Gyt(tPO) = 6yt(O) = -WA sin 6 (69b) 

For computation by the finite element method the increment time is taken 
as T which gives 

T = tb - to = (:)(;) (70) 

where n = 1,2,3... 

The image function becomes 
* 

Gy(t=T-t) = A cos]e+w(T-t)] 
* 

Gyt(t=T-t) = -WA sin]Ww(T-t)] 

(714 

(7 lb) 

For the ordinary differential equation we have the second variation from Eq. 
(52) which gives 

n 

d2J = IT ]ayt(x,;=t)6yt(x.t=T-t) 
0 

* 

-I. w2by(x,t=t)6y(x,i=T-t)ldt (72) 

Separating Eq. (72) into two parts and using Eqs. (68) and (71) we have 

62J = &2J[Syt] + &2J[wSyl (73a) 
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where 

@J[~Y~I = I 
UT 

u2A2 sin(O+wt)sin(BftiT-atId 
0 

cS~J[WB~] = 1 
UT 

u2A2 cos(8+wt)cos(8+wT-wt)d(~t) 
0 

and 
- 

71 
WT = nC;> (736) 

which is a multiple of r/2. 

The trigonometric relationship for Eq. (73) iS 

sin( wt+a) = sin wt cos 8 f co8 wt sin 9 

cos(wt+B) f cos wt co8 9 - sin wt sin 0 

(74a) 

(74b) 

sin(e+tiT-tit) = -sin[wt - (64-nr/2)1 

= -sin wt cos(Wna/2) f cos wt sin(e+nm/2) (74cI 

and cos(BfwT-wt) = cos[wt - (e+42)1 

= cos w c0deed2) + sin w sin(5+nr/2) (74d) 

For the case when n is odd, we have 
n+l d-w 

COS(B+~/~) = (-1) 2 sin e 

n-l m-e 

(75a) 

sin(Wmn/2) = (-1) 2 cos 8 (7%) 

For the case when n is even, we have 

cos(6+nlT/2) = (-lpi2 cos 4 

sin(Q+nr/2) = (-l)n/2 sin 0 

(764 

(76b) 

and (75) into First, we take the case when n is odd. Substituting Eqs. (74) 
Eq. (731, one obtains 

s2J[6yt] = u2A2J 
na/2 

{(sin wt toe e + cos wt sin 
0 

w 

l [- sin wt(-l)(n+l)/2 sin e + cos wt(-l)(nml)/2 cos el Id(m) 

(73b) 

(73c) 

na/2 =I (-l)(n-1)/z w2A21 [sin 0 CDS 6 + sin wt cos wtId(wt) 
0 

3 (-1j(n-1)/2 w2A2[: f lxTI 
2 z- sin e cos e1 (77a) 
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and 

6 2 J[w&yl - w2*2JnT/21(cos wt COB e - sin wt sin 6) 
0 

l [cos wt(-l)(n+l)/2 sin 8 + sin wt (-l)(n-1)/2 cos e]]d(wt) 

m (-l)(n-1)/2 w2*21nr'2 [-sin 8 COB B + sin wt COB wt]d(wt) 
0 

= (4)(n-1)/2 $A2 [: nT 
2 

- 1’ sin e cos e1 (77b) 

From Eq. (73a) when n is odd we have 

625 3 (-l)(n-1)/2 &*2{]: f Z nr sin 0 cos + - sin e COB 2 e] tl 2 1 811 

625 m (-l)(n-l)/2 &!A2 

In particular for n a 1, one obtains 

(77c) 

6 2 J = w2A2 > 0 (78a) 

which gives a minimum for the functional J. For n = 3 

-625 = -w2A2 < 0 (7gb) 

which gives a maximum for the functional J. It is noted that 62J is 
independent of 0 which is related to the starting conditions. It is also 
independent of the polarity of A since it appears in terms of A2. 

Now we take the case when n is even. Substituting Eqs. (74) and (76) 
into eg. (73), one obtains 

62J[6yt] = &A21 
nr/2 

{(sin wt cos e + cos wt S~KI 0) 
0 

t- sin wt (-l)ni2 co8 6 + cos wt(-l)n/2 sin e])d(wt) 

= (-l)d2 w2A2 p2 [- sin2 lot CO8 2 e + c~~ 2 wt sin2 B]d(wt) 
0 

= (-i)d2 w2A2(- ~0s~ e + sin2 6)nr/4 
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and 

&[wSy] = w2A2[ 
""/2{( 

CO8 Wt CO8 0 - sin Wt sfn 9) 
0 

l [CO8 wt(-V/2 ~08 e + sin d-W2 sin B])d(wt) 

P a/2 = (-1p/2 u2A2 t cos2 wt cos2 8 - sin2 wt sin2 B]d(wt) 
0 

= (-l>n/2 ~2A2(~~~2 Cl - sin2 6)na/4 (79b) 

From Eq. (73a) when n is even we have 

62J = (-p/2 u2A2{(- ~0s~ 8 f sin2 8) + (~0s~ 8 - sin2 6)1nn/4 

6 J = 0 for all n = even 2 (79c) 

We can conclude here that the functional J definitely [61 has a minimum 
if UT = a/2, or T is a quarter of the natural period of the oscillation 
't = ~IT/W. tireover, from Eq. (70) for n = 1 

T = tb - to = a/(2U) = T/4 (80a) 

If n = 2 and 62J * 0 in Bq. (79c), we have 

T = tb - to < 'II/w = r/2 (80b) 

This is the upper limit of the increment we chose for T, above which the 
minimum of the functional J is not guaranteed. 

XI. ExT.REMAL FOR A SIMPLY SUPPORTED BEAM WITH CONCENTRATED LOAD AT THE 
MIDDLE. To show that 6LJ must be positive semi-definite we use the example of 
a simply-supported beam with a concentrated load at the middle. If the load 
is suddenly removed [7], Eq. (63) becomes 

qrt + b2tixxx = 0 (8la> 

Or from Eq. (56) we have 

Ytt + b2Yxxxx = 0 (81b) 

The starting conditions are 
d 
- un(x> = 0 (824 

and 
l 

dt - 

Qoh) = MC/I = 
(Px/2)h 

I 
P(a/2)h 

uo(x) = (1 
I 

for 0 < x G RI2 

for RI2 C x < R 

(82b) 

(824 
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The solution for Eq. (81b) is 

dx,t) 
3% = - Eh - 
a9 

n-1)/2 sin(nsx/R)cos pnt (83a) 

where 

PIl = bn2n2/fi2 (8%) 

and 

Qs = (Pfi/2I)(h/2) (a3d 

The quantity o8 is the initial static stress at the middle of the beam where 
x = R/2 and on the outer surface of the beam. 

In order to find yt we let 

sin(nWR)cos pnt 

Then by partial differentiation we have 
n-l 

a2Y -s-m- 
ax2 

sin(n+xYR)cos pnt 

(84a) 

(84b) 

which agrees with Eq. (83a), and 
n-l 

aY 1 8u, - 1 --- 
-zx--- 
at 

1 C-)(-l) 2 b sin(nax/~) sin pnt 
Eh m2 n=odd n2 

(84~) 

where from Eq. (83b) 

b = pn&2/(n2m2) (EMI 

and 
pl = bn2/a2 (84e) 

It is noted that the index n appears in both spatial and temporal functions in 
Eqs. (84a) and (84b) under the summation sign. We are interested in finding 
those functions of t that are independent of the index n. Let us assume that 

Pnt = n+ (Ii/Z-c) 

= n2r/2 - n2w/11 (85) 
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It is noted that for n = 1, 3, and 5, n2r/2 becomes n/2, 4r + IT/~, and 121~ + 
n/2, respectively. 

Thus we have 

CO8 put = co6 [n2r/2 - n2rclk] 

= cos [a/2 - n2nc/e1 

= sin (n2nlc/fi> 

and 

sin pnt = COB (n2wl~) 

(864 

(86b) 

Moreover, for c/(&/2) = 1, l/2, and 0 

CO6 pnt = siu[(a/2)c/(R/2)] = 1, 0.707, and 0, respectively Wa) 
and 

sin pnt = cos[(n/2>c/(R/2>1 = 0, 0.707, and 1, respectively (87b) 

The above functions are independent of index n at those values of c/(R/2). 
Thus, Eq. (84) may be rewritten at those values as 

a2y * 
7 (x,t=t) = - Eh 2 sin(mlL)yo(x) (8853) 

and 
aY A 
; (x,t=t) = - Eh 2 cos(nc/ R)yo(x) 

where n-l m w-d 
Y&4 = 1 (-1) 2 sin(nxx/a) (aw 

n=odd 

The series terms in Eq. (MC) are the result of an expansion of a triangular 
deflection of the form 

y,(x) = x/N/2) for 0 C x 6 RI2 (agd) 

ye(x) = 2 - xl(U2) for RI2 G x C R (88e) 

as shown in Figure 2. 

For the ages of Eqs, (84b) and (84c) the time dependent terms become 

and 
cos bt(T-t) = cos(pnT-Pnt) (89a) 

sin pu(T-t) =I sin(puT-put) (89b) 
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The term pnT can be obtained from Eqs. (84d) and (84e) as 

PnT = (bn2&Q2)T = n2plT (89c) 

For computation by the finite element method the increment in time is 
taken as T which is defined as 

where 

A 
T = tb - to = (m/pl)(m/2) 

m = 1,2,3... 

(goal 

(gob) 

Than tith the aid of Eqs. (85), (WC), and (90a) we have 

Pn(T-t) = m2(s/2) - [n2r/2 - n2rclal 

= (m-l)n2(r/2) + n2c/11 

Then for the case when m = 1, the time dependent terms become 

*cos pn(T-t) = cos(n2nc/a) 
and 

(91a) 

sin pn(T-t) = sin(n2rc/R) (91b) 

By similar method we can obtain 

2 (x,;=T-t) = 
QS 

(9Oc) 

(92a) 

sid fC/ Qyo(x) (92b) 

For the partial differential equation we have the second variation from Eq. 
(52) which gives 

62J = IT [6yt(x,;=t)6yt(x,;=T-t) 
0 

* 
+ b2Syxx(x,;=t)Gyxx(x,t=T-t)ldt 

Separating Eq. (93) into two parts and using Eqs. (88) and (92), we have 

62J = d2J[6yt] + 62J[b6yxx] 

The first term on the right of Eq. (94) is 

s2J[6yt] 9 j 
*b 

(bus/Eh)2y02(x)dxl 
plT=n/2 

cos(rc/R)sin(sc/a)d(plt) 
X0 0 

: I*" (bus/Eh)2yoz(x)dx > 0 
X0 
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where 

at 

p1t = s/2 - ITclR d(plt) = -(~/Il)dc 

p1t“ s/2 , c'(Rl2) = 0 , at/R = 0 

at 
p1t = 0 , c'(a'2) = 1 , Rc'fi = a'2 

The second term of Eq. (94) is 

6?J[b~yxxl 3 Jxb (bu,,Eh)2y02(x)dxlr/2 sin(m'a) cos(d~)d(d~) 
X0 0 

= Jxb (bos'Ehj2y02(x)dx > 0 
X0 

Thus by combining Eqs= (gsa) ad (95e), one obtains 

a25 = Ix2 2(bus/Ehj2y02(x)dx > 0 
x0 

(9%) 

(95c) 

(95d) 

(95e) 

(96) 

which gives a minimum for the functional J. 

Now we take.the case when m = 2, Then Eqs. (9Oc) and (89) become 

pn(T-t) = n2r/2 + n2mc/a (97a) 

cos pn(T-t) = cos(n2s/2+n2%/R) , n2 = 1,9,25, etc. 

= -sin(n2sclR) 

and' 

sin pn(T-t) = sin(n2T/2+n27TC/R) ., n2 = 1,9,25,etc. 

= cos(n2ac/R) 

Thus the image function becomes 

a2y A 
ax2 (x,t=T-t) = - 2 (-sin ~/CIyo(x) 

& (x&T-t) = - ~cos(~c'a)yo(x~ 

(97b) 

(97c) 

(98d 

(98b) 
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By substituting Eqs. (88) and (98) into Eq. (94) we have 

62 J 2 IXb~bos,Eh~2y02~~)dxlf/2[cos2~rcla) - sin2( TC/ a> ]d( Tc/ R) 
X0 0 

2 J;;(bos/EhI’ 
1 

yo2(x)dx(;)[sin II - sin 0) = 0 (99a) 

We can conclude here that the functional J definitely [81 has a minimum if 
plT = r/2, where T is a quarter of the natural period of the oscillation 
-r = wp1. Moreover, from Eq. (90a) for m = 1, we have 

T = tb - to = r/(2pl) = T/4 (9%) 

If m = 2 and d2J = 0 in Eq. (99a>, we can conclude that 

T = tb - to < r/p1 = t/2 (99c> 

This is the upper limit of the increment we choose for T, above which the 
minimum of the functional J is not guaranteed. 

XII, CONCLUSIONS. The functional in bilinear form is symmetrical about 
the original variables and the adjoint variables. The Euler Lagrange 
equations for the original and the adjoint systems are derived using the 
fundamental lemma of the calculus of variations. By integrating the bilinear 
expression by parts, one can obtain the bilinear concomitant in terms of L 
initial and boundary terms. The adjoint system can be %rranged in a manner 
that it is a reflected mirror of the original system in time. Thus the 
initial conditions for the bilinear concomitant become zero. 

Generalized boundary conditions using many types of "springs" relating 
the various spatial partial derivatives are defined to satisfy the boundaries 
of the concomitant. The higher partials in original variables and variations 
in the adjoint variables can be kept in low orders by these "springs". 
Algorithms are developed for use in the finite element method by taking the 
first variations of the functional, These algorithms are simplified because 
the adjoint system gives exactly the same solutions as that of the original 
system. 

Sensitivity coefficient is found to be similar to the variation of the 
variable and obeys the same partial differential equation. The solution of 
the original p.d.e. is taken as the solution of the variations for two 
examples, a simple oscillator and a simply-supported beam with load at the 
middle. It is found that the second variation of the functional is positive 
semi-definite if the increment in time for the finite element method is less 
than half the natural period of the physic systems in both cases. This will 
guarantee a minimum for the functional and thus the method is truly workable 
if employed as algorithms for the finite element method. 
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Figure 1. Image Reflection of the Adjoint System. 
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Figure 2. Variation of the Partials for a Beam Equation. 
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To evaluate perfomance of enclosure structures due to an internal blast, 
the dvic response of a continuous hemispherical configuration has been com- 
pared to the response of the same configuration, but with a large access opaning. 
Tbe results indicate substantial alteration of the response behavior and st33ss 
concentraq,&on effects in tho vicinity of the cutout region. 

INTRODlJiXION 

The Ballistic Research Laboratory i$ currently in the process of acquiring 
a target enclosure to facilitate destructive teminal ballistic testing of chem- 
ical explosives (CE), armr, ami kinetic euergy (KE) penetrators by safe con- 
tainment of blast, fragwnts, and resultant hamful combustion products. The 
present investigation is au extension of the work reponed in Reference 1, *here 
a siuplified continuous configuration was considend. A concept layout of the 
firing range is shown in Figure 1. A detailed description of the layout is given 
in Reference 2. 

A salient fearure of the structure is a large sliding door with a config- 
uration to uatch the cumature of the hemispherical wall. The primary function 
of the door is to allow equipeeat access inside the enclosure. The door is 
sealed to the wall with a pressurized hose seal along its perimeter. Addition- 
ally, an air exhaust systmn mounted at the rear of the stmcture operates during 
the test and draws aerosolized aaterial out of the enclosure after a test and 
traps it in filters in the exhaust ducting. The entire stnxture is built to 
contain blast and fragments, to trap aorosolizecl materials, and to permit photo- 
graphic observation of the test. 

For a continuous shell configuration clauped to a horirontal rigid founda- 
tion, the three-diuensional problem was reduced to a two-dimensional axisymmetric 
configuration by considering a single pie-shaped segment of the hemispherical 
enclosure. The entire stmcture was subsequently generated through 360-degree 
rotation of the segment about the vertical axis of symmetry resulting in quite 
economical computer calculations. nowever, the analysis suffered from a short- 
coming inasmuch as the results could not be extrapolated to a discontinuous shell 
configuration uith cutouts and access opening due to nonLinear geometric char- 
acteristics. The existence of high stress concentrations at the comers can te- 
duce the margin of safety and result in permanent deformation in these regions. 
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The structural integrity of a discontinuous configuration could not be assured 
with certainty from the study of a continuous structure and a detailed thrce- 
dimensional analysis vith inclusion of the cutout was deemed to be necessary. 

The cumcnt study is devoted to a demonstration of feasibility of modeling 
large scale strttcms with cutouts and determination of the inPluence of a 
rslativoly large cutout on tho response behavior of a containment stmcture 
using 1 compamtive evaluution of a discontinuous enclosure relative to a con- 
tinuous configumtion. 

For an enclosure strooture in a test facility, entrance hole opening for in- 
c-g pzojectilw sad duct openings for filtration cquipent at rhe rear of the 
StTuCtuSs are necessary in addition to personnel and equipment access openings. 
~OSO openings are relatively Small compared to the large rectangular oquipcnt 
access door opening. Although these openings have been included to allw for 
venting of internal pressure to the ambient atmosphere, they am ignored in the 
simplifid finite-difference wdel tmder the aasqtion that relative to the 
large door opsning. they have rather -11 influence upon structural response. 
Taking advantage of this approxtition and the resulting lateral symaoty. only 
one half of tho stntctme and the door oponing have been considered and aultiple 
hole intmtion effects have been excluded. 

Previous work3’5 on oodcling of structures with cutouts involved relatively 
simple stmccure s with syewrrically located cutouts of tather simple shapes. 
The Wt improveawts in doling techniques are significant insofar as large 
scale three dimensional stmcturos uith relatively large cutouts of various 
9hw-s sizes, aad locations subjected to cogplox loading conditions were 
analyzed without difficulty. 

ESFIMATION OF TRANSIENT AM QUASI-WY toADS 

A major problm associated with the enclosed range tests is the overpressure 
that resul& frcar the very rapid beating of air within the enclosure as the 
penetrator and the target are tom aparr during the encounter. The structure 
and the seals mt bear the load for tho .entire life cycle of tho range without 
catastrophic failure of critica& regions during loading and unloading phases 
until the pressure is vented and the products are cooled through mass and heat 
loss wchanims to smbiont conditions. 

Since the key el-ts of the firing ranges are the enclosure structures, 
tho stmctural analysis group of the Blast Dynamics Branch at the Ballistic Re- 
search Laboratory (BRL), was assigned the task of estimating the overpressure 
loading on the wall and assure stizlctural integrity from a conservative view- 
point. The choice of a hemispherical configuration was due to an earlier in- 
vestigation by N. J. Huffington. et.al. 7 who studied a continuous hemispherical 
configuration. 

Since quasi-steady and dynamic pressuros upon the wall are not expected 
to be significantly altered due to the closed equipment door during a test, the 
internal loading data in Reference 1 was used for both continuous and discon- 
tinuou5 stnlcturos. The salient features of the 2S.4- thick hemispherical 
shell dosign and the contoured equipment access door. 4.267m uide and 5.486m 
high are described in References 2 and 8. 

DYNAMIC RESWNSE ANALYSIS 

Response of both continuous and discontinuous stmctures subjected to in- 
ternal pressurization from a centrally located explosive blast uas simulated 
using a BRL version of the PErROE 3.5 computer program9 which employs the 
finite-difference method to solve tho nonlinear equations governing finite- 
amplitude elasto-plastic response of thin Kirchhoff shells. The model is valid 
for large deflections and can be employed to treat the entire structure rather 
than a small section. 

&Material Model. The uniaxial tensile quasi-static stress-strain property 
of 1020 stesl described in Reference 7 was used for primary vessel material in 
this analysis. The material uas modeled in the code as a combination of three 
linear segments followed by a perfectly-plastic behavior and linear elastic 
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unloading, resulting in a polygonal approximation of the experimental data. The 
strain hardenin part of the stress-strain Eurve is generated by a sublayer 
hardening model f from a weighted combination of elastic perfectly-plastic cwcs 
yielding a piecewise multiline- hardening representation. Strain-rate effects 
were neglected, which is conservative since these effects tsnd to increase the 
structural resistance and thus reduce the total deformation. 

Finits Difference Model. To add caQability to handle discontinuous geometry, 
the PETRI 3.5 code uas olodified substantially at BRL. For computational pur- 
poses, the boumdary conditions from the outer edges of the shell configuration 
were applied selectively to the inner boundaries of the cutout. The boundary 
conditions at the edges of the cutout can be smetric, clamped, hinged, or free 
or any cmbinations of these. Capability for modeling multiple cutouts is 
available to facilitate study of interaction effects provided a minimam number 
of WshQointS are allowed between cutouts. 

To simplify the model of the enclosure with the roeangular cutout, only one 
half of the cutout and the stmeturo was considered due to lateral symmetry. 
A total of 22 meshpoints in the circmforential and 20 meshpints in the hoop 
direction uero used, except in tho cutout regions wherein only 12 meshQoints 
were used. Each meshpoint used for Gaussian integration points through a single 
thickness layer. The meshpoints at the base of the stature and along the 
periphery of the cutout were rsstralned from movement in both axial and trans- 
verse directions. Clamped dge conditions were imposed along the cutout boun- 
dary along which the door must be tightly clamped to the enclosure wall during 
a test. All other meshpoints were allowed unrestrained movement in any direc- 
tion. Only the nodes were subjected to blast pressure in the radially outward 
dirsction. 

For the continuous stmcture, only a quarter segment was modeled using lg 
qua1 width meshes along the surface and a single layer through the thickness 
to represent the pie shaped segment. Four Gaussian integration points through 
the thickness were used at each meshpoint. 

RESULTS AND DISCOSSIoN 

The deformed model of the discontinuous hemispherical shell configuration 
relative to the undeformed configuration shows a peak deflection of 1.28mm in 
the radially outward direction at approximately 17 q s in Figure 2a which is 
comparable to a peak displacement of l.lfmm observed at approximately 56 ms for 
the continuous enclosure shown in Figuro 2b. However, in addition to the 
dially outward displacent. the discontinuous configuration exhibits a 
lateral displacement component with a highly reduced peak of .1&m indicating 
a tendency of the pole to shift laterally by a small amount. This behavior is 
in marked contrast to the, single degree of freedom motion in the radial 
direction for the continuous configuration1 where the pole exhibits no lateral 
movement. The resultant peak deflection. which is obtained by vectorial suma- 
tion of individual displacement components. is found to be 1.29mm predominantly 
in the radially outward direction at the pole for the discontinuous enclosure 
and is nearly 9% lmger than corresponding polar deflection for the continuous 
structure with identical geometric and material parsmeters. However, this 
displacement is less than 4.5% of the shell thickness for bath Structures 50 
that geometric nonlinearities are insignificant. The peak deflection is of 
the order of elastic deflection at the pole and the residual deformation at 
the pole is negligible after elastic oscillations are dampRi out and internal 
pressure is released. 

Energy balance studies for both configurations using the code confiwed 
absence of plastic uark and numerical instability. Both total and kinetic 
energies were bounded. Tho fluctuations of kinetic energy appeared to have 
twice the frquency of the work performed by the internal blast pressure. 

Transient circumferential and meridional surface strains at both oufer 
and inner walls near the pole for the continuous hemispherical enclosure’ are 
in phase and approximately qua1 in magnitude indicating domination by mem- 
brane effects due to elastic vibration of the wall in the breathing mode as 
shown in Figure 5a for the inner surface. Strain components at the clamped 
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edg~ at the base,are in general out of phase and unwqual in mgnitudw due to 
flwxurwl deformation. Substantial weakwning of the flexural Wavw Was obswmwd 
nwar the pole. Howvwr, for the discontinuous shell configuration, noticeable 
bending effect in addition to strwtching wa$ obswrvwd as far ss one mesh away 
fmm thw pole. Typical strain rwsponse at this location at the inner surfacw 
is shown in Figure 3b. 

Strains nsre c-ted at the midpoint of the top edge of thw rwctanguiar 
cutout as wwll as at the corner point to assess the influence of the cutout on 
the rssponsw behavior of thw stnuturw. Meridional strains were approximately 
three times as high as the circuderential strains at both outwr and inner sur- 
faces at the midpoint of thw top edge of the cutout. A pwak mwridional strain 
of .0198 st appreatwly 10 ms was obseflved at the inoer Wall in contrast to 
-015% at the outer wall. A similar response due to combined stress concsntra- 
tion and bending wffwct from the clamped edges was obsenred at the corner. 
However, meridional straina were in general of the same ordwr of magnitude as 
the circmferential strains at this location at both outwt and inner walls. 

At a point OM mesh away from thw pole, cirdwrential and meridional 
strains uefw nearly qua1 and in phase. A peak circraferwntial strain of -020% 
Was observwd at 18 ms at this location at the outer wall in contrast to a 
naxb of .OlB% strain at the innwr wall indicating ptopagation of bending wavw 
from ths clamped cutont edge to the pole. Thus both peak strains and dsflection 
wwrw fwnd to occur simultaneously at thw pole for a discontinuous configuration. 
This is in dirwct contest to the behavior of thw doorless enclosure configura- 
tion in which Peak strains developed at thw claw@ wdgw at the base duw to 
combined bwnding and stretching while Peak deflections occorred at the pole 
duw to focusing of vibratory energy. The developent to stress concentration 
and bending effwcts of the clamped cutout edges. However, in all cases strains 
were small enough to be in the linear elastic regime and peak stresses calculated 
from elastic theory did not excewd 40 UPa. Margins of safety at critical re- 
gions bwawd on a yield strength of 241 MPa fot mild steel uwrw equal to or 
grwater than 5.0 which wax found to bw satisfactory. 

This investigation was pwrforwd for Mr. Louis Giglio-Toe. who was the Pro- 
ject Coordinator for Project No. TO1400 at R-9. Valuable assistance from M. 
Frderick H. Gregory atld Or. Joseph H. Santiago of the Terminal Ballistics 
Division is gratefully acknowledged. 
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ABSTRACT. In a front tracking scheme certain waves are given a 
more exact treatment through the introduction of a dynamically 
moving, lower dimensional grid that is aligned with the wave 
fronts. These tracked waves are propagated in time through the 
solution of Rankine-Hugoniot relations; the remaining waves are 
propagated using finite difference equations. In this paper we 
discuss the coupling between these two wave systems. 

1. INTRODUCTION. Front tracking[3,6] is a method for numerical solution of 
hydrodynamical problems whose basic element is a system of moving curves 
(i.e. the front). Each curve represents a physical wave. For gas dynam- 
ics, these waves are either shock waves (nonlinear sound waves) or contact 
discontinuities (temperature jumps or slip lines). The motion of each type 
of wave is determined by Rankine-Hugoniot equations that relate the states 
on the two sides of the wave. In the interior regions, i.e. the portions 
of space disjoint from the curves, the solution is thought of as being 
smooth (or relatively smooth, with only small discontinuities). Therefore 
the interior solution can be calculated well using finite difference 
methods. 

Two further issues remain to be specified before the front tracking scheme 
is defined. The first, which is the subject of this paper, is the interac- 
tion between tracked and interior waves. The second, not discussed here, 
is the interaction between two or more intersecting tracked waves, where 
the tracked waves do not define a problem that is locally one-dimensional. 

2. THE NATURE OF THE COUPLING E INTERIOR AND TRACKED WAVES. During a time -- 
stext,t + At], interior waves may reach one of the tracked waves. When 
this occurs, the interior wave can be transmitted, reflected, and absorbed. 
Also the tracked wave can spontaneously radiate waves into the interior. 
(For example, curvature of the front causes this.) Within the tracked 
wave, there is both normal and tangential motion. The normal motion is 
specified by the Rankine-Huguniot equations. The tangential motion 
corresponds to surface waves and curvature effects. 

1. Supported in part by the National Science Foundation, Grant MCS-8207965. 
2. Supported in part by the Army Research Office, Contract No. DAAG29-83-K-0007, 
3. Alfred P. Sloan Foundation Fellow. 
4. Supported in part by the Department of Energy, Grant DEA 027ER03077. 
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For computational simplicity, we wish to decouple the front and interior 
calculations, as much as it is scientifically correct to do so. The extent 
of the front-interior coupling is determined by the domain of dependence of 
the moving front. Stated differently, we need to know all waves within a 
distance 

x = O(At) 

of the front in order to propagate the front through the time interval At. 
To accomplish this, we introduce local normal and tangential coordinates, 
and then use a fractional step (operator splitting) method to advance the 
front, first normally and then tangentially. 

3. THE DATA STRUCTURE. -- The data structure of the computation consists of 
ztate variables (density, etc.) specified at points of a regular rectangu- 
lar grid, together with double-valued state variables (left density, right 
density, etc.) specified at Irregular mesh points on a moving front. 'Co 
define the state variables at an arbitrary point 2 we interpolate between 
these regular and irregular points. Because the front divides the plane 
into connected components, it is important to interpolate only data 
corresponding to the component to which 2 belongs; the following procedure 
is used. 

First the regular mesh block containing 2 is determined. If all four 
corners have the same component as "x then the state at 2 is given by bil- 
inear interpolation. If three or fewer corners have the same component as 
Z then the mesh block is triangulated, the triangle in which z is located 
is found, and the state at Z? is calculated by lingar interpolation from the 
states at the corners of this triangle. The triangulation is chosen so 
that each triangle lies entirely within a single component. 

4. THE NORMAL SWEEP TO PROPAGATE THE FRONT. -- -- At each mesh point on the 
?roz a normal direction A is defined. The solution at time t is 
evaluated at this mesh point (where it is double valued, so that two 
states, left and right, are obtained). The solution at time t is also 
evaluated at a normal distance 6x on each side of the front. These states 
will be used to calculate the waves that impinge on the front from the 
interior. Notice that if the front contains curves too close to each 
other, these new evaluation points z +Ax * fi may be in different com- 
ponents from the mesh pofnt i;+ 0 * i-at the front. In this case the 
evaluation point x' + 11x * ;i is shifted into the correct component. (Con- 
ceptually, the stat; at a point outside a given component is obtained by 
extrapolation.) Thus we always have as data two left states corresponding 
to one component and two right states corresponding to a second component. 

These states are used as initial data for an extended or non-local Riemann 
problem. Higher order solutions of these Riemann problems have been dis- 
cussed before. To reduce sampling error in the random choice method, a 
steady state Ansatz has been used[4,2] to extend local Riemann data over a 
mesh block, thereby obtaining a non-local Riemann problem, which is solved 
to higher order. Higher order Godunov schemes[l] also employ ideas related 
to solutions of Riemann problems. In the present scheme we solved the 
non-local Riemann problem as follows. 
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Using the left and right states located at the front we solve an ordinary 
Riemann problem. The solution is the correct answer to the non-local prob- 
lem at time t f 0, so it is used to approximate the propagation speeds of 
the characteristics that enter the two sides of the tracked 'wave. By fol- 
lowing these characteristics backward from t + 6t to t we find their start- 
ing points in the normal intervals 

The states at these points are calculated using linear interpolation 
between the states on the front and the states at the normally displaced 
points. In this way we determine which waves from the normal intervals 
enter the front. Using differential equations in characteristic form we 
compute corrected left and right states on the front at time t f irt - 0. 
These corrected states define a new Riemann problem, whose solution gives 
states to be associated with the propagated front at time t + ht. 

2. x TANGENTIAL SWEEP ALONG THE FRONT. By linear interpolation, the dou- --m- 
bled valued variables can be defined at all the points of the front. 
Therefore we can evaluate the normally propagated solution at each mesh 
point and at two neighboring points displaced a distance Lx along the 
front. Using these three stencil points and the one-dimensional Lax- 
Wendroff scheme we determine the tangentially propagated state variables. 
Notice.that tangential propagation of the points on the front is equrtvalent 
to a remeshing of the front, in the limit LX -> 0, so it is not essential 
to move these points during the tangential sweep. 

5. THE INTERIOR SCHEME NEAR TRACKED WAVES. For the calculation of the 
solution in the interior regions we use the two-dimensional Lax-Wendroff 
scheme, which involves two half steps. To facilitate the coupling of the 
front and interior, the front is also advanced in half steps, so its posL- 
tion and state variables are known at t +Lt/2. 

Since the Lax-Wendroff scheme is a leapfrog composition of two Las 
Friedrichs steps it is enough to describe the Lax-Friedrichs scheme. This 
scheme usually assumes the initial data to be known at the four corners of 
a square. In our application, however, there are irregular squares, I.e. 
ones for which one or more of its corners is cut off by the front and thus 
lies in the -wrong component. To circumvent this difficulty we view the 
Lax-Friedrichs scheme as defined by a flux balance: the sum of the fluxes 
through the sides of a mesh block determines the change in time of a con- 
served quantity integrated over the block. From this viewpoint the Lax- 
Friedrichs scheme is defined for irregular squares as well as regular 
squares. In fact,‘ the propagation of the front also determines'the fluxes 
through the front and thereby through the sides of the irregular squares. 

7, TESTS AND VALIDATION. -- The present implementation of the above scheme Ls 
Yncomplete, with the coupling of the interior scheme to the tracked waves 
(Sec. 5) replaced by a more primitive version. Full implementation and 
validation represents work in progress. Here we show preliminary results 
for the supersonic flow past a wedge obstacle in a channel, using for com- 
parison the steady-state solution obtained using the method of characteris- 
tics[5]. In this flow a bowshock interacts with a Prandtl-Meyer expansion. 
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The test flow was simulated using a 50 by 50 grid for 200 time steps. (The 
stability requirements for the finite difference schemes dictate that the 
downstream signal speed be approximately .5 grid blocks per time step.) 
The initial data was a slight perturbation of the steady state solution 
obtained using the method of characteristics. In Figs. la and lb we show 
the initial and final shock positions and isopycnic (constant density) con- 
tours. In Figs. 2a and 2b we show the initial and final density distribu- 
tions along two sides of the shock. Figs. 3a,b and 4a,b show the analogous 
distributions along the wedge and along the portion of the exit below the 
shock, respectively. These figures indicate that the front tracking scheme 
accurately reproduces the steady state solution. 
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A condition on the numerical flux for approximations to scalar, non- 

convex conservation laws is introduced, and shown to guarantee convergence 

to the correct physical solution. These considerations lead to a simple, 

closed form, analytic expression for the solution to the Riemann problem 

for scalar, nonconveq conservation laws. 

A systematic approach is presented for converting these first order 

accurate convergent approximations to second order accurate, variation 

diminishing, entropy condition , satisfying approximations. The technique 

is extended to systems of equations of inviscid, compressible flow in 

general geometries, using-a high resolution version of the author's scheme. 

The results of such multidimensional calculations are given in [2]. 

The work described in the second paragraph is joint with S. 

Chakravarthy [2]. 
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For a single scalar conservation law 

(1) ut f f(u)x = 0 , o<t<-, -m<x<= 

for general nonconvex f(u) we consider the Riemann problem. 

u(x,O) = uL , x<o 
R =u , x70 

L R UY u arbitrary constants. 

It is well Imown e.g. [33 that there exists a unique solution to (1) 

of the form 

u(x,t) = u 5 
( 1 

= d 5) 

taking on values between uL and u R and satisfying the entropy 

condition. 

We present here a closed form expression for the solution via: 

Lemma 1. If uL < uR, then 

(2) (a) f(u(c)) - .$(C) = min 
Wf[UL,URl 

[f(w) -Cwl 

L R if u >u, 

then 
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Theorem 1. 

(3) (a) If uL< uR, then 

46) =-& 
i 

Lrl? R [f(w)- SW], 

WE[U YU I ) 

(b) If uL > uR, then 

u(c) d =-ag 
i 

m rm - p3 - 
WE[ uR,uLl 1 

For proofs, see [2]. In that reference, we also obtain a simple 

condition on the numerical flux for semi-discrete approximations to (l), 

which guarantees convergence to the correct physical solution. This 

seems to be the most general class of convergent schemes known. 
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ARTIFICIAL MASS CONCEPT AND 
TRANSONIC VISCOUS FLOW EQUATION 
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ABSTRACT. By varying the grid clustering on the surface of an 
airfoil, it was observed that symmetric shocked solutions develop with a 
nonunique shock strength and location when numerically solving the full 
potential equation. 

It is shown analytically that the conventional form of artificial 
density (or viscosity) produces a number of truly nonlinear terms which 
are suspected to be the- cause of the nonuniqueness for all the finite 
grid sizes. A concept of artificial mass flow is shown to be suitable 
for analytically evaluating a new exact form of the switching function 
that eliminates all the nonlinear terms for any value of the local Mach 
number. The resulting expanded full potential equation then becomes a 
third order partial differential equation of permanently parabolic type 
resembling Sichel's transonic viscous flow equation. Consequently, our 
expanded full potential equation does not require the introduction of the 
customarily used artificial time concept. 

I. INTRODUCTION. The numerical techniques for solving full 
potential equation modelling transonic flows are presently based on two 
similar concepts: an explicitly added artificial viscosity [l] and an 
implicitly modified artificial density [2]. Both techniques should 
create additional terms in the full potential equation in such a way that 
they nullify the numerical error introduced when using upstream rotated 
finite differencing in the locally supersonic regions. 

If these artificial dissipative terms are introduced in a divergence 
free form, it was believed that the numerical solution will be unique 
[3]. Nevertheless, in recent years it was observed that the question of 
uniqueness is not resolved when isentropic discontinuities (shocks) are 
present in the solution, It has been shown that the finite difference 
formulation [4] of the artificial viscosity can somewhat affect the 
location and the strength of the isentropic discontinuities without 
causing numerical instability problems. The artificial damping was 
monotonically introduced in conservative form across the sonic line at 
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all subsonic parts of the flow domain where the local value of the Mach 
number exceeded an arbitrary prescribed cut-off value [5]. A disturbing 
conclusion was that the numerical solution depends upon the choice of the 
initial guess for the potential field, varied choices for which causing 
the numerical solution to converge to strikingly different answers [5] if 
shocks are present in the field. At the same time it has been demon- 
strated that the nonunique solutions are not dependent on the type of the 
grid used nor are they dependent on the grid resolution for the grid 
sizes commonly used. The conclusion was that these were the correct 
nonunique solutions of the exact full potential equation. 

We numerically experimented with a number of two-dimensional full 
potential cascade codes [6,7,8] and consistently observed non-unique 
symmetric shocked solutions. The test case was a nonstaggered cascade of 
NACA0012 airfoils spaced at 3.6 chord lengths apart. The free stream 
Mach number was M = 0.8 , and the free stream angle of attack was zero. 
First order artificial viscosity in a ,fully conservative form [3,9] was 
used in each of the codes. Numerical solutions were obtained on a 
sequence of four successively refined O-type and C-type non-orthogonal 
boundary fitting geometrically periodic grids. -When the grid points on 
the airfoils surface were equidistantly spaced, the iterative.procedure 
converged to a syrrnnetric solution with the shock located at approximately 
80 percent of the chord. 

Then the same sequence of grids with the same number of grid points 
was used with the only exception that the grid points on the airfoil's 
surface were symmetrically clustered closer to the leading edge and the 
trailing edge. The resultwas a symmetric solution with the shocks 
located at approximately 72 pertent of the chord. It should be noted 
that the boundary and the periodicity conditions were enforced explicitly 
and exactly and that the airfoil surface Mach number drop across the 
shocks was in both test c&es in close agreement with the exact one- 
dimensional isentropic shock conditions. These results were obtained 
with both O-type and C-type grids while using the same (symmetric) 
initial guess for the potential field, the same number of iterations and 
the same relaxation.factors on each of the grids. 

II. ANALYSIS OF ARTIFICIAL OENSITY CONCEPT. The following deriva- 
tions should suggest the probable cause for nonuniqueness of the shocked 
solution of th,e discretized form of the full potential equation. 

Mass conservation equation 
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where comma denotes partial differentiation, can be written in its 
canonical form [lo] 

If all the flow variables are 
critical properties then 

!A M2 -- 
P M M*,s * 

nondimensionalized with their respective 

If an artificial density of the general form 

;=P - As IQ 

(3) 

(4) 

is introduced, it can be shown that 

5 k+ 1 2 * A= 

P P M2 
bs IJ z Q + AS(LI $1 M*,Sl (5) 

l+AsurM,, 
.* rs 

* s 

Hence, the mass conservation equation becomes 

where 

E = AS M* s 

M2 
ch $1,. - &*As M ,a,, *,ss 1 

l+Asq$ 
* 

* ,SS 

(6) 

(7) 
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Then the undesirable term in the expanded full potential equation is 

E hs-M* = [-AS u* $4 ,ss Qss 
* 

Ss 

M2 (4 I2 
+ d('+y 1 - - 1) 

M2 
ASS 

* 
+ ll, cbss3 

* 

The switching function p is customarily [l,Z] assigned the value 

1 
lJ 

= pJH = ' - i7 

which is obtained from the condition that the term 

As p M2 4 
,sss 

(8) 

(9) 

(‘0) 

should be approximately the same magnitude as the terms introduced by the 
upstream differencing of $,ss in the locally supersonic regions of the 

flow field. If pJH is used in E , the result is a cluster of truly 

nonlinear terms 

As M* [&(M*-')('- ') 
QI 

E = 
4 

1 + As(M1-1) $= 
M2 

9ss4'~sss 
,S 

3s 

$((l+v) 
M2 (Q I2 

+ (l- 
(4 ,J2 

- 1) iss 
(+ ,ss)2 

9s + (‘+y ) 31 
rs 
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It is obvious that the conventional value of v fails to make 
E = 0 for any value of local flow Mach number equal to or greater than 
one. Actually, when using uLJH one ends up solving a nonlinear par- 

tial differential equation even on the sonic line where eq. 6 reduces to 

4 ,nn + w+v )(4,,,)2 = 0 (12) 

The substantiated explanation of the influence of the nonlinear 
terms on the final solution of the expanded full potential equation is 
not available at the present time. Nevertheless, it could be speculated 
that these nonlinear terms have some properties of solitons thus causing 
the numerically observed non-unique solutions for all realistic non-zero 
grid sizes. The influence of the nonlinear terms can be certainly affec- 
ted by the particular finite differencing applied in the evaluation of 
the derivatives constituting the artificial viscosity [4] or artificial 
density [ll]. Different shocked solutions can also be achieved by vary- 
ing the expression for the switching function u [12,13]. 

Full potential equation does not involve any dissipative mechanism 
on the basis of which expansion discontinuities could be eliminated. The 
numerically created artificial viscosit 
pled with an artificial time concept cl 1 

[l] and density [2] terms cou- 
represented the basis of almost 

all transonic potential flow computations performed over the past decade. 

By allowing for an insignificant vorticity generation in a limiting 
process applied to a small', disturbance transonic potential equation, -- 
Sichel [14] has derived a "viscous transonic equation.H 

where 
, 

04) 

and 

L = (1 - Mz)/[r(l+y )Mc]2'3 (15) 

Here, Mm is the free stream Mach number, y is the ratio of specific 

heats, Pr and Re are Prandtl and Reynolds numbers, respectively, and 
T is half the airfoil thickness ratio. 
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Since Kv r 0 this equation is parabolic and Chin [15,16,17] 

solved it numerically without any need to introduce the artificial time. 
Although it is better suited for modelling the physical details at the 
shocks, eq. 13 cannot be recast in a divergence free form. 

III. ARTIFICIAL MASS FLUX CONCEPT. It is possible, neverthe- 
less, to derive an expanded full potential equation that will always be 
of a parabolic type and will be readily expressible in a divergence free 
form. The idea is to expand the mass flux (rather than density or the 
speed of sound [2] alone) in a Taylor series. Such a modified mass 
conservation equation 

6($4, = 0 (16) 

can be expressed in the locally streamline aligned orthogonal coordinate 
system (s,n) as 

As u(~~,,),,)"e~ + bd'n)^en] = o (17) 

Hence, 

d(l-M2hsS + t,nnl - AS pbs(& 
-P 

+ + Q 

P 
+ d 

p s $Qs + 2 T $,ss + Q,sss)l = 0 

Because 

p = [ I$ _ Yg ($J2,'/(Y-') 

(18) 

rp 3s 
= M, 
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It follows that the artificial mass produces _ 

pf[(l-M%ss + $,nnl + As ~(M*-l)4,sssJ 

The second brace contains undesirable nonlinear terms. The value of the 
switching function p is determined in such a way as to eliminate them 
entirely. Hence, 

& = -2M* d M, M* dM* 

lJ ($1) (9 -9 Mf) (Mf-1) 

M3 * d M, 

(M$1) (9 -9 Mf) 

The result is 

2-v 
1 

' = (Mf-1) 
( a2)Y-' 

Because of iie relation 

it follows that the modified mass conservation becomes 

pi[(l-M2)$,ss f 4,nnl + As( qhsssl = 0 2 

(21) 

(22) 

(23) 

(24) 

265 



. . 

This expanded full potential equation is of parabolic type for any 
value of Mach number and its variable diffusion coefficient does not 
vanish for any finite value of the Mach number. Note the striking 
similarity between eq. 24 and eq. 13 and the fact that eq. 24 can be 
integrated without a need for artificial time variable Cl]. The diver- 
gence free form of eq. 24 can be achieved as follows. 
Let 

A = P@,s - As u(P$,~) s 1 , 

Hence, 

A = @$-AS ~(1 M2 ,s -J-h 3 

(25) 

(26) 

and the modified mass conservation (eq. 16) can be expressed in its fully 
conservative form as 

w;$4) =. (k,,),, + (P$,y),y = O 

where the exact form of the artificial density is 

or 

= P P- As(p) 1 (Ijp 
M2 P 1s 

(27) 

(28) 

(29) 

IV. SUMMARY. It has heen analytically proven. that the usual 
fomnulation of artificial density and viscosity terms leads to an intro- 
duction of truly nonlinear terms whose effects are suspected of causing 
certain numerical errors and inconsistencies in the numerical computation 
of transonic potential flows. A new concept of artificial mass flux was 
shown to produce only linear artificial dissipation that has the same 
basic character as a governing equation for physically viscous transonic 
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flow. The artificial mass can be easily reformulated in terms of a new 
artificial density in a fully conservative form. 
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ABSTRACT. The goal Of large scale numerical simulations (numerical 
experiments)is to obtain a quantitative understanding of complicated 
nonlinear dynamical processes. A proper picture or graph can spark in- 
sights into new mathematical or physical processes and liberate us from 
the prejudices of our conservative intuitions, Diagnostic algorithms 
and their graphs are particularly useful in the contour dynamics model 
for studying two dimensional fluid dynamics. This is because the 2D 
densities are replaced by contours bounding piecewise-constant density 
regions (i.e., lD.curves). Thus our diagnostic parameters are functions 
of one variable, the arc length along each curve, and their graphs are 
2D. We discuss and illustrate some time dependent properties of planar 
curves, including the spatial plot, low order moments, perimeter, 
curvature, and Fourier transforms. We will also apply these techniques 
to contours obtained from finite-difference representations of con- 
tinuum systems, 

I. INTRODUCTION. The method of contour dynamics is ideally 
suited to treating the dynamics of incompressible-inviscid fluids in 
two dimensions. For example, Longuet-Higgins and Cokelet [1,2] have 
studied incompressible shallow and deep water waves on boundaries 
between regions where the density is piecewise-constant. Zabusky, 
Hughes, Roberts, Deem, Overman, and Wu [3,4,5,61 have investigated the 
Euler equations with piecewise-constant finite-area-vortex-regions 
(FAVRS)... Zabusky and Overman [7] have studied how to model surface 
tension.and dissipation using contour dynamics. Finally, Overman, 
Zabusky; and Ossakow 181 have been studying the evolution of a 
piecewise-constant, weakly-ionized and strongly magnetized plasma in an 
electric field, a problem mathematically analogous to the Buckley- 
Leverett equations of flow in a,porous media [91. 

In this paper we discuss how diagnostics help to quantify and to 
gain insight into the time evolution of two very different fluid 
dynamical problems, namely the Euler equations and ionospheric plasma 
clouds. In Section II we discuss the two mathematical models and in 
Section III how they are discretized, including how we obtain the 
contour representations. In Section IV we will use various diagnostics 
and their graphs to study specific examples and in Section V we will 
show how these methods can be applied to continuum models. 

II. MATHEMATICAL MODELS. The Euler equations can be written in 
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e 
vorticity-stream function form as 

Wt .+uwx+vw 
Y 

.= 0, (la) 

where 

and 

A+ = -u, (lb) 

(u,v) = (lir,AJ,) l UC> 

If the vorticity is represented by a set of NC piecewise-constant 

functions of strength w 
1 

in regions 
Dj 

with boundaries an., we 
J 

can express the stream function as 

Nc 
vJ(X,Y) = c wj JJ G(x-S,y-v)dSdn, 

j=l D. 
J 

(2) 

where G is the Green's function for the Laplacian in the unbounded 
domain 

G(x-Ly-rl) = -(.2~)-~log[ (x4)’ 4 (~-TJ)*]~” = -(2lTP log g. (3) 

If Green's theorem is applied to the result of substituting (2) into 
(1~) we obtain an expression for the velocity as a sum over the N 

C 

contour integrals, namely 

(u,v) = (u(x,y),v(x,y>) = mrl 
Nc p J W 
*_ j aD 

log l(dC,drl), (4) 

j 

where [w] 
j 

is the jump in vorticity (outside-inside) at aD. and 
J 

where the dependence on time has been suppressed. Alternately, if we 
integrate by parts we obtain 

b,v) = ml -l 7 wj J .e-lCx-E,y-rl.)dk 
j=l aD 

j 

(5) 

The contours are advected by (,d/dt)(x,y) = (u,v). 
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The equations of motion of the ionospheric plasma cloud is [8] 

.r, 
D  l (NT$J) = 0, (ha) 

atN + +=sjN = v?‘N, (6b) 

2 V= Gxay f zyap, (6~) 

z 
where N is the density of ions, E = -?$I is the electric field and 
B OXas +EZ 1 (x,y) ( + m, and v is the dissipation parameter 

arising from ion-neutral atom collisions. A two-dimensional problem 
arises because we assume that the ions move orthogonally to the 
magnetic field Bogs which is assumed to be large and unaffected by 

the cloud. 

In the contour dynamical representation we assume that N is 
piecewise-constant and follow the evolution of smooth contours aD 
at which N is discontinuous. In the simplest case N takes on 
only two constant values, i.e., 

N 

i- 

for (x,y> E D(t) 

N(x,y,t) = (7) 

N+ for (x,y) $ D(t) 

where D(t) is a bounded, simply connected region in lR2. Using the 
single- and double-layer Green's function of Laplace's equation, we 
find that [SJ 

(P(p) = cl Eox(p> + c2 
I 

4m an In r(p,s)ds 
aD S 

an+(p) = cl EoanxW + c2 
J 

a wa 
aD n np 

In r(p,s)ds 

where 

c1 
= 4+/ (N-+N+) , C2 = -(l/r) (N--N+)/(N-+N+) 

and where s,p E aD, r(p,s) is the straight line distance between 
p and s, and an and 3 are the derivatives in the direction 

n 
S P 

of the outward normal to the boundary at s and p, respectively. 
Using Eq. 8 we obtain the electric field on aD. We then advect aD 
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-& (x,y) = (-aywx4) + v ass (x,Y) (9) 

where s is the arc length on aD. 

III. DIAGNOSTICS. To discretize the contour, {(x,Y> E aD), or 
contours we use a finite number of nodes, {(x ,y > 11 < j < N}, and 

jj -- 
follow the time evolution of these nodes. For the Euler equations we 
use the midpoint method to evaluate the integral in Eq. 5 and 
predictor-corrector to advect the nodes [6]. For the plasma cloud 
[S] we discretize Eqs. (8) by the trapezoidal method and use Gauss- 
Seidel to solve the resulting system of equations for the electric 
field at each node. The points are then advected, Eq. 9, using 
implicit predictor-corrector. 

To obtain a continuum representation from the finite number of 
nodes we use cubic splines. That is [7], we calculate the straight 
line distance between adjacent nodes, 

AS = ((xj+l-xj)2 2 l/2 
j + (Yj+l-Yj) ) , 

and then calculate the cubic spline representations for 
I(s j,xj) 1lzj <N) and ((sj,,yj) 11 2 j 2 NJ. This continuum re- - 
presentation can then be used to [8] adjust points on the contour, 
calculate derivatives (.e.g., to calculate the tangent angle and 
curvature), and calculate integrals (e.g., the area and center of 
mass). 

IV. DIAGNOSTICS. In our study of the Euler equations one area 
of particular interest is steady-state solutions (Jr-states) and their 
stability. For example in [Sb] we investigated the stability of a 
pair of rotating symmetric FAVFk (see Fig. 2). In Fig. 1 we show 
diagnostics for a V-state (calculated numerically) which was run for 
125 units of time (slightly more than two revolutions). We show the 
area change, AA/A, the perimeter change, AP/P, the change in the 
distance between the center of rotation and the center of area, A;/;, 
and the change in maximum curvature, AK/K, for one of the contours. 
These diagnostics provide strong support that we have indeed found a 
steady-state solution. To investigate its stability we moved the 
contours away from the origin by 10%. In Fig. 2 we show the resulting 
spatial and curvature plots for nearly three revolutions. In Fig. 3 
we show the corresponding diagnostics. Note that the perimeter, g, 
and K changes are a factor of 10 larger than in the steady-state 
case. Since the perimeter and x changes show no monotonic growth 
we conclude, numerically, that this configuration is stable. We 
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also mtived the contours in toward the origin by 2.5% from the steady- 
state solution and show the merger of the two FAVRs in Figs. 4 and 5. 
In the diagnostics we have replaced AK/K by In lAH/I\ to show the 
rate,of approach of the two contours more clearly. By use of these 
diagnostics we have numerically verified a conjecture by Saffman and 
Szeto [lo] of the transition point between stability and instability 
for symmetric corotating V-states. 

In our study of the plasma clouds there is an additional diffi- 
culty which must be considered. Namely, without dissipation (i.e., 
v in Eq. 9) the contour dynamics model seems to be unstable or ill- 
posed [S]. (We believe the same is true of the continuum model, 
Eqs. 6.) Thus it is possible for round-off errors to cause large 
numerical errors in a very short time unless extreme care is taken. 
(This difficulty does not seem to occur in the Euler equations where 
it seems to be the low modes that grow in merger or fission [S] and 
there does not seem to be any high frequency instability.) 

One of the basic questions we have addressed in plasma clouds is 
the effect of one cloud on another. We address this question in Fig. 
6 where we show the time evolution of one cloud versus two clouds. 
Initially there is a 0.01% perturbation of the boundary at the 40th 
mode. As our diagnostics we use the curvature and the Fourier modes, 
i.e., we let the radius, r, be a function of the arc length, s, and 
decompose r(s) into its Fourier modes. At time 0 you can see the 
perturhation at the 40th and also a small numerical error at the first 
mode due to the fact that we have distributed more points (there are 
160 on each cloud) on the top of the contour, where it will go un- 
stable, than on the bottom. From the comparison of the two cases we 
can see that the interaction of the two clouds causes a large change 
in the behavior of the low modes due to the clouds trying to move 
away from one another. However the high modes are hardly affected 
and we see the same number of striations ("fingers") forming on the 
top of the cloud. From numerical experiments such as these we have 
shown that the intermediate-time structure of a cloud is independent 
of the clouds surrounding Ft. 

We have also used the curvature diagnostic to validate the 
accuracy of the numerical algorithm. We compared the evolution of a 
cloud with an initial perturbation of 1.0% at the 40th mode and two 
resolutions: (a) 400 nodes on the contour and a time step of 0.005; 
and (b). 560 nodes and a time step of 0.0025 (,that is, 10 or 14 nodes 
per period, respectively). In Fig. 7 we show the curvatures at 
t = 1.2 where one can perceive only very slight differences. To see 
that the near-inflection points and new small-scale "wiggles" are not 
numerical artifacts we show the spatial evolution of the cloud in 
Fig. 8 and the curvature evolution in Fig. 9. These inflection points 
and "wiggles" show how the fingers are trying to align themselves 
vertically as they lengthen and thus they predict the spatial 
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structure that will later appear. 

v. CONTINUUM MODEL. It is possible to use-these same kinds of 
diagnostics on two-dimensional continuum models by focusing on 
contour lines. We will restrict our attention to the plasma cloud 
example where all the runs were done using a finite-difference re- 
presentation of Eqs. 6 developed by S. T. Zalesak at the Naval Research 
Laboratory [ll]. We warn the reader that the length and time scales 
in the plots in this section are very different from those used 
previously and, in addition, the vertical scales in the diagnostics 
in this section vary from time to time. 

In Fig. 10 at time 0 we show the initial density of the cloud as 
a contour plot. This initial condition was chosen to closely resemble 
the piecewise-constant clouds of contour dynamics and so the density 
is nearly constant inside and outside the contour lines and has a steep 
slope to approximate the jump in density in the contour dynamics clouds. 
There is an initial perturbation of 1.0% at the 12th mode. The contour 
line we will follow is the one at the average density of the cloud 
(that is, the average of the density at the center of the cloud and at 
infinity at time 0). The diagnostics we will use are the curvature, 
the tangent angle, and the density gradient perpendicular to the 
contour (i.e., the maximum density gradient). The diagnostics are all 
smoothed by least squares interpolation to remove high frequency noise 
since, for example, the small-scale fluctuations in the curvature can 
be up to 3 times as large as the actual curvature due to the calculation 
of the contour points from the 2D mesh. At time 0 the curvature and 
tangent angle are very close to their analytical values but the 
gradient, which should be constant, varies by 20%. This is due to the 
fact that a variable mesh was used and the mesh size was very large 
at the bottom of the cloud, which is stable. (This effect can also 
be seen in the curvature at the bottom of the cloud at later times.) 
The gradient diagnostic is particularly valuable in plasma clouds 
because it is the large gradient which causes the fingers to form and, 
at later times, secondary fingers to split off. 
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0; 002 AP/P 

0. IA!!!4 

Figure 1 

Diagnostics for the unperturbed V-state: change in area, h/A = 

(A(t)-A(O))/A(O); change in perimeter, flP/P Z (P(t)-P(O))/P(O); change 

in center of mass, Ax/G = (G(t)-Z(O))/%(O); and, change in maximum 

wrvature, AK/K = hax IK(t)l-max I~(O)l)/max (K.(O)\. (Fig. 2 of 

Ref. 5b.) 
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Outwardly perturbed V-state: (a) physical Outwardly perturbed V-state. The 

space; (b) curvature vs. arc length. plots are the same as in Fig. 1. 

(Fig. 3 of Ref. 5b.) (Fig. 4 of Ref. 5b.) 
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Inwardly perturbed V-state. The plots 

are the same as Fig. 2. (Fig. 5 of 

Ref. 5b.j 
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Figure 5 

Inwardly perturbed V-state. The 

plots are the same as in Fig. 1 

except that the change in curvature 

has been replaced by the logarithm 

of the change in center of mass. 

(Fig. 6 of Ref. 5b.) 
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FfR(S) I 

FtR(S) 1 

Figure 6 

Time = 0. A comparison of the time evolution of one and two clouds with a 

0.01% perturbation at the 40th mode. Shown are: physical. space, the 

curvature vs. arc length, s (s = 0 is the bottom of the cl.oud), and, the 

amplitude of the Fourier modes, M, of r(s) where r is the radius from 

the center of mass. 
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Figure 6 (continued). Time = 0.40. 
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Figure 6 (continued). 'Time = 0.80. 
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Figure 6 (continued). 
282 

Time = 1.20. 



I(a) J(b) 

Figure 7 

Validation of the accuracy of the contour dynamics code. Jhe evolution 

of a cloud with an initial perturbation of 1% at the 40th mode and two 

resolutions: (a) 400 nodes and At = 0.005; and (b) 560 nodes and 

At = 0.0025. The curvatures vs. arc length are shown at time = 1.20. 

(s = 0 is the bottom of the cloud and s = maximum is the top.> (Fig. 

10 of Ref. 8.) 
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Figure 8 

The spatial evolution for the same run as in 

Fig. 7. The times, from left to right, are 

0.00, 0.60, 0.90, 1.10 and 2.30. (Fig. 11 of 

Ref. 8.) 

Figure 9 

,The curvature VS. arc length corresponding to 

Fig. 8. (Fig. 12 of Ref. 8.) 
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CURVRTURE VS 5. TIME = 0.00 
.mt,.,.,.,,,.,,,,,...,.,.,.,.,.,.,., 

F*IX GRWJIENT VS 5. TlHE q 0.00 

Figure 10 

Time = 0. The time evolution of a run using the continuum equations, Eqs. 6. 

Shown are: a contour plot of the physical space cloud with the middle contour 

used in the diagnostic plots; the curvature vs. arc length (s = 0 at the 

bottom and s = maximum at the top); the tangent angle vs. arc length; and, 

the maximum gradient (i.e., the density gradient perpendicular to the contour) 

vs. arc length. 
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TANGENT RNGLE VS S. TINE = 13.29 

Figure 10 (continued]. Time = 13.29. 

286 



cURVRTURE VS S. TIME = 28.04 
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Figure LO (continued). Time = 28.04. 
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ANALYSIS OF THE VON KARMAN EQUATIONS BY GROUP METHODS 

K. A. Ames 
Department of Mathematics 

Iowa State University 
Ames, Iowa 50011 

W. F. Ames* 
School of Mathematics 

Georgia Institute of Technology 
Atlanta, GA 30332 

ABSTRACT. One of the system of equations approximating the large 
deflection of plates consists of two coupled nonlinear fourth order 
partial differential equations, known as the von Karman equations. The 
full symmetry group for the steady equations is a finitely generated 
Lie group with ten parameters. For the time dependent system the full 
symmetry group is an infinite parameter Lie group. Several subgroups 
of the full group are used to generate exact solutions of the time- 
independent and the time-dependent system. These include the dilatation 
group (similar solutions), rotation group, screw group and others. 
Physical implications and applications are discussed. 

0. INTRODUCTION. Perhaps the most widely applicable method for 
determining analytic solutions of partial differential equations utilize 
the underlying (Lie) group structure. The mathematical foundations for 
the determination of the full group for a system of differential equations 
can be found in Ames [l], Bluman and Cole [Z], and the general theory is 
found in Ovsiannikov [3]. The determination of the full group requires 
extremely lengthy calculations, Detailed calculations can be found in 
Ames [l], Ovsiannikov [3] and for the Navier Stokes equations in Boisvert 
[4] (see also Boisvert, et al. [5]). Here we give the results of those 
calculations for the von Karnan equations (see (0)) of nonlinear elasticity 
in the form of the infinitesimal generators of the- full group. These 
have also been obtained in an independent study by Schwarz [61 using an 
algebraic program package which uses REDUCE [7]. In Russia such an 
algebraic programming system, for this purpose, is available under the 
name ClfiO (see Qvsiannikov [3], p. 57). MACZYMA (Roseneau and Schwarzmeier 
[S]) has also been used for this purpose on other problems. 

Our goal is to obtain explicit invariant solutions to the system 
of partial differential equations, due to von Karman, 

A2F = E[w2 -w w I 
XY xx YY 

A2w =:+F [F w +F w 
YY xx xx YY - 2FxywxyJ 

(0) 

*Research supported by U.S. Army Grant DAAG-29-81-K-0042. 
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by employing various subgroups of the full group admitted by these 
equations. To apply this procedure we choose a one (or more) parameter 
subgroup and calculate the general form of the subgroup invariants. 
We then require the equations to be invariant under this group. As a 
result a set of simultaneous algebraic equations arise and their solu- 
tion, possibly involving arbitrary parameters, leads to a more-specific 
form of the invariants. Substitution of these invariants into (0) 
results in a representation of the system from which solutions to the 
original system can be constructed. 

A preliminary version of this paper appeared in [9]. 

1. THE EQUATIONS. The investigation of large deflections of plates 
rests on the solution of two coupled nonlinear partial differential equa- 
tions known as the von Karman equations [lo]. Let us consider a rectangular 
elastic plate under the combined action of a uniform lateral load and a 
tensile force in the middle plane of the plate. Denote by w the deflec- 
tion of the plate away from its equilibrium position in a region D of the 
xy plane and by F the Airy stress function. Assuming that there are no 
body forces in the plane of the plate and that the lateral load is perpen- 
dicular to the plate, then w and F satisfy the equations 

*2F = E[ (&)2  c ++; 

ax ay 
(1.1) 

(1.2) 

Here E is the modulus of elasticity, D is the flexural rigidity, h* is the 
thickness of the plate, q is the.lateral load intensity and A2 is the 
biharmonic operator, i.e., 

a21a4 +2 a4 -- 
ax4 

+a4 
ax2ay2 ay4 

Determination of thestress function F allows us to calculate the stresses 
in the middle surface of the plate by means of the relations 

% 
a2F 5 a2F 

=-; 
aY2 

=-; 
ax2 

-r a2F = (1.3) -- 
Y XY axay 

From the function w, which defines the deflection surface of the plate, 
we can obtain the bending and shearing stresses. 

In our group analysis of equations (1.1) and (1.2), we shall be 
interested in the two cases q = 0 and q = -pa2w/at2. The first of these 
cases represents the situation in which there is no lateral loading while 
the second describes the vibration of a plate whose deflections are large 
in comparison with its thickness. bRather iha; t;eat (1.1) and (1.2) 
directly, we introduce the new variables, x, y, t, F and i'which are defined 
bY 
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x = mx, Y = 6, t = pf, F = b& w = CG. 

The choices 

D b = s and c 
2 

as well as 

in the case q = -pa2W/atZ, lead to the dimensionless sytem 

A2w = a2F a2w + a2F a2w -- 

ay2 ax2 
--3 

ax2 ay2 

2 a2F a2W 

axayaxay 

or 

*2w=2s+a2F&+2E&-22E~ 

at2 ay2 ax2 ax2 ay2 

(1.4) 

(1.5a) 

(1.5b) 

where the bars have been dropped. We shall investigate (1.4)-(1.5a) or 
(1.4)-(1.5b) using group analytic techniques with the aim of obtaining 
exact solutions of these systems. 

2. FULL GROUP. The full (Lie) group of the time-dependent von Karman 
equations (1.4, 1.5b) is given by 14 infinitesimal operators 

a a a a :3 
X1=x; X2=x; x3-F; X4=yx -xay; 

x5 
a =2t,t+x &+yL; a a 

aY 
X6=x; X7=tz; 

a a a a X8 = x x ; x9 = y x ; Xl0 = tx z ; x11 = tY z ; 
(2.1) 

x12 
a a a 

= f,(t>x z ; Xl3 = f2WY x ; Xl4 = f , ( t )  z l 

Each of the first 11 generators is associated with a parameter independent 
of all the others. These generate a finite dimensional Lie algebra LLL. 
The last three operators contain arbitrary functions of time, fi(t), 
i = 1,2,3. 

3. DILATATION GROUP. In this section we investi.gate the action of 
the dilatation group (from X5) 
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x = aax, Y = say, (a > 0) (3.1) 

onthedimensionless time independent von Karman equations (1.4)-(1.5a). 
The invariants of this transformation group are ([l]) 

rl = x/y. (3.2) 

The von Kannan equations are invariant under the dilatation group and 

F = f(q); w = h(q). (3.3) 

Substitution of these relations into equations (1.4)-(1.5a) leads 
to the following two coupled ordinary differential equations for f and h: 

22 [(l f l-l2 + ?-14) dh 
dq3 

j$ = - [$(n$g) +%+$I. 

(3.4) 

(3.5) 

Several exact solutions of the system (3.4)-(3.5) can be obtained. 
If we choose the deflection to be constant (i.e., h(n) = constant), then 
equation (3.5) is satisfied identically while (3.4) becomes 

Integration of this equation gives the invariant solution 

1 
f(rl> = $j ufo [Cc, sin $Jgn(z2 - 22 cos 9, + 1) 

f (c2 cos qV)arctan[(z - cos @")/sin $,I 

2c3 +-J- arctan[(4n + 2)/3] -I- c4, 

(3.6) 

(3.7) 

where z = 6, $v 
stants. 

= -2~13 f VIT and the ci (i = 1,...4) are arbitrary con- 

Another exact solution can be determined by letting h(o) = cf(?~) 
for a constant c # 0. Combining equations (3.4) and (3.5) we find that 
f(rj) must satisfy 

-&rr1(~~21 = -(l + c2)(J$2. 

Thus 
2 

f(q) = f 2 ,+ '2) + D 
C 
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h(rl) = f $i n-c' 
2 

/2) C CD 

where Band D are constants. 

We note here that under the dilatation group the stresses acting in 
the middle plane of the plate are related by the equation y20;, + x20x = 
2xy5 l 

‘5 
In practice, one is usually more interested in these quantities 

than he deflection surface. 

Remark 2.1. Since the equations for the Airy stress function F and 
the deflection w are invariant under coordinate translations z = x + b 
and 5 = y + d, it follows that the von Karman equations are also invariant 
under the group given by ? = G/y, f(t) and h(6). 

4. ROTATION GROUP. We now examine the properties of the von Karman 
equations under the rotation group which, for any real a > 0, is defined 
by the transformation (from X4) 

x = x cos a - y sin a; 5 = x sin a f y cos aa G = w; , F = F. 

It is known [l] that the invariants of this group are 

q=x2+y2; I? = f(n); w = h(n). (4.1) 

Upon substituting (4.1) into equations (1.4)-(l.Sa), we find that f and 
h must satisfy the two differential equations 

Both of these equations can be integrated once 

4 & [q2 $I = -q(g)" 4 

2fi d [n 2d2h, =qe& 
dn2 

for constants A and B. Two particular choices 

(4.2) 

(4.3) 

to obtain 

A; (4.4) 

+ B, (4.5) 

of h lead to exact solu- 
tions of nhis system. With h = constant, equation (4.5) is satisfied 
identically if we take B = 0 while (4.4) reduces to a linear equation 
which has solutions of the form (singular at the origin), 

f(n) = cl + c2 In rj + c3rl + c4n In n, (n f 0) 

where the ci are constants. A second approach is to set h(rl) = cf(rl) 
for a constant c. Equations (4.4)-(4.5) then lead to 
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q(-g)2 = D2 , (4.6) 

where the constant D depends upon A, B, and c. For n # 0, (4.6) integrates 
to give 

with K a constant of integration. 

It is interesting to observe that if we set dh/dn = df/dn in (4.4) 
or df/dn = -dh/dn in (4.5), we obtain in both cases an equation of the 
form 

-$ [1? ‘%I + xqg2 = c, (4.7) 

where g = df/dn and X = l/4 or g = dh/dri and X = l/2. For c = 0, (4.7) 
is an equation of the Emden-Fowler type about which there is considerable 
literature (e.g., ,see [ll]). Because analytic solutions of this class of 
equations are known only in a few cases, the appearance of such an equation 
in the analysis is indicative of the difficulties one finds in attempting 
to find exact solutions of the von Karman equations. We note here that 
for c = 0, equation (4.7) can be transformed into 

(4.8) 

by setting y(q) = rlAg(v). One established fact about equation (4.8) is 
that all of its solutions are oscillatory on (O,=), by which we mean that 
for any nl > 0 there exists n2 > ril such that y(r12) = 0. This type of 
result gives us information about a subset of those solutions of the von 
Karman equations which are invariant under the rotation transformation 
group. 

5. SPIRAL GROUP. As we shall see, the van Kannan equations also 
remain invariant under a third group of transformations, the spiral group, 
which has the form (a linear combination of X2, X3, X6 and Xl4 (with 
f3(t) constant)) 

Ba x = x + Yla, 7 = y + Y2a, F = eClaF, f; = e w, 

for real a > 0 and yl, y2, ~1, /3 constants. The invariants of this group 
are 

n = Y2X. - YlY, f(n) = Y21n F - ay, h(n) = Y21n w - By. (5.2) 

Substitution of (5.1) into equations (1.4)-(1.5a) leads to the two 
invariance conditions a = 28 and B =,a+@ which together imply that 
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a = f3 = 0. Thus, (5.2) becomes 

rl = Yp - YlY9 f(n) = y2h F, h(n) = y21n w (5.3) 

and the von Karman equations are reduced to a fourth order orindary dif- 
ferential equation which both f and h must satisfy, namely 

ag (iv> f 4bg'g"' f 6c(g')2g" + 3b(g1f)2 + d(g+ = 0 (5.4) 

where 4 4 4 2 
Yl 

a = yi + yty2 + 2 - ; y1 

y2 
b = y; + 2~; +F ; y1 Yl c=y2+3+2-; 

y2 y2 y2 

4 2 
Yl 3 d=1+4+22; 

y2 y2 

We observe that under the action of the spiral group, the original set of 
partial differential equations is not only uncoupled, but also transformed 
in such a way that the invariants f(n) and h(q) satisfy the same differen- 
tial equation. 

have 
Consider equation (5.4) with yl = y2 = 1 and II = g'(?l). We then 

u "' + 4uu" + 6u2u1 -I- 3(~')~ + u4 = 0. (5.5) 

This equation ii linearized by raising the order. The transformation 

y' = uy 

gives rise to the sequence 

Y” = y[u’ + u2] 

Y 111 = y[u" + 3uu' + u3] 

y(iv) = y[p + 4uu" -I- 6u2u' + 3(~')~ + us]. 

Consequently, the truth of (5.5) implies that 

A 0, 
dq4 

whereupon the solution for u is 

u = y'/y = 
3A3q2 + 2A277 + Al 

A3n3 + A2n2 f Aln + A0 

3n2 + 2Ar1 + B = 
Q3 -t Au2 + Bo + c 

. 

(5.6) 
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Whereupon, 

g(n) = ln[?13 + An* + B?l + C] + D. (5.7) 

Since both f and h must satisfy (5.4), it follows that f(n) = h(n) = 
g(o) is an exact solution with four arbitrary constants A, B, C and D. 
Hence 

F = w = c[q3 + in* + Brl + Cl, G = eD, ?J = x-y 

constitute a set of exact solutions to the von Kannan equations. 

Remark 2.2. For the time independent problem other linear combina- 
tions of X2, X3, X4, X5 (without a/at), X6, Xg, Xg, X12, X13, Xl4 (with 
fi(t) = constants) can be used to generate solutions. Some of these may 
be the same as can be ascertained by examination of the commutator table 
and the splitting-nonsplitting analysis. That is not shown here. 

6. THE TIME DEPENDENT EQUATIONS; Equations (1.4) and (1.5b) will 
be studied here using the dilatation generator X5. The group invariants 
are 

3 = x/Jt; q = y//t; F = f(r;,n); w = h(<,rl). (6.2) 

This transformation results in the following partial differential equations 
for the functions f and h: 

2 a2h 2 A f = (acall) _ a2h 2% ; 
ac2 au* 

2 2 a2h A*h = - + (32 q + q2 2 f 2517 m ah 

as au 
+ 3C x f 311 an ah) 

+ (a2f a2h + a*f a2h -- --3 
an2 aG2 at2 an2 

2 a2f a2h 
aSar(& 

(6.3) 

(6.4) 

If, at this point, we attempt to reduce equations (6.3) and (6.4) by 
re-applying the dilatation group, we discover that such a reduction is 
not possible. However, we can find solutions of this system by considering 
the action of the rotation group 

t = 3cos a - r\sin a; 

rl = <sin a + ncos a. 

As indicated previously, the invariants of this transformation group are 

z=32+lJ2; f = v(z); h = u(z). (6.5) 

Substitution of these relations into (6.3) and (6.4) leads to two coupled 
ordinary differential equations for u and v, namely 
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a2 [z -- 
a.22 

2 2x1 = - +.& [&)2]; 
az2 

One set of solutions to this system is u(z) = c and v(z) = alzln z + 
ajln z I- a3z + a4 where c and the ai (i = 1,...,4) are constants. It 
thus follows that the time dependent von Karman equations possess the 
exact Solution 

22 22 
F = al(F)ln(F) + a2 ln( +) + a3(+) -t a4; 

w=c 

If we choose u(z) = v(z) in equations (6.6) and (6.7), then we 
obtain the following.equation for v(z) 

+ & [z(g)2] = $ [2z s + z2 +I, 
a2 

from which a first integral can be obtained. It follotis that 

2 dv 
Jy + Y, 

(6.6) * 

(6.7) 

(6.8) 

where y is a constant of.integration. For z # 0 we can solve for dv/dz 
in (6.8) and obtain v(z) (and thus u(z)) after a quadrature. 

An alternative way of dealing with equations (6.3) and (6.4) is to 
look for solutions of the form f = g(z) and h = p(z) where z = S-0. 
Under such a transformation, equations (6.3) and (6.4) become linear 
equations 

d4p 1 
dZ4 

2d2p 3 i.P=, 
+16’ dz2+iGzaz l 

(6,9) 

The first of these equations can be readily integrated to give g(z) = 
.=lZ + c22 + c3z + c4 for constants ci (i = 1,,,,,4), Information about 
the stress distribution in the middle surface of the plate can then be 
obtained since 
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implies that 

‘I: =d 
6cl (x - y) 

XY X 
=o + 

Y Jt 
f 2c21. 

Equation (6.9) has two classical solutions ei = sin(z2/8) a d 
pi = cos(z2/8) and a third solution of the form p3 = /sin(t-T)f 3Y2dT, 
t = z2/8. (These solutions are due to our colleagues Frank Stallard 
and Thomas Morley.) 

7.0 OTHER POSSIBILITIES. The four groups considered (dilatation, 
rotation, translation and spiral) are not the only-ones under which the 
van Karman equations remain invariant. To illustrate another (among 
the many) possibility consider X4 + &Xl, i.e., the invariants are 
obtained by integrating 

ry & - x 8 + E ~lI(x,y,t) = 0 

where E is a constant. The invariants are 

r = (x2+y > 2 l/2 and I=sin -1 x * Et 0 r 

Consequently, solutions of the form 

F = gk2+y 
2 l/2 

> 
-1 x 

, sin --Et] ' r 

with a corresponding form for w can be sought. 

(7.1) 

It should also be noted that these analyses yield invariant solu- 
tions of the differential equations alone. It may not be possible to 
match these exact invariant solutions to general auxiliary conditions 
such as prescribed boundary values or energy conservation integrals. 
However, these solutions are interesting since they are often 
asymptotic limits of other solutions. 
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ON THE CONTROL OF A LINEAR STOCHASTIC SYSTEM WITH 

FINITE HORIZON ("1 

P. L. Chow and J. L. Menaldi 
Department of Mathematics, Wayne State University 

Detroit, Michigan 48202 

AUSTl~CT. We consider a dynamic system whose state is governed by a linear 

stochastic differential equation with time-dependent coefficients. The 

control acts additively on the state of the system. Our objective is to 

minimize an integral cost which depends upon the evolution of the state 

and the total variation of the control process. It is proved that the 

optimal cost is the unique solution of an appropriate free boundary problem 

in a space-time domain. Uy using some decomposition arguments, the problems 

of a two-sided control, i.e. optimal corrections, and the case with con- 

straints on the resources, i.e. finite fuel, can be reduced to a simpler 

case of only one-sided control, i.e. a monotone follower. These results 

are applied to solving some examples by the so-called method of similarity 

solutions. 

I. INTRODUCTION. The optimal control of a stochastic system has a wide range 

of applications, such as optimal production scheduling, inventory control, 

investment policy, as well as the traditional problems in guidance and the 

(;'c).. . lhls research has been supported in part by the U.S. Army Research 
Office, Contract DAAG29-83-K-0014. 
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trajectory tracking, (see, e.g. [l] - [91). The stochastic models are 

commonly used in favor of the determinisitc ones because of the ever 

presence of noises and uncertainty. 

In this article, we consider the evolution of a randomly perturbed 

system whose state, under an additive control action, is governed by an 

ItZ's equation. The objective is to minimize the expected total cost over 

a finite horizon, with or without the constraint on the total resources. 

The methods of analysis are based on the dynamic programming technique [lo] 

and the variational inequalities [ll]. The main results to be presented 

here are taken from our recent joint paper [12]. We show that the optimal 

cost function may be characterized as a unique solution of a free-boundary 

problem for a certain parabolic equation. The optimal control is given by 

a reflected diffusion from the free boundary. Our decomposition and re- 

duction theorems allow us to deal only with the one-sided control without 

resource constraint. This simplifies the general problem considerably. 

As a cancretc example, a special case is solved explicitly with the aid of 

the so-called similarity solution. Even though the analysis is done in one 

dimension, most results may be extended to higher dimensions. 

II. STATEMENT OF TRB PROBLEM. In this paper, we wish to control a linear 

stochastic differential equation in the sense of It8 by using additive 

strategies, i.e. the evolution of the state is governed by 

I dy(s) = MS-t.) f (a(s>y(s) + b(s))ds f g(s)ds(s-t), s z t , 

r(t) = x f w(O) I 
(I 

where a(s), b(s) and 02(s) stand for the drift and the covariance terms, 

and x is the initial state at the time t . (w(s), s 2 0) stands for the 
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control which is a progressively measurable process with locally bounded 

variation. 

To each control v in V , the class of admissible controls, it is 

associated with'a cost given by the payoff functional 

Jxt (VI = E[JT f (y(s) ,s~=p~-~s or()c)dX)ds I- c(t)u(O) 
t t 

+ JT c(s)exp(-Js a(h)dh)du(s-t)] , 
I t t 

where f,a,c and T are respectively, the running cost, the discount factor, 

the instantaneous cost per unit of fuel and the finite horizon. 

Our purpose is to characterize the optimal cost 

E(x, t) = inf{Jxt(u) : v in V} (3) 

and to construct an optimal control 0 , i.e. 

0 in V such that G(x,t) = Jxt(<) 

for each initial state (x,t> . 

A similar study will be made for the optimal cost 

C(x,z,t) = inf{Jxt(V) : w in V, w(T) S 23 I 

where the positive constant z stands for the total amount of fuel available. 

This is associated with the previous cases under constraint of resources. 
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III. MAIN RESULTS. Consider the differential operators 

Au = -w- Mt)x -f- b(W 

and 

Bu=-$$ - c(t) . 

(6) 

(7) 

A heuristic application of the dynamic programming to the problem (l), (2) 

yields the following Hamilton-Jacobi-Bellman equation 

(Au - E) v BU = 0 in IR x [O,T) , 
(8) 

u(.,T) = 0 in IR , 

where x V y denotes the maximum of the two real numbers x and y , Equation 

(8) may be used to characterize the optimal cost 6 given by (4), for which 

the control is one-sided. 

For the corresponding problem with finite resources, we have the following 

Hamilton-Jacobi-Bellman equation 

(Av - f) V B'v = 0 in IRx (0,~) x [O,T) , 

v(*,*,T) = 0 in BtX LO,=) , 

Av = f in IRX 103 X [O,T) 

(9) 

to be satisfied by the optimal cost G given by (5) , where 

av av B'v i- _ 7 
az dx - c(t) . (10) 

We assume that a(t), b(t), o(t), cr(t), c(t) are Lipschitz functions 

from [O,T] into IR and either c(t) z co > 0 for every t or c(t) = 0 

Ear every c , and E(x,t) is a smooth, positive function SarisEying certain 
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growth properties. Then the optimal cost c can be shown to be the unique 

solution of the following free boundary problem 

A^u = f and BG 5 0 if x 2 x*(t) , 

A& 5 f and BG = 0 if x s x"(t) . 

where the free boundary x = x*(t), t E [O,Tl , is defined by 

x*(t) = inf[x :z (xst) + c(t) > o} l 

(11) 

In general we have obtained the following results: 

(Rl) Decomposition Theorem. Suppose that G(x,t) and G(x,z,t) are the 

optimal costs for the unlimited and limited resources, respectively, and 

u'(x,t) be the cost (2) without control (V 3 0) . Then the optimal cost 

G can be decomposed as follows: 

where 

+(x,z,t) =-G(x,t) + h(x+z,t) , (13) 

h(x,t) = u'(x,t> - ti(x,t) . (14) 

(R2) Reduction Theorem. If the running cost function f is symmetric about 

the trajectory x=x 0 so that 

f(x,t) = f[2x0(t) -x,t] + B(t) 

for some function B , then the optimal cost ^u for a two-sided control has 

the property 

G(x,t) = G(2x0(t) -x,t) + z(t),(x,t) in IRx [O,T] , (15) 

with 
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j(t) = ST [B(s) +b(s)c(s) f 
t 

cr(X)dX)ds . (16) 

Because of this symmetry, one may reduce the problem to the case of one-sided 

control. 

(R3) Optimal Policy. Let x = x*(t) be the free boundary for a one-sided 
;k 

control. Then the optimal policy is to keep the evolution y(t) 2 x (t) 

with the minimum use of resources, that is 

;k 
y(s) 2 x (s) for sat, 

d$(s-t) = 0 if y(s) > x'24 , 

if x > x*(t) 
v(O) = 

otherwise . 

(17) 

The optimal control is determined by the equation (1). 

In view of the above results (Rl) - (R3), to construct an optimal policy 

for the two-sided control with QT without the resource limitation, we only 

.need to solve the problem of the one-sided control wibh unlimited resources. 

Therefore our results yield a drastic simplification in treating the general 

problem. 

IV. EXAMPLES. To illustrate our results, we shall consider some examples. 

We assume that the coefficients a,b,a,a in (1) and (2) are constant, and the 

running cost f(x) is time-independent, In addition, let c(t) q 0 , i.e., 

the cost for control is negligible. For a > 0 and b < 0 , the equation (1) 

may be interpreted as an inventory model for which the rate of demand decreases 

as the stock increases. On the other hand, if a C 0 and b > 0 , it becomes 

the Lagenvin equation describing the motion of a Urownian particle in izhe 
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gravitational field, Then the problem pertains to the control of an Ornstein- 

Uhlenbeck process. 

nor unlimited resources, the average cost (2) yields 

Jx,(u> ={EJT f(y(s))emasds] l 

t  

By our result (Rl), the optimal cost 6 must satisfy 

A# = f and ~ZZ 0 if x2x*(t) , 

a; 
boG h f and K = 0 if x 5 x*(t) , Osts;T . 

where 

AOu = 
au 1 2 a2u 

-z-p --& (axi-b) &i-au , 

(ia) 

(19) 

(20) 

x+(t) = inf{x : $(x,t) > o] . (21) 

To construct the solution "u for x z x*(t) , we let s = (T-t) soOthat 

(11) gives the following free-boundary problem 

(ax+b) 

I and 

“vzo, 
3X 

for x > x*(T-.s), OSssT, 

1 v(x,O) = 0 , 

SJ 
axI =o I 

x = x*(--s) 

(22) 

where v(x,s) = fi(x,T-s) . 

307 



By a proper change of variables, the system (22) may be reduced to a 

free-boundary problem for a heat equation. Then, by applying the method of 

similarity solution, the free-boundary is found to be 

6 lde-2a(T-t) l/2 b 
x*(t) = 2 I -- 

a I a' OstsT, 

where the parameter 6 is determined by the equation 

(23) 

(24) 

This may be solved numerically to yield 6 = -0.6388.., . 

Now, suppose the rcsourcc w for control is finite so that 0 s v(T) 5 z . 

The optimal cost c(x,z,t) can be decomposed, according to (Rl) into two simple 

problems. That is, 

hv(X,%,L) = uyxl-x,cr) - [tl(x+z,t) - ;I(x,t)] (25) 

where :(x,t) is the optimal cost without resource constraint, while uO(x, t> 

is the cost of free evolution. Therefore it must satisfy 

AOuo = f , Ort<T, xClR, 

u'(x,T) = 0 , (26) 

uO(x,t) = O(lf(x)l) as 1x1 + - , 

where A0 is defined by (20). The equation (26) may be solved to give 
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X (l+2aAjBf[,(li-2ax) -l/2 
P +dXdp , 

(27) 

5(x, t> = icx +$) ,a(T-t) , 

7(t) = (2a)-l[e2a(T+ - 11 . 

Note that the free boundary, given by (23), remains unchanged. In 

particular, for m=2 , this problem may be solved explicitly. 

We wish to point out that, for the optimal correction problems, the 
case of vanishing cost, c=o > is less interesting. In this case the optimal 

policy would be to counteract the noise as long as the resources remain 

available so that f(y(t),t) is kept to the minimum. 
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SINGULAR FREE EOUHDARY PROBLEM 
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ABST?ACT 

We study the Cauchy problem 

( Ut = 4(uxlx, (x,t) e R X R+ , 

4 
I u(*,O) = f 

with the piecewise linear constitutive function S(E) = 5, = max(Or5~ and 

with smooth initial data f which satisfy xf'(x) > 0, x e R, and 

f"(0) 3 0. We prove that the free boundary s, given by u,(s(t)+,t) = 0, 

is of the form 

s(t) = 47 + O(JTl, t+o+, 

where the constant K = 0.9037... is the (numerical) solution of 

nonlinear equation. Moreover, we show that for any a 8 (0,1/2), 

a particular 

d2 - f(s(t))l = 
'dZ 

0(t 
a-l 

1, t-to+. 

The proof involves the analysis of a nonlinear singular integral equation. 

AMS (MOS) Subject Classifications: 35K55, 35K65, 45605 

Key Words: Cauchy problem, parabolic, nonlinear, free boundary regularity, 
nonlinear singular integral equation 
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A NONLINEAR INTEGRAL EQUATION OCCURRING IN A SINGULAR FREE BOUNDARY PROBLEM 

Klaus Hsllig 1,2 and John A. Nohel' 

1. Introduction and Result. We study the Cauchy problem 

(1) 
Ut = Q(u 1 x x' 

U(',O) = f 

(x,t) E! R X R+ , 

with the piecewise linear constitutive function 9 : R + R+ given by 

9(C) = 5, = max(E,O )i the initial data f : R + R are assumed smoo+h, specifically 

f e C3&) with bounded derivatives , and satisfy the conditions 

I 

xf'(x) > 0, xea, 
(2) 

f*(o) > 0 . 

One motivation for the study of the Cauchy problem (l), (2) iS its similarity with the 

well-known one phase Stefan problem (in one space dimension) [3,4,7,81 in which one would 

assume f'(x) Z -1 for x < 0, as well as f'(x) > 0 for x > 0, so that f' has a 

jump discontinuity at x = 0. The assumption (2) yields a different behavior of the 

solution u and of the resulting free boundary. Indeed, here (c.f. ,the Theorem below), 

the free boundary s, given by p(s(t)+,t) = 0, is of the form 

(3) s(t) = --kJt + Oft 
1/2+a 

1, t+o+, 

where k is a positive constant and 0 C a C l/2. Thus, the function s is not 

(infinitely) differentiable at t = 0, contrary to the situation for the Stefan problem 

t71. 

The result (3) is established by solving a nonlinear integral equation ((15) below) 

with kernels which depend on the unknown function s and which are also singular in the 

1 Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. 

2 This material is based upon work partially supported by the National Science Foundation 
under Grant No. MCS-7927062, Mod, 2. 
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sense that the integral on (0,t) of the k ernel. does not approach zero ai t * O+. One 9 

consequence of this is that the integral operator defined by (IS) is not compact in a 

suitable Hijldcr class.. 

. The principal motivation for the study of the Cauchy problem (11, (2j is that it 

serves as a prototype of nonlinear parabolic problems which arise as monotone "convexifica- 

dons" of nonlinear diffusion equations with nonmonotone constitutive functions + (see 

[Sl and 161); in 16, section 41 the reader will also find the formulation and preliminary 

analysis of such a convexified problem, corresponding to a piecewise linear nonmonotone 4 

(specificallly, +‘((-,a) U (b,O)) > 0, +'(a,b) < 0, 0 < a < b c 0). The analysis in [S: 

shows the existence of infinitely many solutions u of the nonmonotone problem, each 

having ux bounded, and ux omitting the values in [a,bl; thus each solution u 

exhibits phase changes. Numerical experiments further suggest the conjecture that the 

"physically correct" solution of tiie nonmonotone problem is the one which, as t + -, 

approaches the unique solution of the appropriately related convexified monotone pr&lert. 

However, for small t > 0 the behavior of the solution of (l), (2) is qualitatively 

different (see (3)). The present study of (11, (2) is intended as a step towards the 

understanding of this intriguing phenomenon. The relation of the convexified problem in 

161 to the Cauchy problem (11, (2) is clear (the particular boundary conditions in [6] do 

not play a role in the analysis of the free boundary curve). 

It is simple to give a formal explanation for (3). We rewrite (11, (2) as the free 

boundary problem 

(4a) 

I 

Ut = 'kx# s(t) < x < 0, tea+, 

u,(s(t),t) = 0 

U(' ,O) = f . 

Fran the constitutive function (p one also has the equation 

(4b) 
I. 

Ut = 0, -9 c x c s(t), t e R+ 

u(*,O) = f . 

Therefore, assuming the continuity of u across the free boundary B(t) and assuming 

that s is monotone decreasing (c.f. paragraph preceding the Theorem), we have 

313 



(51 
u(s(t),ti = f(s(t)), t e a+ , 
s(O) = p . 

Differentiating (5) with respect to t and using \(s(t)+,tj = 0, where "i-" denotes 

the limit from the right, we obtain 

(6) f'(s(t))s'(t) = uxxMt)+,tI . 

Since by the. assumption (21 

f'(x) = f"[O)x + O(1x12,, Ix1 +. o+ , 

a simple calculation formally yields (3) with 1: = 4: (provided one assumes continuity 

from the right of ut and uxx up to the free boundary 8). 

The rigorous treatment of the problem consists of analyzing in Section 3 the nonlinear 

integral equation (15) for the free boundary x = s(t). Our analysis shows that (3) holds, 

but that the constant K is the solution of the nonlinear equation (16); its numerical 

value is K = 0.9037..., and not 'K Q 45 which was predicted by the above formal 

calculation. It also follows that s(t) is smooth for t > 0 thus justifying (5) and (6) 

for positive t; in particular one sees from (6) that s is as smooth as the initial 

function f is. We remark that for t ) E > 0 the problem (11, (2) can also be viewed as 

a one phase Stefan problem: consequently the results in Kinderlehrer and Nirenberg [7] 

yield the regularity of the free boundary for t ) 0. 

The existence of a unique generalized continuous solution for problem (I), and hence 

of a unique free boundary, follows from nonlinear semigroup theory for maccretive 

operators [1,21. Approximating (1) by the implicit Euler scheme one can also show the 

existence of the free boundary s which is HZjlder continuous on . [0,-r) with exponent 

I/2 and monotone decreasing. However, using such general methods, it is not possible to 

analyze the precise b&avior of s at t= 0. 

Our main result is: 

THEORJTM. Define 

(7) 1 r(t) = & f(s(t)) l 

Then for any a e (0,1/2) there exists T > 0 such that r is continuous on fO,Tl and 

satisfies 
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(8) t '-%Vt)l < c.(f), O<tCT, 

where c(f) > 0 is a constant which depends on the data f. Moreover, (3) holds with 

K := ‘(2 $$J2 = 0.9037... . 

The constant K is the (numerical) solution of equation (16) in Section 3; 

By the definition of K, the result (3) follows from (7) and the assertion (8). To 

see this, we solve (7) for so fret R(t) = It r:('l)dT and integrate (7) obtaining 
0 

R(t) = f(s(t)) - f(O) . 

Define the function q implicitly by 

Since we assume that 

(9) f(x) - f(0) = B2x2 + O(lx13), 1x1 + 0 + , 

(p2 = f"(o)/2), g is well defined for small 1x1 and 

(10) g(x) = -SC f O(lX12), 1x1 •c 0 + . . 

For a small interval ['J,Tl I the monotone decreasing solution of (7) is given by 

(11) s(t) = g(JRol), OCtCT, 

and (3) follows from (8) and (10). 

The Theorem describes the xegularity of the free boundary at t = 0. It is sharp in 

the sense that, unless f'"(O) = 0, the estimate (8) does not hold for a > 1/2 (c-f. the 

Remark at the end of the paper in Section 3). 

It should also be observed that the second derivatives of the solution u are not 

continuous at the point (x,t) = (O,O), because using (6), (7) and the definition of K 

one has 
2 

lint uxx(s(t)+,t) = r(O) = $- f"(O) f lim %,(x,0) = f"(O) . 

t+o+ x+0 
+ 

Bowever, on the set f t : f'(s(t)) < 01 the free lxmndary s is as smooth as the 

function f. This can be shown by a bootstrap argument , using standard regularity results 

for the heat equation on a domain with curved boundaries. We believe that the Theorem can 
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be extended to i general monotone constikutive function 4 with- $'(*I discontinuous at 

0 and with $'(s) > c > 0, 5 e R+; the corresponding value of K will depend on 

The Theorem is proved in Section 3 by solving an integral equation for the function 

r derived in Section 2. 

We are grateful for helpful discussions with our colleagues Tom Beale, Carl de Door, 

Michael Crandall and manuel Dibenedetto; we also thank Fred Sauer for the numerical 

computations. 

2. The Integral Equation for the Free Boundary. Let 

r (x,t) 1 := - --l/2 t 
2fT; 

‘XPC’ <I 

denote the fundamental 'solution of the heat equation. Let v := ux be the solution of the 

problem 

1 

Vt = Vxx# (x,t)-e nT := E(x,t) : x > s(t), t e (O,T)) , 

(4a') v(s(t),t) = 0 

v(=,O) = f' 

and assume that the free boundary s satisfies s e C[O,T] fl C'(O,Tl. Integrating Green's 

identity 

- Z,t - T)vpJ) - & r(x - 5,t - r)v(c.,r) ) 

- k (l-(x - E,t - T)V(S,-r)) = 0 

over the domain n t 
ws obtain, for x >. s(t), the representations 

(12) v(x,t) = !‘ I-(x - S,t)f'EIdS - It r(x - s(t),t - t)v (s(r),T)dT , 
0 E 

(131 
m 

v,(x,t) - ( rcx - E,t)f"(E)dS - It - s(t),t - t)v (s(r),t)dT . 
0 0 

rxb 
5 
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Passing to the limit, x + s(t)+ in (13) yields 

(14) 
00 t 

r(t) = 2 j T(s(t) - t;t)f"(5,d5 - 2 I rx(s(t) - s(T),t - rIr(r)dr , 
0 0 

where (see ('6) and (7)) r(t) = & f(s(t)) = vxkW,t). The justification for this 

passage to the limit is contained in the following result. 

LEMMA 1. of s e c( ko,rcl) n c’( (0~3) r e C( [O,T] 1, we have for t<T 

lim It [r (s(t) 
x$5(t) 0 x 

- s(r),t - t) - rx(x - s(t),t - T)lr(f)dT 

Proof. We write 

It [***]r dT = 
0 

(x - s(t)) 
exp(- 4tt - T) 

r(t)dr =: 

In view of the assumptions on s and 1: it is easy to see that, for v = 1,2, 

rlt IJ < Ilt 
t-6 

0 t-6 
I"1 + II 

0 
I"1 c O(G) + c*o(lx - s(t)11 

which implies that+ 

1ilE It I" = 0, v = 1,2 . 
x&s(t) 0 
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Finally, implies that 

lim It 13 
x Is(t)  0 

+t) l 

3. Proof of the Theorem. We write the integral equation (14) in the form 

(15) r(t) = f ;- exp(- 4 (y - C)2)f"(E&dE 
f 

' I' +- A(s.t,T) exp(-n(s,t,r)2)r(t~)d~ =: (Fr)(t) + (Kt) (t) , 
Go '-= 

where 

A(s,t,f) :- 
s(t) - s(tt) 

ztt - t-c) 
l/2 ' 

It will be convenient to introduce the class of functions Ha[O,T], 0 < a C 1, 

defined by 

/j=[O,T] = {p : tO,Tf+ R : bl, := sup 't '-=lpvt)l c 4 l 

O<t<T 

The class Ha ', is obviously contained in the HZilder-class with exponent C. 

The Theorem is a consequence of: 

PROPOSITION. For any a @ (O,l/2), the integral equation (151, with s related to r 3241 

(ll), has a solution r e Ha[O,T] for some T > 0. The constant K := Jr(O)/B 

(B2 = 5 f"(0)) does not depend on f and is implicitly determined by the equation 

(161 exp(-(5 + c)2)dc = 

1 

41-1 + G, 

the numerical value of k & 0.9037... . 

REPLARK. The Proposition does not assert uniqueness of the function r (hence of the free 



botindary 8) which could be established by showing that the operator F+K in (15) is a 

strict contraction; this is technically even more complicated #an cur proof. However, the 

uniqueness of r is a ccnsequence of the uniqueness of,solutions of the original problem 

(1) discussed in the Introduction. 

We prove the Proposition by iterating the integral equation (15) in the form 

(17) ‘n+l "Fr +Kr n n’ nE!B; 

with r(O) = r. = ti2B2, where K is the solution of (16) and 8’ = + f"(0). 

We shall. show as a consequence of Lemmas 2 and 3 below that, for r e Ha with 

r(O) = K2B2, 

(18) lim .(Fr)(t) = 

t+0+ 

(K + 02m2aE , 

(19) 
1 lim 03)(t) =-q 5 1 21 . fT exp(- 

t+o 
+ 

0 

41 - 

T(1 

+ 

4’;) 

> - ; g)E2e2aT , 

Since K is l-he solution of (16), this implies that r,(o) = E2B2 for n e M. 

Moreover, we shall establish the a priori estimates: for r @ /fat&T], 0 < 0 < l/2, 

(201 IFrl, < c(T) f (c,(a) + c(T))l=la , 

where c,(a) = 
K” 

exp(- and 
G(l + a) 

(21) IKrl, C (c,(a) + c(T))lrla , 

where c,(a) = c2,(aj + c22(a) with 

c2,(a) -“I’ ‘Iz exd- 21 - 

24; 0 41 - t(1 + 4;) 
4 K -)ar f; 

1 + 4; 

, 

k(1 + c,,(a) - 1 2a) 2 I1 1 - T1/2+a = 

(l-T13/z 

(, _ K 

JY(2 
4c) x exp(- /r-T) aT , 

+ 4a) 0 1 + fT 
$ 

1 + 47 

and where c(T) is a constant such that c(Tj + 0 as T + 0+, uniformly for 
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r e Ip : IP( + IPI, < const.1. 

We first use the estimates (20), (21) to complete the proof of the Proposition. 

Combining the estimates (20) and (21) one has 

(22) Ir n+,la < c(T) + (e,(a) + c2(a) + c(T) 1 Ir,j, m 

Crucial for the following argument is the fact that 

1 1 
c,(y) + c2q = 0.339... + 0.453... =: w < 1 e 

Set i 
1+0 :=-< 1 2 and choose a e (0,1/2) close to l/2 and T>O such that for 

all r e Ha with r(O) = .2B2 and Irl, C h 
1 --w 

,c, (a) + c2(a) + c(T) < ii . 

Pt should be observed that if one chooses a > l/2 then we cannot prove the crucial 

estimate (201, cf. eeg. (241.. By (221, we have 

Hence we can select a subsequence of rn which converges in C[O,TI to a function 

roP e HatO,Ts] with r=(O) = ~~8~. set sn := g(f<). To pas5 to the Limit in (17) note 
s (t) 

that by Lemmas 2 and 3 below the expressions exp(- a (- - E12) and 
Abn.t,T) ft 

1 
n + -1 

-r exp(-a(sn,t,r)2) converge pointwise (for and are majorized by 

integrable functions, uniformly in n C 1. This completes the prOOf of the Ropcsition an? 

of the Theorem. 

Xt remains to establish the assertions (18)-(21). We require two auxiliary results. 

We denote by c a generic constant which may depend on a, Irl, and T, and we assume 

throughout that T = T(lrl,,a) is sufficiently small. 

LEMMA 2. For reH a, a e (0,1/2), with r(O) = K2B2 we have 

Is(t) * KfTI < ct’/2+a ~ 

Proof. Note that Ir(t) - r(O)1 G eta and therefore (R(t) - r(O)ti G ctl*. Using (lOi, 

(11) and this inequality one has 

Is(t) + .&I = 1 g(fR(t)) + .f:I G I+-'fx + Kf:I + Ct < d"2* + ct . 
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LF.MMA 3. For r e Ha with r(O) = K28-2 we have , 

tA(s,t,t,l < c 1-J= c/i . . 
r 

Jl - f 1 i-G 

Proof. Using f'(s)s' = r, (9) and Lemma 2, we obtain 

t 
Is(t) - s(tr)l = Ilt r(U) 

TV f'(S(UI) 
da 1 < c ( (2&f; - cu1'2+a)-1du < cc& - 6 i 

tr 

this establishes the claim by the definition of A(s,t,r). 

Lemma 3 shows that the kernel corresponding to the operator K in (15) is 

integrable. Moreover, we see from Lemma 2 that 

(23 1 Aoh) 
K 1 - f; := lim A(s,t,t) = - - - . 

t+O 
+ 2 fl - f 

Using this and Lemma 2, we can pass to the limit in (151, thus establishing (18) and (191. 

Roof of (20). To estimate the norm of FL", use the definition in (15) to form 

d(Fr)(t) 1 m 
I =p(- z 

2 1 
dt =zo 

' (7 - 6) ) F t-"2~f'"(&IdS 

As t&o, the term in square brackets tends (use (9)) to 

- S)exp(- - : (‘K - E)2i262dE 

2 =-- 
f7 

B2exp(- a K2) = 2(1 + a)rB2cl (a) . 

Therefore, 

(24) I 
d(F;;(t), < &/2 4 (2(1 + a)r62cl(a) + Z(t)) I& (- s(t))J . 

4: 
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d s('t) 
It r@mains to estimate - - 

dt 47' 
Using (7), Lemma 2, (9)'and (10) we have 

s'(t) I- 
4:. 

1 I- 
2 

u, = t-3/2, 
t3/2 f'(:;t))l Itr(t) - + s(t)f’(s(t))l 

< tg3'2t-'"(+ B"lc" + G(t))[ltr(t) - B's(t)21 + k3'2] 

+ -' + &t))[Jtr(t) - R(t)1 + &3'2f . K 

A simple calculation shows that 

(25) Itr(U - R(t)! < j+ t'+'lrl, c 

and this yields 

(26) 

Combining (24) and (26) proves (20). 

We next turn to the proof of (21). We write (cf. (15)) 

b exp(-A2)Tr8(tr)dr 

- 2A2)exp(-A 2dA ) z r(tT)dT =: (K,r)(t) + (K2r)(t) 

and estimate each term separately. 

(i) Since Ir'(tT)l < (tT)a-lIrl a ' it follows from (23) that 

(27) l(K,r)(t) I < (c2, f dt))tO"lrl a ' 

(ii) To estimate K2r we first consider the term s A(s,t,r). Using the definition of 

A and (7), we obtain 

2(t - tT) 
‘3 g- (' s(t) 

dt 2 
- =y = e’(t) - (tT)s'ttr) - 4 s(t) + + S(tzTT) = 

(t - to2 

I td - (as'(a) - 
tT da 

$ s(Ui)do = It (3 
t-r 

i.e. 
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‘m3) 

with 

a i --1 
dt= F t (t - tt)-1’2 It (Q,(u) + Q2(a))du 

tt 

Q,(u) := a r’ (cf) 
f’ (s(u)) 

Q, (~1 := s' (u)($ - Q -"(S(y) * 
f'(s(cr)I 

We estimate each term separately. By Lemma 2 and (91, we have 

(29) It IQ,(u)ldu < It a ’ 
tr tr 2S2KfG _ cul/2+a d” ’ 

(5 1,21+ a f3-2K-1 + c(t))t1’2+a(l - r”2+yIrl 
a ’ 

We write Q2 in the form 

Q2(U) = r(u) 

f'(s(uI) 
3 (4 (f’(g(fz)))2 -  ur(u)f”(s(u))) l ’ 

Since by (91, (10) and Lmm 2, 

1; (f’(g(fz)l)2 - 2B2R(U)l 

Iur(u~fw(s(u)) - 2B2ur(u) 1 

we obtain, using also (251, 

c z2 , 

(301 

(1 1 
4 (1 + a)(1/2 + a) 

B-2K-1 
+ C(t) )t1’2+(‘(1 - T”2+a) Irl 

a ’ 

Combining (29) and (30) with (28), it follows that 

(31) I(K2r)(t)l < ’ ’ 
4 l/2 + a 

pr-‘(, + 2 - 2 , +lLI)(l + c(t))t'-'lrb 
u 

' I' ' - t1'2+a x- 
f70 (1 

A (h-p(-Ao(~)2)(~ + c(t))r(O)dr . 
- ,)3/2 0 
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Adding the estimates (27) and (31) proves (21). 

Remark. We conjecture that, for smooth initial data f, the function r(t2) is smooth, 

i.e. 

(32) 

Assuming an expansion of the form (32), we can calcul.ate the coefficients rl/2~rl~m~w 

from the integral equation (151, In particular f'"(0) # 0 implies that rl,2 # 0. This 

shows that (8) is, in general, not valid for a > l/2. 
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NONLINEAR INVERSE HEAT TRANSFER CALCULATIONS IN GUN BARRELS* 

Alfred S. Carasso 
Center for Applied Mathematics 

National Bureau of Standards 
Washington, DC 20234 

'ABSTRACT 

We consider the problem of determining the temperature history inside a gun 
barrel from embedded thermocouple measurements at some distance away from the 
inside wall. This inverse problem leads to an improperly posed initial value 
problem for a nonlinear system of partial differential equations, whenever the 
thermal properties are temperature dependent. We discuss a step-by-step 
marching algorithm for the numerical computation of such problems. The scheme 
is stabilized by appropriately filtering in the frequency dcmain at each step. 
We illustrate this technique with a numerical experiment on a nonlinear 
problem whose exact solution is known. The basic ideas are applicable to 
other unstable evolution equations. 

. 
I. Introduction 

This report summarizes the results of an important computational 
- 

experiment on a nonlinear inverse heat conduction problem whose 

exact solution is known. We consider the prr )lel,l of determining 

the temperature history at the inside wall ot a gun barrel, from 

embedded thermocouple measurements at various points in the annular 

metallic region between the inner and outer radii of the cannon. 

As the shell is fired, a continuous trace is recorded at each 

thermocouple, providing temperature as a function of time at the 

corresponding fixed spatial location. 

* Research sponsored by the U.S. Army Research Office 
under MIPR No. AR0 63-62 
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The present study centers around a novel computational technique 

designed especially for coping with the nonlinear case of tempera- 

ture dependent thermal properties. It is a sequel to [l] where the 

linear quarter plane problem with constant coefficients, was tho- 

roughly analyzed. .As was shown there, in that case, the inverse 

problem can be formulated- eitheras a Volterra integral equation 
. 

of the fi'rst kind, or equivalently, as an *initial value problem 

for the one dimensional heat equation run sideways. Either formu- 

lation leads to an‘improperly posed problem in which the solution, 

when it exists, depends discontinuously on the data. 

The inverse problem can be regularized in the L2 norm by placing an 

a-priori bound M on the norm of the unknown temperature history, 

-f(t), at the inside wall x = 0, at the same time, the measured noisy 

temperature data g (t), at the location x = R > 0, is regarded as 
m 

differing by at most E in the L2 norm from unknown smooth exact data 

g(t), for which a solution exists. It is assumed that E and M are 

known and compatible. As shown in Cl, equations (2.20), (2.21)] this 

leads to explicit formulae for the temperature and gradient histories 

at each fixed x, 0 < x < R. Also, error estimates are obtained for 

the regularized solutions implying Hb'lder continuity with respect to 

the data, for each fixed positive x. These estimates degenerate at 

the wall, [l, Theorem I]. 

The regularization procedure can be interpreted as solving the 

initial value problem for th e sideways heat equation with appro- 

priately modified initial data. An explicit finite difference 
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scheme consistent with that problem is shown to be unconditionally 

convergent, when used with the filtered initial data, Cl, Theorem 31. 

This step-by-step marching scheme in the x-variable is the basis for 

our approach to the nonlinear case of a temperature-dependent dif- 

fusion coefficient. We regularize the calculation at each step by 

filtering in the frequency domain, using FFT algorit,hms; we then 

return to the physical variables for the calculation of the next 

step. The filtering function used at each step is that determined '-- 

by the related constant coefficient problem. This algorithm is 

outlined in Cl, Section 73. 

In order to test the robustness of this procedure, an example was 

manufactured with a known exact solution. This is a fictitious 

mathematical problem, artificially created so as to have a solution 

which simulates conditions presumed to exist in a 155mm cannon. The 

relevant parameters were made available to us by Dr. A. K. Celmins, 

U.S. Army Ballistic Research Laboratory, Aberdeen Proving Grounds, 

Maryland. The "exact" solution was constructed numerically by 

solving a well posed direct problem as explained below. 

2. The Direct Problem 

Consider the initial boundary value problem 

(2.1) g = i La(u) 21, 0 -< x < L, t > 0, 

(2.2) DEW = f(t), 41 ,t> = h(t), t > o, 

(2.3) UW) = 300" K 
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where t is the time measured in milliseconds, x measured in 

millimeters represents distance away from the inside wall, and 

u(x,t) is the temperature in degrees Kelvin. The heat conduction 

equation (2.1) is a simplification of the actual physical situation, 

in that first order-terms arising from cylindrical symmetry have been 

neglected, as well as ?he variation of specific heat with tempera- 

ture. Moreover, for gun steel. at temperatures between 300” K and 

1000” K, the conduction coefficient a(u) in (2.1) is well approxi- 

mated by a linear function of u, 

(2.4) a(u) = El.299 - 1.144 x 10m3 (u - 255)) x 10-2 mm2/millisec 

We remark that the methodology to be discussed can easily accommodate 

the more exact differential equation, as well as more complicated 

dependencies of a(u) on u . . We shall refer to the quantity 
- 

(2.5) 
au 

w(x,t) = -a(u) rx 

as the temperature gradient, by an abuse of te minology. It is 

measured in mm0 K/milliseconds. In all Figures shown below dealing 

with plots of w(x,t) as a function of t for some fixed x , the 

vertical axis bears the legend "temperature gradient." 

The functions f(t) and h(t) in (2.2) represent, respectively, the 

temperature histories at the inside wall and at lmm away from the 

wall. These mathematical functions are plotted in Figure 1; they 

are constructed so as to approximate observed temperature histories 

in gun barrels? [41. 
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The,direct problem given by (2.1), (2.2), and (2.3) was solved 

numerically, using an adaptive partial differential equation software 

package, NOLlD, [3]. The numerical integration was carried out to a 

distance in time equal to 100 milliseconds. The temperature u(x,t) 

and-gradient w(x,t) were evaluated at various fixed- values of x p 

as.functions of time, and stored for subsequent comparisons. Figures 

2 and 3 show the histories of u and w at x = .25mm. As is 

evident from Figure 3, the numerical calculation of w is not free 

from noise. Nevertheless;we use the term "exact solutYon'! for any - 

history obtained by the above numerical computation of the direct 

problem, All histories are records consisting of 400 equispaced 

samples on the time interval [O,lOO] milliseconds. 

3. The Inverse Problem 

The physical region of interest here is the x interval between 

0 and .25mm. The histories in Figures 2 and 3 simulate what might 

have been recorded by a thermocouple at .25mm away from the inside 

wall as the shell is fired. The object is to use such data to re- 

construct the temperature and gradient histories, arbitrarily close 

to the inside wall. In actuality, two thermocouple readings are 

necessary at x = x0 and x = x1, with x0 < .25 < x1; a well posed 

direct calculation, as in Section 2 above, then yields u and w at 

X = .25mm. As noted in the references given in [I], this type of 

inverse problem occurs in a variety of heat transfer contexts. The 

purpose of our computational experiment is as follows: 

a) To demonstrate the feasibility of the inverse calculation 

in a realistic situation in which rapidly varying solutions 
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and nonlinearity play a role. As may be seen from Figure 1, 

the postulated temperature at the wall rises from 300" K to 

almost 1000" K in the first 10 milliseconds. In this 

temperature range, the conduction coefficient a(u) given 

by (2.4) undergoes a 280 percent change. . 

b) To demonsqrate the robustness. of our algorithm with noisy 

data 'and a fine grid. 

cl The regularized marching procedure we shall use i,s a 

powerful general method, applicable to other ill-posed 

evolutionary partial differential equations, linear and 

nonlinear. As used here, it is an adaptation to the non- 

linear case,of an algorithm which is rigorously justified 

in the constant coefficient dase. While the heuristic L 

"local mode analysis" underlying our regularization is 

likely to be valid in many other cases of ill-posed 

initial value problems, there is a need for well-documented 

realistic inverse calculations. 

Le-t z = R - x and let a,, al be positive constants such that 

(3.1) 0 < a, C a(u) Q al . 

da 
Let b(u) = - , 

du 
and let v(z,t) = u(x,t)- Using (2.5), we may write 

(2.1) as an equivalent first order system 

(3.2) v = w w = v , 0 < i! < 2, t > 0, 
2 a(v) ’ z t 

with the subscript notation used for partial derivatives. 

330 



to be integrated in the direction of increasing z from z = 0 to 

t = k; we use the initial values given in Figures 2 and 3 and the 

following boundary conditions at t = 0, 

(3.3) v(z,O) = 300" K, w(z,O) = 0. 

Let AZ be the increment in the z-variable and let II = (N + ~)Az. _ 

Let v"(t), w"(t) denote, respectively, V(nAZ,t), W(nAZ,t), for' 

O<ntN+l. The following finite difference approximation is 

second order accurate and explicit, 

(3.4) 

(3.5) 

v”“l(t) = v"(t) + 
AZ w"(t) + A22 'F(t) 

ah'(t) 1 NV"(t) 1 

AZ2 b(vn(t))[wn(t)J2 

2a3(vn(t)) w 

w"'l(t) = W”(t) + Am;(t) f 
AZ2iq;(t), 

2a(vYt) 1 

AZ2 b(v"(t)) w"(t) v;(t) 

An effective way of implementing this scheme is to use cubic spline 

interpolation at the 400 equally spaced mesh points on the time 

interval fO,T]. Differentiating the spline function produces 

O(dt3) accurate derivatives v:(t), w:(t) at these same mesh points, 

and hence vnfl(t), w "+l(t) from (3.4), (3.5). The next step is to 

stabilize this process by filtering each of these functions in the 
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frequency domain. This is accomplished by dividing the kth Fourier 

coefficient by the precomputed weight xk, where 

AZ/E 

(3.6) Xk = (1 + u2 exp [ R 
I 

there w .= (i) is the L2 noise to signal ratio. See [II. 

With R = .25mm, the x-interval [O,a] was divided into 450 equally 

spaced mesh points, and the above procedure was ,implementeh with 

w = .OOl. Figures 4 through 11 summarize the comparison between 

exact and computed solutions at the interior location x = .056mm. 

An idea of the relative errors in the calculation is easily gained 

from Figures 7 and 11. Although the "logarithmic convexity" 

estimates in Theorem 1 of [l! degenerate at the wall, the computa- 

tion was pursued for 450 cycles and approximations to the temperature 

and gradient histories at the wall were obtained, These are shown 

in Figures 13 and 17. The "exact" temperature and gradient histories 

at the wall are shown in Figures 12 and 16. Clearly, slight in- 

accuracies in the well-posed direct calculation of u(x,t) near x = 0, 

lead to a rather noisy determination of the exact w(x,t) at x = 0; in 

particular, the pronounced spike near t = 40 milliseconds in Figure 

16 is a numerical artifact which should be disregarded, Nonetheless, 

we have chosen to compare the computed gradient history in Figure 17 

with the wall profile given in Figure 16- As is evident from Figures 

15 and 19, the wall estimates obtained by solving the inverse problem 

are quite reliable. This is especially true during the first twenty 

or so milliseconds where peak values are achieved. 
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4. Conclusions 

A regularized marching algorithm has been shown to be effective in 

solving nonlinear inverse heat transfer problems in gun barrels. In 

CZI, a similar technique was used successfully on linear backwards 

parabolic equations with highly variable coefficients. More 

recently, success has also beenachieyed on other unstable examples 

involving Burgers' equation with the time direc-tion reversed. 

Future work should be directed towards problems in two or more space 

dimensions in general domains, in the context of heat transfer and 

fluid mechanics. 
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and S. Selberhcrr 

This paper gives guidelines for the development of computer programs for 

the numerical simulation of semiconductor devices. For this purpose the basic 

laathematical results on the corresponding elliptic boundary value problem are 

reviewed. In particular, existence, smoothness and stxucture of the solutions 

of the fundamental~semiconductor equations are discussed. Various feasible 

approaches to the numerical solution of the semiconductor equations are described. 

Much emphasis is placed on constructive remarks to help authcrs of device simula- 

tion programs to make decisions on their code design problems. In particular, 

criteria for an optimal mesh generation strategy are given. The iterative solution 

of the systems of nonlincax and linear equations obtained by discretising the semi- 

conductor equations is discussed. An example is given showing the power of these 

concepts combined with modern numerical methods in comparison to classical approaches. 
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IMPLICWIONS OF ANALYTICAL INVESTIGATIONS 
ABOUT THE SEMICONDUCTOR EQUATIONS ON DGVICE MODELING PROGRAMS 

l ** 

Ch. Ringhofer and S. Selberherr 

1. Introduction 

The characteristic feature of early device modeling is the 
separation of the-interior of the device into different regions, 
the treatment of which could be simplified by various assumptions 
like special doping profiles, complete depletion and 
quasineutrality. These separately treated regions were simply 

Put together to produce the overall solution. If results in an 
analytically closed form are intended, any other- approach is 
prohibitive. Fully numerical modeling based on partial 
differential equations /61/ which describe al1 different regions 
of semiconductor devices in one ,unified manner was first 
suggested by Gummel /29/ for the one dimensional bipolar 
transistor. This approach was further developed and applied to 
pn-junction theory by De Mari /13/, /14/ and to IMPATT diodes by 
Scharfetter and .Gummel /SO/. 

A two dimensional numerical analysis of a semiconductor 
device was carried out first by Kennedy and O'Brien /3S/ who 
investigated the junction field effect transistor. Since then 
two dimensional modeling has'been applied to fairly all important 
semiconductor devices. There are so many papers of excellent 
repute that it would be unfair to cite only a few. Recently also, 
the first results on three dimensional device modeling have been 

published. Time dependence has been investigated by e.g. /37/, 
/44/ and models in three space dimensions have been announced by 

e-g, /a/, Al/, /67/r /68/e 
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In spite of all these important and successful activities, 
the need for economic and highly user oriented computer programs 
became more and more apparent in the field of device modeling. 
Especially for MOS devices which have evolved since their 
invention by Kahng and Atalla /32/ to an incredible standard, 
modeling in two space dimensions has become inherently important 
because cur.ren.t flow controlled by a perpendicular .field is an 
intrinsically two dimensional problem. One such program which 
has been applied successfully in many laboratories is called 

CADDET /59/. We have also tried to bridge that gap and developed 
MINIMOS /53/, /fl/ for the two dimensional static analysis of 
planar MOS transistors. 

2. Analysis of the S-tatic Semiconductor Equations 
. 

In this chapter we review some of the existing analytical 
results for the fundamental semiconductor equations concerning 
existence and structure of their solutions. These results are of 
importance in both the theoretical and practical context, since - 
as we ,will see in the next chapter - the knowledge. of the . 
structure 'and smoothness properties of solutions is indeed 
essential for the development of a numerical solution method. 
The most familiar model of carrier transport in a semiconductor 
device has been proposed by Van Roosbroeck /61/. It consists of 
Poisson's equation (2.1), the current continuity equations for 
electrons (2.2) and holes (2.3) and the current relations for 
electrons (2.4) and holes (2.5) 

div <*grad v = -q*( p - n + c ) (2.1) 

div sn = -q-R 

div % = q*R 

(2.2) 

(2-3) 

zn = -q*( Y;n=grad q- Dn*grad n ) (2.4) 

3 
P = -q-( Pp*p=grad V,+ Dp*grad p ) (2.5) 
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These relations form a system of coupled partial 

differential equations. Poisson's equation, coming from 

Maxwell's laws, describes the charge distribution in the interior 
of a semiconductor device. . The balance of sinks and sources for 

electton- and 'hole currents is characterized by the continuity 
.equat.ions. The current relations describe the absolute value, 

direction and orientation of electron- and hole currents. The 
continuity equations and the current relations can be derived 

from Boltzmann's equation by not at all trivial means.. It is not 

our intention to present in this paper the ideas behind these 
considerations. The interested reader is refered to /61/ and its 
secondary literature or text books.on semiconductor physics e.g. 

/7/r /Jl/, /52/r /56/e 

2.1 The Validity of the Basic Semiconductor Equations 

It is of prime: importance to be aware that equations (2.4) 
and (2.5) are not capable to describe exactly- all phenomena 
occuring in real devices., For instance, they do not characterize 
effects which are caused by degenerate semiconductors (e.g. heavy 
doping). m/, Do/, /63/ discuss some modifications of the 

current relations, whidh partially take into account the 

.consequences introduced by degenerate semiconductors (e.g. 
invalidity of Boltzmann's statistics, bandgap narrowing). These 

modifications are not at all simple and lead to problems 

especially in the formulation of boundary conditions /47/, /62/. 

In case of modeling . MOS devices, degeneracy, owing to the 

relatively low doping in the. channel region, is .practically 

irrelevant. For modern bipolar devices, though, bearing in mind 
shallow and extraordinarily heavily doped emitters, it is an 
absolute necessity to account for local degeneracy of the 

semiconductor. . 

Just as further examples (2.4) and (2.5) do not describe 
velocity overshoot phenomena which become apparent a.t feature 

lengths of O.lm for silicon and 1JJm fdr gallium-arsenide /2S/. 
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Certainly no effects which are due to ballistic transport (the 
existence of which is still questionable /30/) are included. The 
latter start to become important for feature sizes below O.OlJJm 
for silicon and O.lJ&n for.gallium-arsenide /26/, Considering the 
state of the art of device miniaturization, neither effect has to 
bother the modelists of silicon devices. For gallium-arsenide 
devices new ideas are mandatory in the near future /25/, /46/, 
/45/. 

2.2 Domain and Boundarv Conditions 

Most of the existing progratis which solve the- semiconductor 
equations are restricted to a rectangular device geometry, This 
is not essential as far as the analysis of the equations is 
concerned. In this chapter we shall assume that the equations 
(2,1)-(2.5) are posed in a domain D -of R" (n=1,2,3) with a 
piecewise smooth boundary aD. Equations (2.1)-(2.5) are subject 
to a mixed set of Dirichlet and Neumann boundary conditions. 
That means aD consists .of three parts ~D=~D~U~D~U~D~. a~, 
denotes thP part of the boundar'y where the device is surrounded 

bY insulating 
conditions: 

material. There one assumes the boundary 

(2.6) 

Here ;;-I denotes the unit normal vector on a0 which exists 
anywhere except at a finite number of points (arbitrarily defined 
corners of the simu+ation geometry). aD2 denotes the part OE the 
boundary corresponding to the ohmic-contacts. There yI, n and p 
are prescribed. The boundary conditions can be derived from the 
applied bias % and the assumptions of thermal equilibrium and 
vanishing space charge: 

Y’= YD + Vlouilt-in, n-p = ni2# n - p - c = 0 (2.7) 

The last two conditions in (2.7) can be rewritten as: 
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(2.8) 

I ,4x7 -C),2 '. 

Xn many applications it is desired to consider controlled 

insulator-semiconductor interfaces (e.g. MOS devices). So 303 

decotes the: part of the boundary which corresponds to such an 

interface. There we have the interface conditions: 

(2.91 

Aga$n $1 denotes the : normal vector on 90, Csem and Eins 

denote the permittivity constants for the semicond.uctor and the 

insulator respectively. WK.1~ and aYfit.1 . denote the 

onesided limits of the derivativess~~rpendicular to'%e interface 
approaching the interface. Within the insulator the Laplace 

equation: div grad y= 0 holds. 

2.3 Dependent Variables 

For analytical purposes it is. often useful to use other 

variables than n and p to describe the system (2.1)-(2-S). Two 

other sets of variables which are frequently employed- are 

(J#J,~-,~,) and (v,u,v) tihich' relate to the set (yl#n,p) by: 

n 0 n i*e NWn) jut, 

n = ni'e t)l/ut., I P 

P =n i l e (e-w /‘t (2.10) 

= nime -Y)/ut., (2.11) 

(2.10) .can be physically interpreted as the applicati.on of 
Boltzmann statistics. However ('2.10) also can be regarded as a 

purely mathematical change df variables so that the question of 
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the validity of the Boltzmann statistics does not need to be 
considered. The use of ('y,19,,Vp) a priori excludes negative 
carrier densities n and p, which may .be present as undesired 
nonphysical solutions of .(2.1)-(2.5). if we use (y,n,p) or (v,u,v) 
as dependent variables. As we will see later in this chapter the 
advantage of the set iJ&u,v) is that the continuity equations 
(2.2) I (2.3) and current relations (2.4), (2.5) become 
self-adjoint, This also has an important impact on the use of 
iterative schemes for the solution of the evolving linear systems 
(cf. chapter 4). However, owing to the enormous range of the 
values of u and v, the sets &J,n,p) or NV?&) have to be 
prefered for actual computations. We personally favour the set 

(WbP) l 

2.4 The Existence of Solutions and Scaling 

The basic answer to the question of existence of solutions 
can be found in Mock /43/ or under slightly different assumptions 
in Bank, Jeroirte and Rose ;5/. 'Both proofs are based on 
Schauder's fixpoint theorem. They are both valid for arbitrarily 
shaped domains and boundary conditions of the type previously 
descri,bed without an interface (aD,=(}). Both papers consider 
the case of vanishing generation/recombination rate (R=O in 
(2,2), (2.3)). In the setting of Mock (y),u,v) is used as 
dependent variables. The equations are scaled so that the 
intrinsic carrier density nit the thermal voltage Ut and the 
ratio elementary charge/permittivity are equal to unity. Thus, 
combining the continuity equations (2.2) I (2.3) 'and current 
relations (2;4), (2.5), we have the system: 

div grad yt = Y e l u - e"b!v - c (2.12) 

div (ey=grad u) = o- 

div (e -'-grad v) = 0 

(2.13) 

(2.14) 



Then a map M:q+ y is definedo,(de'tails in /43/ or /4/) such 

that the evaluation of M requires 'the solution of (2.13) .and 
(2.14) and a fixpoint:!@* .of M (M(v')=q*) together -.with the 
according functions (u,v) .iS, a solution of the whole system : 
(2.12)-(2.14). The existence of a fixpoint is shown by 

,Schauder's fixpoint theorem. Questions'concerning the degree of 
smoothness of these solutions (the existence of derivatives) are 

discussed in /42/. 

However, Schauder's theorem is not constructive and does not 
in,dicate that iterating the map M will actually lead to the 

fixpoint. .Moreover, it does not give any information about the 
structure of the solution which is of vital interest for actual 
computations, Since the dependent variables in the system 

(2-l)-(2.5) are of different order of magnitude and show a 

strongly different behaviour in regions with small and large 
space clgrge the first step towards a structural analysis of 
(2-l)-(2.5) has to be an appropriate scaling. A standard way of 

scaling (2.1)-(2.5) has been given by De Mari /14/, There W is 
scaled by- the thermal voltage Ut, n and p are scaled by ni 
(similar to Mock /43/) and the independent variables. are scaled 
such ,that all multipying constants in Poisson's equation become 
unity.* Although physically reasonable this -approach has the 
disadvantage that n and p in general are still several orders of 
magnitude larger than v A scaling which reduces +!, n and p to 
the same order of magnitude has been given by Vasiliev'a and 
Butuzov /65/. This approach makes the system (2.1)-(2-S) 

accessible to an asymptotic analysis which is-given together with 
applications in /40/, /41/ and /39/. There n and p are scaled by 
the maximum absolute value of the net doping C and the 
independent variables are scaled by the characteristic length of 
the device. More precisely the following scaling factors are 
employed. 

q&tit; symbol value ' 
a 
X 1 max(z-;I, 2,: in D 

Y ut k-/q 
n4 d max]Cl 

362 

(2.15) 



After scaling the equations become: 

A**div grad qt= n - p'- C (2.16) 

div ( grad n - nograd Y) .= -R ' 

div ( grad p + p-grad iy) = -R 

Here, for simplicity only, JJ, and y, have been assumed to be 
constant. It should be noted that the following analysis also 
holds if the usual smooth dependence of y, and jJ on n, p and 
grad v e.g./54/ is assumed. P 

Since the independent variable x has 
been scaled, equations (2.16) are now posed on a domain De with 
maximal diameter equal to one. 
the Laplacian 

The small constant x2 multiplying 
in (2.16) is the minimal Debye length of the 

device: 

(2.17) 

x2 
1 and d are defined in (2.15). Thus for high doping (&>l) 

will be small. For instance for a silicon device with 
characteristic length 25JJm and d=1020cm'3 we compute for x2 at 
approximate room temperature T=300K: A2=4,10-lo. 

R denotes again the scaled generation/recombination rate. 
In the analysis given in /41/ the usual Shockley-Read-Hall term 
has been used which after scaling is of the form: 

R = n-p - 
n + p + 20(yX)~ 

(2.18) 

R is in general a (not necessarily mildly) nonlinear 
function of n,p and gradv Thus different models of R may 
influence the analytical results quite -drastically. This is 
obviously to be expected. as in many operating conditions the 
device beha;iour depends - strongly on the net 
generation/:ecombination R. 
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2.5 The Sinqular Perturbation Approach 

(2.16) represents a singularly perturbed elliptic system 
with perturbation‘ parameter A, The advantage of this 

interpretation is that we can now obtain information about the 
structure of solutions of (2.16) by using asymptotic- expansions: 
In the subdomains of DS where the solutions behave smoothly we 
expand them into power series of the form: 

(2.19) 

which implies .a. smooth dependence on X. C - the scaled doping - , : " : 
is smooth'.in these subdomains and exhibits a sharp transition 

across the pn-junctions in the device. For the case of an abrupt 

junction this behaviour is represented by a discontinuity across 
an n-l dimensional manifold f:(x=x(s), s of R n-1) in the device. 
Thus r is a point in 1 d+mension, a curve in 2 dimensions and a 
surface in 3 dimensions. Of course one- curve or'surface has t0 

be used for each junction. Since the procedure is the same for 
each of the junctions it is demonstrated only for one junction. 

In the case of &n exponentially graded doping profile C consists 
of two parts: 

C= c- f c” (2.20) 

where C-and C* are discontinous, C* is piecewise smooth and C" is 
exponentiaily decaying to zero away from P. In the vicinity of r 

the expansion (2.19) is not valid and has to be supplemented by a 
"layer" term acording to the singular perturbation analysis: 
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Here the following coordinate transfortiation‘ has .been 
employed: For a point in the vicinity of p ,s denotes the 
parameter value at the nearest point on p ,and t denotes. its 
distance perpendicular to.? (cf. Fig. 1). Thus the soiution of 
the semiconductor equations exhibits internal layers at 
pn-junctions. 

The WI and wl in (2.21) can now be determined separately and 
the structure of the solution is given by its partition into the 
smooth part zwi*xi and its rapidly varying part xwi*xi. wi has 
to.satisfy the reduced equations: 

* 0 
E nm - p* o -c- (2.22) 

di'v (grad n- - ni*gradvo) = -R- 
0 (2.23) 

div-igrad pg + p,*gradqo) -= -R- (2.24) 

For the sake of simplicity but without loss of generality 
the mobiiities y, and y have been assumed to be constant. 
(2.22).(2.24) is subjec: to the boundary conditions (2.6):(2.9). 
Of course the condition of vanishing space charge is 'redundant 
with (2.2;). Since C- is discontinous at p and (2.22)-(2.24) . 
represents a second ordm system of two equations four "interface 
conditions" have to be imposed at p. They are of the form: 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

where WI-,, and WI;+ denote the onesided limits of w as ‘x tends to 
P from each side. cl denotes the unit normal vector on p. 3- 
and ? 

“0 
are the zeroth order terms of the smooth parts of the 

(s&l%) electron and.hole current densities, 
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‘J- ‘= 
"0 

grad n; - nG*grad vo 

5- 
PO 

= grad pG'+ pG*grad v. 

(2.29) 

(2.22)-(2,24),together with (2.25)-(2.28) and the boundary 
conditions (2.6)-(2.9) define the reduced problem whose solution 
is an O(k) approximation to the full solution away from r. As we 
will see in the next chapter the reduced problem is a useful tool 
for the development and analysis of numerical methods, since it 
(especially the conditions (2,25)-(2.28)) has to be solved 
implicitly by any discretisation method which requires a 
reasonable number of grid points. 

The equations for the rapidly varying parts w; reduce to 
ordinary differential equations. That means that only 
derivatives with respect to the ".fast" variable t/X occur. Since‘ 
the rate of decay of w; depends heavily on q the width of the 

layer grows with the applied voltage: a fact which is absolutely 

well known by device physicists, but which. becomes nicely 

,apparent by the singular perturbation approach. 

3. Numerical Solution of thl Semiconductor Euuations 

In this chapter we discuss some of the problems occuring in 
the numerical solution of the semicondudtor equations and the 

analysis of existing numerical methods. From the viewpoint of 
numerical analysis there are essentially four major topics to be 
considered.. The first one is the type of discretisation to be 
used. There exist programs for both Finite Element and Finite 
Difference discretisations of the system (2.1)-(2.5). As 
outlined in the previous chapter the solution exhibits a smooth . 

behaviour in some subregions of the domain whereas in others it 
varies rapidly. Thus a nonuniform mesh is mandatory and adaptive 
mesh refinement is desirable. So the second topic is the 
question how to set up the mesh refinement algorithm i.e. which 
quantities have to be used to .control the mesh. Each type of 
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discretisation will lead to a large sparse system of nonlinear 
equations and so the solution of this system is the third topic. 
As fourth topic we discuss- linear equations solvers which have to 
be used in topic three. For topics one to three many. methods 
have been designed especially for the semiconductor equations. 
These. points will be discussed in this chapter. For topic four 
standa-rd numerical analysis is commonly used and so its 
discussion will be deferred to chapter four. For the sake of 
simplicity in nomenclature we. shall only consider the 
two-dimensional case in this chapter. However, all results given 
in the following can be generalized to three dimensions in. a 
straightforward manner. So, the equations are posed in a domain 
D of.R2 and 2 = (x,~)~ denotes the independent variable. 

3.1 Discretisation Schemes 

Using Finite Elements or Finite Differences one has to take 
into account that Poisson's equation (2.1) is of a different ty-pe 
than the continuity equations. Poisson's equation - in the 
scaling of Markowich /40/ using the variables (yl,u,v) 

XZ*'div grad v.= eV=u - e*=v - C (3.1) 

is a singularly perturbed elliptic problem whose right hand side 
has a positive derivative with respect to yl. Thus it is of a 
standard form (as discussed in e.g. /22/) except for the 
discontinous or exponentially graded term C. Equations of that 
type are generally well behaved and it suffices to apply a usual 
discretisation scheme. In the case of Finite Differences 
equation (3.1) is discretized by: 

A2*(div gradhwij = nij - pij - C(Xi,Yj) 
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ET+l/s,j * (vi+l,jVvi,j)'hi 
(3.3) 

. E* i,j+1/2 = (Vi,j+l+i,j)'kj 
.  ‘- 

hi = xi+lcxi, kj ~'-yj+l-yj 

(div grad Wi,j = 2*(ET+l/2,j - ET-1/2,j)/(hi+hi-1) + 

+ 2-(EX j+1/2 - E~,j-1/2)/(kj+kj,l) I 
(3.4) 

Here ~ij, nij and Pij denote the approximations to v, n and 
.p -at the gridpoint (xi,yj). ?i+l/2, j denotes the value of &!,,x 

at ('i+1/2 = (xi+xi+.l l/2, Yj'* EX,j+l/2 denotes the value of &??y 

at txiF ~~+~,2=(y~+y~+~)/2). If one of the 
gridpoints tXi+ltY,j) t (Xi,l,Yj) t (XitYj+l) I (xifYj-l 

;ei;zi;uring 
not 

exist -' as possible in a terminating line approach /l/, /2/ or in 
the Finite Boxes -approach /24/ - (3.4) has to be modified. We, 

will go into some detail concerning these modif ications in the 

next- section. In the case of Finite Elements classical shape 

functions can be used (i..e. linear shape functions 2ot triangular 

elements, bilinear shape functions for rectangular elements). 
It turns out that the discretisation of the continuity 

equations is more crucial than the discretisation of Poissons's 

equation. The usual error analysis of discretisation methods 
provides an error estimate of the form: 

max lwh-wl <= c-H (3.5) 

wh denotes the numerical approximation to w(x,~)=(yl,n,p)~. 
El denotes the maximal gridspacing. The constant c will in 
general depend on the higher *order derivatives of w. The 
singular perturbation analysis /41/ shows that derivatives of v, 
nA and p* in (2.21) are of magnitude O(aa3) - O(xm4) locaily near 
the junction (A is defined in (2.17)). /41/ shows also that, 
even if a nonuniform mesh is used, the amount of gridpoints 
required to equidistribute the error term in (3-i) can be 
proportional to x2 which is of course prohibitive. Therefore a 
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discretisation scheme is needed where the constant c in (3.5) 
does not depend on the higher derivatives,of the rapidly varying 
terms yf, nA and pA. For the case of Finite Differences such a 
scheme was given by Scharfetter and Gummel /SO/. They 

.approximate: 

zn = qrad n - n=grad y (3.61 

(3.7) 

by: 

Jxn i+1/2,j = r( (Yi+l, j -Yi,j)/21m (ni+l',j-ni,j)/hi - 

0 (ni;j+ni+l,j)J2* (.Yi+l,j+i j)/hi 

I  

Ji‘ ni, j+1/2 = t( (Yi, j+l-Yi, j)i2) g tni, j+l-"i, j)/kj - 

(3.8) 

-  (ni, j+ni, j+1)/2’ CYi j+l-Yi j)/“j 

I  I  

t(s) = s*coth(s). 

x. 
2'("Gi+1/2,j -  Jnim1/2;j)/(hi+hi,l) + 

+ 2*(Jy 
ni,j+lp -  JXi,je1/2)/(kj+kj~~I = 'i,j (3.9) 

JEi+l12 j denotes the value of Jt at (Xi+1 2=(Xi+Xi+l)/2, 

Yj) l JKi,;+l/2 
denotes the I value of Jn at (Xi, 

Yj+l/2'(Yj+Yj+l)/2)g The continuity equation for holes is 
discretized analogously. Scharfetter and Gummel. gave a physical 
reasoning for the derivation of their scheme. Markowich et al. 
/41/ proved that in one dimension the Scharfetter-Gummel scheme 
is uniformly convergent. That means that the error constant c in 
(3.5) does not depend on the derivatives of w, n* and pA in 
(2.21) and therefore not on 1. For two dimensions /41/ shows 
that the choice r(s) = s-coth(s) is necessary for uniform 
convergence. Exponential&y fitted schemes like the Scharfetter- 
Gummel scheme have been analyzed by Kellog /34/, /33/ and Doolan 
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/17/ (for diff erent classes of problems). The reason for the 

uniform convergence of these schemes is that inside the 

pn-junction layers the interface conditions (2.25) and (2.26) .are 
satisfied automatically if lgradq( is large and the gridspacing 

is not O(X). 

The results for Finite Difference schemes suggest that a 

similiar approach (like the exponentially fitted schemes) should 
be used in the case of Finite Elements. This fact has, been 

intuitively observed by Engel /21/ for the one-dime-nsional case. 
A modeling group at IBM has tried to make use of the Scharfetter- 
GUKUWl scheme for Finite Elements in two and three space 
dimensions /9/, /a/, /12/i However, we have the.impression that 
their approach needs still quite a bit of analysis, although it 

has been used effectively. by other 'modelists too e-g,. /49/. 
Macheck /36/ has tried to develop a more. rigorous discretisation 
for Finite Elements using exponentially, fitted shape functions. 
He uses classical bilinear shape functions for v and 

dl(XrY) = r1 - ~Cx,y,l*[1 - rbr;!(XPY) 1 j3.11) 

~2(X#Y) = R(x,y) l t1 -  v+rY)l 

d3(x,y) = ( & (XPY) l P2bbY) 
C4(x,y) = 11 - ~(x,y)i- cp2h~) 
for u, and 

Pl(X#Y) = 11 - u1(x,y)l*t1 - q&GYH 

Bz(XlY) = q(xtYl "[l : Q(XrY)l 
B3(x,yl = q(xry) - WX.IY) 
gq(x,y) = fl -  ul(x,yH l Q2(X#Y) 

for v, where 
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~(X,Y) = f (x,& (3.13) 

ay 
‘P2(xrY) = fryq,, 

PY @1(xry) = f(x,- p;;) 

QOLY) = w fly,: ay) 

with: f(x;a) = (exp(ax)-l)/(exp(a)-1) (3-14) 

The advantage of these shape functions is that they 
accomodate nicely the layer behaviour of the solution. They 
degenerate into the ordinary bilinear shape functions when the 
electric potential is constant. In ordtr to be able to switch 
from coarse to fine grid spacing in different subdomains 
transition elements have to be used (as outlined in the next 
section). However; no theoretical investigations have been 
carried out so far to analyse the uniform convergence properties 
of this method.. 

3.2 Grid Construction . 

Since subregions of strong variation of v, n and p alternate 
with regions where these quantities behave smoothly (i.e. their 
gradients are small) different meshsizes are mandatory in these 
subregions. Thus the discretisation scheme-should be able to 
switch locally from a coarser to a finer grid. For the 
exponentially fitted (Scharfetter-Gummel) Finite Difference 
discretisation schemes this is done by the Finite Boxes approach 
/24/o Grid lines can terminate when the mesh is likely to be 
coarsened (cf. Fig.2). not belong to 
the mesh. 

The point (Xi+l,Yj) does 
Thus the equations for the point (xi,yj) have to be 

modified since Y. i+l,j' "itl,j and p. 1+11 j are not available. This 
is done by proper interpolation between the (j-l)-st and (j+l)-st 
y-level. SO (div grad v3ij is approximated by: 
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(div grad %i,j = 

= 20 ( (k>Bl.mEr+l/2,j+l + kj”Er+l/2,j,l)/(kj+“j-1) - 
X 

- Ei-l/2,j ) / (hi+hi,l) ‘+ 

+ Z*(E~ j+1/2 - E~,j-l/z)/(kj+kj-l) 
r 

I 

(3.15) 

E2-l,2, j' - Ey i, j+l/2 etc. are defined in (3.3). The 

continuity equa.tions are approximated by: 

- 5x ni-1/2,j)/(hi+hi-l) + 

+ 2-(Jy ni,j+l/2 - 'xi,j-l/z )/(kj+kjwll = Ri,j (3.16) 

Jti-l/2,j' Jy "i,j+1/2 etc. are defined in (3.8). For reasons 
of numerical stability only one gridline is allowed to terminate 
at a box. This approach is a generalisation of the "Terminating 

Line" approach introduced by Adler /l/, /2/ as already mentioned. 

1.n the Finite Element approach of Macheck /36/ transition 

elements composed of three triangles are used to coarsen the mesh 
loc$lly (cf. Fig.3). Within these triangles a different set of 

shape functions has-to be used. They ar'e derived by holding the 

current densities zn and f constant alo'ng the edges of -a 

triangle similar to the apprzach of /lo/. 

In the Finite Element as well as in the Finite Difference 
(Ejoxes) approach 'the question arises which criteria‘should be 

used to generate the mesh. If the user of a simulation program 

has to define his elements or nodes a priori as input parameters, 
this could perhaps be done by experience /lo/. However, if - as 

it is the case for modern user oriented programs - an adaptive 

mesh selection is desired mathematically formulated criteria are 

a "sine qua non". Generally such criteria should satisfy two 

conditions. Firstly' they should not cause the program to 

construct more gridpoints/elements than necessary 'to achieve a 

certain accuracy. Secondly they' should guarantee that a 
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prescribed relative accuracy d is really achieved once they are 
satisfied. A usual way to design adaptive mesh refinement 
procedures is to equidistribute the loc.al truncation error of the 
discretisation scheme. In the case of Finite Differences this- 
error is proportional to the meshsize and the third and fourth 
derivatives of q, n and p. Markowich /41/ however showed that it 
is practically not possible to equidistribute this quantity. In 
the case of a' simple MQS-transistor O(dm2aW2) gridpoints would be 
required. On the other hand the singular perturbation analysis 
shows that the solution of the difference scheme approximates the 
solution of the reduced problem (2.22)-(2,24) even if this 
criterion is not satisfied inside the layer regions (inversion 
layer and space charge regions). Therefore the quantity -to be 
equ-idistributed is the- discretisation error of Poisson's equation 
(i.e. the partial derivatives of the space charge times the 
meshsizes). This equidistribution can be relaxed inside the 
en-junction layers by e.g. simply 1imitir.g the number'- of 
gtidpoints there. 

. 

3.3 Linearisation Schemes 

Each discretisation scheme (Finite . Differences or Finite 
Elements) will- 'lead to a large sparse system of nonlinear 
equations to be solved.. The theory of 'iterative methods to solve 
these equations is to a large extent independent of the used 
discretisation and so it is convenient to view the whole probiem 
as solving a nonlinear system of equations iteratively by so1vir.g 
linear systems. The existing numerical methods can essentially 
be divided into two classes: The first apprcach, a block 
nonlinear iteration algorithm, is due to Gummel /29/ and uses the 
fact that the current relations are linear in the variables u and 
v (as defined in (2.11)). In these variables the equations 
become (again we use the scaling of /36/): 
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v a*adiv grad v= p., - e-'b!V - c (3.17) 

div ?n = R, +ev-grad u (3.18) 

div ?P = -R,$ = 
P 

-e--grad v + (3.19) 

Gummels approach works as follows: Given (YIUlV) k ti +l is 
computed by solving: 

A**div grad $+l =e us 
+1 k mu -e- @ +l k. 'V -c (3.20) 

subject to the appropriate boundary conditions. Then uk+l 

and vk+' are computed from: 

div ~k~l = R(grad $+l,uk,~k), ?:+I = e ti 
+1 (3.21) 

n -grad uk+' 
> 

div $i*' = -R(grad ti +1 k k ak+l - tu Iv 11 J P =-e 
@ 

+l 
(3.22) 

k+l -grad v 

together with the boundary conditions for u and v. (3.21) 
and (3.22) are two decoupled linear equations for uk+'-and v k+l . 
Poissons's equation (3.20) is nonlinear in this setting and 
therefore it has to be solved iteratively itself in each step by 
a Newton like method. Since Newton's method is an inner 
iteration within the overall iteration process (3.20)-(3.22) it 
,may not be necessary to let this inner iteration "fully converge” 

/27/. It could for instance be considersd to do only one Newton 
step for each iteration. This would lead to the linear equation: 

A*=div grad $" = (e + l uk ,+ e 4 l v k, - cti+l-$, + 

+ e ti l uk - e- ti -vk - C (3.23) 

instead of (3.20). The advantage of Gummels's method is obvious. 
(3.20)-(3.22) can be solved sequentially which decreases the 
required amount of storage ,and computing time drastically for 

each step. -However, bad convergence properties can be observed 
in the case of high currents. This is explained by viewing 
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Y  

(3,20)-(3.22) as iterating the map M:~(u~,v~)+(u~+~,~J~+~) where 
the evaluation of M in.volves the solution of (3.20). Then the 
norm of the linearisation of M (as an operator acting in the 

.appropriate fixpoint 
* l spaces) at the * * 

M(u Iv )=(u ,v ) is 
proportional to the current densities /42/. 

The second approach to the solution of the nonlinear 
equations (2.1)-(2.5) is a damped modified Newton method. To 
solve the general equation F(x)=0 one computes the sequence k <x > 
by: 

&p = -F(Xk), xk+l = xk + tk.fp (3.24) 

For the usual Newton method Mk = F'(xk) and tk = 1 holds. 
Bank and Rose /4/ have given criteria for the choice of the 
damping parameters tk which guarantee global convergence. 
Moreover they investigate how well dk has to approximate the 
classical Newton step in order to get a certain rate of 
convergence.. They obtain that thk rate- of convergence is p 
(lgp<2) if: 

IMk=dk + F(xk)l = O(~F(X~)~~) (3.25) 

holds' asymptotically for k + 00. Alternatively Bank and Rose /3/ 
suggested Mk = xkI + F'(xk) where Ak is proportional to IF(x 
Franz '/24/ tested this method with good success. However, he 
additionally chooses damping parameters tk according to Deuflhard 
/15/, /16/. 

Since this approach has the disadvantage that ali three 
equations are solved simultdneously - and therefore the storage 
requirements are fairly large - we suggest a Block-Newton-SOR 
method /24/. Defining Fz(F~,F~,F~)~ Newton's method at step k 
is: 
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(3.i6) 

Under the assumption that the Jacobian is definite one can 

use a classical block iteration scheme (iteration index m) for 

the solution of the k-th Newton step: 

(3.27) 

-- 

aF3aFj 8Fj --- 
w 3h Pp _. 

0 

Since the coefficient matrix of (3.27) is block lower 

triangular one can decouple the elimination process into three 

linear systems (3.28)~(3.30) which have to be solved 

sequentially. 

(3.28) 

-F2@,nk,pk) - - 

(3.29) 

(3.30) 

aF k 
-2 l &km+1 

a, 
= -F3($,nk,pk) 



This iteration method has (like Gummel's method) tSe 
advantage that .the equations can be solved sequentially, To end 
up w.ith the Block-Newton-SOR method‘ one has to resubstitute the 
series expansions on the right hand side of (3.23)-(3.30) and to 
introduce a relaxation parameter ut: . 

(3.31) 

~k.&cm+l - = -UI= F1@,nk+&@,pk~pkm) 

(3.32) 

(3.33) 

This method converges-linearly /48/. However, we still have 
to-perform-thorough investigations in order to properly judge the 
convergence properties. 

4. Solution of Linear Systems 

For any of the linearization pr,ocedures which have been 
outlined in the last chapter a large sparse ,linear equation 
system (4.1) has to be solved repeatedly. 

A-x = b (4-l) 

A has been derived by linearizing discretized PDEs. Hence A 
has only five to nine nonzero entries per row and block (the 
blocks are defined in (3.26)): A is very sparse. .For the 
solution of these special types of linear systems of equations 
two classes of methods, can, in principle, be used: direct 
methods which are based on elimination and iterative methods. An 
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. excellent survey on that subject has been,published recently by 

Duff ;/la/. Classical Gaussian elimination is not feasible for 
our systems of equations because the rank of A, in (4'.1) is very 
large and A has many coefficients 'which are zero. Therefore, 

modifications of the classical Gaussian elimination algorithm 

have to be introduced to account for the zero entries. There 

exist quite a few activities on ,that subject (c-f. /19/) and 
powerful algorit'hms which treat the nonzero coefficients only are 
available (so called sparse matrix codes). Another serious 
drawback of direct methods lies in the fact. that the upper 
triangular matrix which is created by the elimination process -has 

-to be stored for back substitution. This matrix has usually more 

nonzero entries-than the matrix A. Th.erefore, menory requirement 

of direct methods is substantial. One advantage of the linear 

systems obtained. from the discretised semiconductor equations is 
that no pivoting -in order to maintain numerical stability is 

needed. In spite of all drawbacks of direct methods, their major 
advantage is high accuracy of the solutioti. However, we feel 

that for the semiconductor problems iterative algorithms are to 
emphasize. Nevertheless' we and many others have observed 

difficulties with respect to the convergence speed of iterative 
methods, so that the direct methods, which require an exactly 

predictable amount of computer resources, will always stay in 
1 

consideration. 

The fundamental idea of relaxation methods (which are the 

best established iterative methods) is the splitting of the 

coefficient matrix A (4.1) into three matrices D, E, F (4.2). 

I A=D-E-F (4.2) 

D denotes the diagonal entries of A; -E denotes a lower 

triangular matrix which consists of all sub-diagonal entries of 
A; and -F denotes an upper triangular matrix which consists of 

all super-diagonal entries of A. 

With an arbitrary non singular matrix B which has the same 

rank as A the linear system (4.1) can be rewritten to (4.3): 
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Box + (A-B)*x = b 

One obtains an iterative scheme-by setting: 

~~~~~~ =: b - (A-B) l xk 

(4.4) can be solved for xk+': 

xk+l. --1 = (I-B .A)*xk + B-'-b 

(4.3) 

(4.4) 

(4.5) 

The'scheme (4,.5) will converge if condition (4.6) holds: 

Q(I-B-l=A) c 1 (4.6) 

(4.6) is a necessary and. sufficient condition where 0 
denotes the spectral radius /64/. Any relaxation method can be 
derived' by differently choosing the matrix B from the splitting 
of A (4.2). The simplest scheme, the point-Jacobi method, uses D 
for B. Matrix D is a diagonal matrix and, therefore, is easily 
invertible. The Gauss-Seidel method uses D-E for B. The matrix 
D-E is a lower triangular matrix. Therefore one has only to 
perform a forward substitution process for its inversion. The 
successive overrelaxation method (SOR) uses a parameter W within 
the range ]0,2[. The iteration matrix B is defined:. 

. 
B= D/W- E * (4.7) 

Since B is again a lower triangular matrix, its inversion is 
instantly reduced to a substitution. . 

The major advantage of these iterative methods lies in their 
simplicity. They are very easy to program and demand only low 
memory requirement. As already noted, they converge .if condition 
(4.6) holds. However, this is generally difficult to prove. A 
sufficient condition for convergence is that A is positive 
definite (4.8Lwhich is the normal case for five-point-star 
discretized PDEs. 

XT=A=x > 0 for all xf0 (4.8) 
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Xt should be noted again here that the current relations and 
continuity equations are not self adjoint if (v,n,p) are used as . 
variables (see (2.10), (2.11)), However, the transformation: " 

Y n=e-u, p=e -yf. v (4.9) 

results in a similarity transformation of the iteration matrix in 
(4.6) o Thus the- spectral radius of the iteration matrix is not 

influenced and the same convergence properties are obtained as if 
the system had been discretized in its self adjoint form with 

(v,u,v) as variables. 

Some point-iterative schemes can, by accelerated quite 

remarkably with the conjugate gradient method or the Chebyshev 

method. An excellent survey on these topics can be found in 

/=A -’ _ _ 

Various activities can be observed for the development of 

more powerful algorithms with the advantages of iterative 

schemes. One of the best known algorithms which has been 

established in semiconductor device analysis is Stone's strongly 
implicit procedure /58/. Stone's idea was to modify the original 

coefficient matrix A by adding a matrix N (whose norm is much 

smaller than the norm of A) so that a factorization of (A+N) 

involves less computational effort than the standard 

decomposition of A. Assuming this has been done, the development 

of an iterative procedure is then fairly straightforward because 

the equation can be written as: 

(A+N) l x = (A+N)*x + (b-A-x) 

which suggests the iterative procedure: 

(A+N)=xk+l = (A+N)*xk + '(b&xk) (4.11) 

When the right hand side is known and if (A+N) can be 

factorized easily, (4.11) gives an efficient method for directly 
solving for . ,k+l Furthermore, one would intuitively expect a 

rapid rate of convergence if N is sufficiently small compared to 
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A. We will refrain from explaining in detail Stone's suggestion 
of how to choose the perturbation matrix N because this has been 
done thoroughly in many publications e.g. /23/, /55/, /58/. A 
major disadvantage of Stone's method is that it is only 
applicable ,for linear systems obtained by a'classical Finite 
Difference discretisation. It is not applicable for systems 
obtained by the Finite Boxes approach or the general Finite 
Element approach. 

There exist a few algorithms which are similar to Stone's 
method in terms of underlying ideas. The most attractive are the 
method of DuPont et al. /20/, the "alternating direction 
implicit" methods 
/57/t ;64/. 

e.g. /6/, /23/, /66/ and the Fourier methods 
However, most of these sophisticated algorithms lack 

general applicability. . 

No matter which iterative method is used one has to deal 
with the question of an appropriate termination 
criterion. .- Usually (4.12) is applied 

(convergence) 
with a properly chosen 

relative accuracy C: 

I,k+l k -x 1 < C.lxk+ll (4.12) 

Since increments still accumulate when (4.12) is already 
satisfied we suggest to use (4.13) instead of (4.12): 

I,k+l k --x 1 < ~+k+ll-(l-~(G)) (4.13) 

q(G) can be estimated as ~~~~~x~+'-x~I/~x~~-x~-'~ V 

One disadvantage of all strongly implicit methods and also 
the direct methods is that they cannot be implemented efficiently 
on a computer with a pipe-line architecture (vector processor). 
Some comments on that subject have been given in /18/. 
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5. A Glimpse on Results 

As an illustrative example a relatively'simple structure, a 
two dimensional diode, is chosen. Fig. 4 shows the doping 

profile as birds-eye-view plot. A substrate with 1014Clll-3 

acceptor concentration and an exponentially graded n-region with 
1019CIf3 maximum doping is assumed. The initial mesh is 
au tomaticaily generated from the doping profile and the ‘geometry 
definition. The simulation domain (device geometry) is a square 
of 1OOJJ times lOO)kI size. At the n-region an ohmic contact with 

length 20ym is assumed. The substrate is fully contacted. The 

initial mesh for a Finite Boxes program is shown in Fig. 5 and 
for a Finite Element program in Fig. 6. The point. allocation ' iS 

identical for both representations. The grid consists of 121 

points versus 178 when all gridlines are extended throughout the 
device. This clearly demonstrates the advantage of the Finite 

Boxes approach. In Finite Element representation one has. to deal 

with 80 rectangular elements and 17 tran'sition elements which 

consist of 51 triangles. 

Fig. 7- shows the final grid for an operating condition. of 

0,7V -forward bias in Finite Boxes representation. This mesh is 

obtained after several adaption processes using the criteria 

given in. chapter 3. It consists of 270 points (versus 480 for 

the c.lassical approach}. In Fig,. 8 the potential distribution is 
drawn. From this plot and even better from the electron density 

(Fig. 9) one nicely can deduce the ef'fects of high injection. 
E.g. the substrate is flooded with carriers. Fig. 10 shows the 

magnitude of the electron current density. The peak value is 

about 180 A/cm*. The.sharply pronounced peak which exists at the 
transition of the Dirichlet boundary condition to the Neumann 

boundary condition corresponds to a singularity of the carrier 

densities. Physically interpreted this effect is well known as 

contact-corner--current-crowding. 

Fig. 11 shows the final grid for an operating condition of 

-20v (reverse) bias in- Finite Element representation. This mesh 
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consists of 363 points (625 for classical Finite Differences) 
which correspond to 277 rectangular elements and 41 transition 
elements (123 triangles). The electron density for this 
operating point is given in Fig. 12. One nicely observes the 
depletion region and the typical shape of the drop of the 
electron density in that region owing to thermal generation. In 
Fig. 13 the magnitude of the electron current density is drawn. 
The singularity' at the contact corner is, although it still 
exists, not so pronounced. Note that there are about seven 
orders of magnitude difference in the peak value compared to Fig. 
10. 

6. Conclusion 

In this paper we have presented an analysis of the steady 
-state s&iconductor equations and the impact of this analysis on 
the design of device simulation programs. ay appropriate scaling 
we have transformed the semiconductor equations into a singularly. 
perturbed elliptic system with nonsmooth data. Information 
obtained from the s'ingular- perturbation analy-sis has been used to 
investigate stability and convergence of discretisation schemes 
with particular emphasis on the adaptive construction of 
efficient grids. We have reviewed algorithms for the solution of 
nonlinear and linear systems of the discretized semiconductor 
equations. ,An example has demonstrated the power and flexibility 
a device simulation program can achieve when using the 
information we have presented for program design. 
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'Big. 1 Local Coordinates of the Layer Solution 
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Fig. 3 A Transition Element to Coarsen a Mesh 
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Fig. 4 Doping Profile [CITI'~] (log.) 
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Fig; 5 Initial Mesh in Finite Boxes Interpretation 
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Fig. 6 Initial Mesh in Finite Element Interpretation 



Fig. 7'Final Mesh for-.O.'IV Forward Bias (Finite Boxec) 
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Fig. 8 Pukential. distribution (0.7V) 
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Fig. 9 Electron concentration 
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Fig. 12 Electron Concentration (-2Ov) [0m'"] (log) 
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NON-LINEAR MULTIDIMENSIONAL MODELS, LEAST SQUARES 
AND REDUCED RESIDUALS 

Aivars Celmi$ 
Ballistic Research Laboratory 

Aberdeen Proving Ground,-Maryland 21005 

ABSTRACT. This paper addresses the treatment of such model fitting 
problems that include an analysis of the residuals, for instance to determine 
heteroecedasticity. In cases with multidimensional observations the residuals 
are vectors having model induced correlations between components. It is shown 
that one 'can eliminate such correlations and also reduce the number of 
residual components by introducing a concept of reduced residuals. The 
application of the new concept is illustrated by an investigation of 
heteroscedasticity of vapor pressure measurements. 

1. INTRODUCTION. The residuals of model fitting problems are valuable 
sources of information about observational errors, model adequateness and the 
relative importance of observations. The information is typically obtained by 
analyzing the distribution and other properties of the residuals. If the 
model equation is formulated in terms of one scalar dependent variable, and 
the independent variables are assumed to be error free then the analysis 
involves only standard procedures for the distribution of a scalar quantity. 
If, however, the adjustable observations are not scalars, for instance, if the 
independent variables are subject to errors, then also the residuals are 
vectors and the usual mathods of residual investigation mnst be modified. 
This paper addresses such modifications in cases of general non-linear models, 
which are assumed to be formulated by systems of implicit equations, and 
fitted by least-squares. We show that the n-dimensional residuals of the 
observations are not necessarily appropriate for an analysis of distribution, 
heteroscedasticity and other properties, because the constraints induce 
correlations between residual components. We, therefore, introduce the 
concept of reduced residuals. These residuals have a dimension that is less 
or equal to that of the observables, and their components are dimensionless 
and free from model induced correlations. In standard least squares problems, 
where the model equations are scalar, also the reduced residuals are scalars 
and standard techniques can be used for the investigation of their 
distribution. One also can show that no information is lost by analysing the 
reduced residuals instead of the original residuals, that is, the reduced 
residuals contain all the information about the real errors that can be 
extracted from the model fitting. An example of the use of reduced residuals 
is presented by discussing the investigation of heteroscedasticity of vapor 
pressure measurements. 

The main definitions and principal results are presented in Section 2, 
and an example of applications is given in Section 3. The background of the 
theory is outlined in the Appendix, where we present detailed derivations of 
the formulas of Section 2. 
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2. REDUCED RESIDUALS IN GENERAL MODEL FITTING PROBLEMS. We give in this 
section the definition of reduced residuals and present some of their more 
important properties. Derivations of the formulas and detailed discussions 
are provided in the Appendix. 

We consider least squares model fitting problems that can be formulated 
as the following constrained minimization task: 

minimize W ;,r, c; R;'ci, (2.la) 

subject to F~i(xi + ci, t, = 0, i= l,..*,S . (2.lb) 

The Xi are s observed points in a n-dimensional space of observables, that is, 
each observation Xi is a n-dimensional vector; the ci are the corresponding 
residual vectors; t is a p-dimensional vector of model parameters; and Ri are 
estimated (n x n)-dimensional variance-covariance matrices of the observations 
Xi' Each constraint equation (2.lb) is a set of r equations, that is, the 
model functions Fi(S,t) are r-dimensional vector functions of n + p 
variables. The problem (2.1) includes as a special case elementary weighted 
least squares problems for which r = 1, n = 1 and the functions Fi(S,t) are 
linear with respect to 5. The unknowns of the problem (2.1) are the residual 
vectors ci and the model parameter vector t. The given input consists of the 
observations Xi, their estimated variances and covariances Ri, and postulated 
functional relationghips Fi(E,t) = 0. 

The least squares residuals ci are n-dimensional vectors but they do not 
necessarily span a n-dimensional space. For instance, if one fits a straight 
line to observations in a plane, whereby both coordinates are adjusted and the 
Ri are all equal, then all residual vectors cf are parallel to each other. 
That is, they are elements of a one-dimensional subspace (line) of the two- 
dimensional space of observables. In this example all information about 
distribution properties of the residuals is contained in the algebraic lengths 
of the residuals, and the analysis of the residuals can be reduced to the 
analysis of the distribution of a scalar. 

In order to effectively handle the described situation and similar more 
general problems we define reduced residuals ai by the equation 

ai f 'Fxi Ri FjTi)-1'2Fxi ci , 

where Fxi is the Jacobian matrix 

F 
aFi(Xi + Ci’ t) 

= 
xi 3X . 

i 
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The reduced residuals ai have the same number of components as Fi, and the 
components are dimensionless. In the planar curve fitting problem described 
above, the reduced residuals ai are dimensionless scalars with an absolute 
value equal to a norm of ci, and positive or negative, depending on which side 
of the line Fi = 0 the observation I$ is located. 

Proper norms of the residuals ci are in least squares problems the 
elliptic norms 

( lcil 1 = (cf R;1ci)1’2, (2.4) 

because the objective function W in (2.la) then is the sum of the squares of 
the norms (IcilI . For later reference we also define an inner product 
associated with each observation Xi by 

cc i, bi> = c; R;lbi . (2.5) 

We show in the Appendix that the Euclidean norm of the r-dimensional 
reduced residual ai is equal to the elliptic norm ,(2.4) of the n-dimensional 
residual ci: 

1 Iail\ = (a: aill'* = (CT Rilci)"* = (Icill. (2.6) 

In a standard least squares problem the Fi are scalar model' functions. 
In that case the definition (2.2) of the reduced residuals can be replaced by 

a. = Cc T 
i Ri 

-1 
1 

Cl P2 sgn (Fxi cl>. (2.7) 

In elementary least squares problems the Fi are assumed to be linear with 
respect to the observable. In that case Eq. (2.7) futher simplifies to 

ai = cilei, (2.8) 

where e i is the estimated standard error of the scalar observation Xi. Hence 
in elementary least squares problems the reduced residuals are identical to 
the familiar weighted residuals. 
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The concept of reduced residuals can be geometrically interpreted as 
follows. The fitted r-dimensional model equation Fi(S,t) = 0 defines in the 
n-dimensional t-space of observables a (n - r)-dlmensional hypersurface, and 
the corrected observation Xi f ci is a point of that surface. The least 
squares residual ci is a n-dimensional vector orthogonal to the hypersurface 
Fi = 0. (Orthogonal in the sense of the inner product (2.5).) That is, all 
possible least squares residuals corresponding to the hypersurface point Xi + 
ci define a hyperplane orthogonal to the surface Fi = 0. The hyperplane is a 
r-dimensional linear subspace of the n-dimensional S-space, and the reduced 
residuals ai are elements of that subspace. 

The advantages of working with the ai instead of the ci are as follows. 
First, the ai have in general less components than the ci. Second, the 
components of the ai are dimensionless whereas the components of the ci have 
generally different physical dimensions. Third, there are no restrictions on 
the components of the ai, whereas the components of the ci are restricted by 
the condition of orthogonality to Fi = 0. The latter condition induces 
apparent correlations between components of the ci; the components of the ai 
are free from such correlations. If correlations between components of the ai 
are detected then they generally indicate correlations between observations as 
we will show next. 

A firs$ order relation between the reduced residual ai and the unknown 
real error ci of the observation Xi is (see Appendix, Eq. (A.23)) 

ai = (Fxi Ri F,Ti) -1'2 Fxiti + (F,i Ri Fzi) -1'2 Fti (; - t), (2.9) 

where Fti is the Jacobian matrix 

Fti = 
a -F&Xi f cl, t) 

at (2.10) 

and' 2 is the unknown true value of* the model parameter. The relation (2.9) 
neglects terms of higher order in ci - ci and t - t. The second term on the 
right hand side of Eq. (2.9) is a function that in general slowly varies along 
the hypersurface Fi = 0. It can be interpreted as a distance between the true 
surface Fi(t,t) = 0 and the least squares fit Fi(E,t) = 0. l%e first tep on 
the right hand side is the projection of the true observational error ci on 
the subspace orthogonal to Fi = 0. Therefore, any local scatter of the true 
observational errors will usually manifest itself as a local scatter of the 
reduced residuals ai. In particular, if the E. are componentwise normally 
distributed then so are their projections and, exiept for a bias caused by the 
slowly varying second term in Eq. (2.9), the reduced residuals ai. 
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Figure 1 presents a geometrical interpretation for the case where Fi = 0 
defines a curve in the plane of observations. The least squares residual ci 
is orthogonal in the sense of the inner product (2.5) to the fitted curve, and 
it defines the subspace (line) for ai. The latter is a measure for the 
algebraic length of ci along the normal. Acco*rding to Eq. (2.9) ai is the 
sum of the projection of the true error c. on the normal and a term 
representing the distance between the true an A the fitted curve, measured 
along the same normal. 

3. APPLICATION EXAMPLE. An example for the use of reduced residuals is 
the following investigation of heteroscedasticity of vapor pressure 
measurements. The measurements consist of a series of pressure-temperature 
correspondences to which one fits the so-called Antoine equation, viz., 

F(p,T; A,B,C) = lg(p/pB) - A f B/[(T - 273.15) + C] = 0 (3.1) 

where p (Pa) is pressure, T (K) is temperature, pK (Pa) is a reference 
pressure (usually pK = 1 torr = 7.50064.10-5 Pa>, and A, B and C are model 
parameters [ll. Because the model function (3.1) is scalar, this is a 
standard least squares problem that can be solved numerically with available 
utility routines [2] provided that estimates are available of the accuracies 
of the observations of T and p. More typical for these measurements is a 
situation where the information about data accuracies is incomplete: one can 
assume that the temperature measurements are all made with the same standard 
error, but the pressure standard errors likely do depend on the pressure. 
Then the problem is to find from the same data set estimates for the model 
parameters A, B and C as well as estimates for other parameters describing 
the data accuracy , particularly the dependence of the pressure accuracy on the 
pressure. We assume that all observations are independent and postulate the 
following models for the standard errors of pressure and temperature 
measurements: 

epi/pR = e, (1 + B1(Pi + c,i)/PK) 
(3.2) 

=e0 eTi 02, 

In Eq. (3.2) e. is the standard error of weight one which is computed after 
the adjustment by 

e 0 
= [W/(s - 3)l 1'2, (3.3) 
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in Eq. (2.4) 
poin 

Figure 1. Reduced Residual in Planar Curve Fitting. 

The reduced residual a. is a scalar measuring the 
algebraic length of th&.residual c.. 1 
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and c pi is the least squares residual of the observed pressure pi. The error 
model (3.2) contains two parameters, 0 and 0 . For small e1 it represents a 
constant pressure error assumption, an (t for lirge 8 it represents a constant 
relative pressure error. The second error mo el 2 parameter e2 has the 
dimension of temperature and it permits one to model the relative significance 
of pressure and temperature observations. If 02 = 0 then the temperature 
observations are assumed to be error free. 

We determine the error model parameters by minimizing an objective 
function S which we define in terms of the reduced residuals as follows 

S =l+& F 
i=l 

qi ln ql$ 

where 

(3.4a) 

(3.4b) 

The use of the negative entropy function S as an objective function was 
suggested by Nielsen [31. His definition of the qi in Eq. (3.4b) was, 
however, in terms of weighted residuals instead of reduced regiduals, because 
he was only treating elementary weighted 'Least squares problems. Nielsen 
chose S as a measure for the optimality of the error model parameters because 
of the following properties of the function: 

(a) S is maximum and equals one if all but one of the q1 are zero. 

(b) S is minimum and equals zero of all qi = l/s. 

(c) Any averaging of the qi reduces S, that is, if 

0 Ca 
ij 

6 1, F, aij =jIl aij = l9 i = 1,2,...,s 

and 

then 
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Hence a smaller S generally means smaller differences between the qt. Because 
of the definition (3.4b) and the relation (3.6) this in turn means that a 
minimization of S tends to equalize the 1 lcil 1 , For given values of e1 and 
82 one computes S by first carrying out a least squares adjustment with the 
model function (3.1) and the error estimates (3.2). The adjustment produces 
least squares values of model parameters A, B and C and a set of residual 
vectors ci' These results provide via Eq. (2.7) the reduced residuals from 
which the value of S can be computed by Eq. (3.4). 

We notice in passing that the choice of S as an objective function is 
arbitrary and one may instead use other functions with similar properties 
[41. In limited numerical experiments we indeed found little difference 
between corresponding results with different objective functions. The results 
quoted in this paper are for the objective function S as defined by Eq. (3.4). 

The optimality of the error model parameters can also be defined and 
tested by other means than an objective function, For instance, one can in 
the present example investigate the distribution of the reduced residuals and 
compare it to a normal distribution if the real errors are known to be 
normally distributed with a heteroscedasticity parameter O1 in the form of Eq. 
(3.2). Then the optimal values of e1 
reduced residual distribution is 

and O2 would be those for which the 
closest to normal according to some 

appropriate criterium. As we shall see in our examples, such an approach is 
practically equivalent to the minimization of S. 

Explicit formulas for the reduced residuals and other quantities in the 
case of vapor pressure measurements are as follows. The observation vectors 
Xi are 

'i xi= T ( > i 

the corresponding residuals are 

ci = cPi ( J 5i 
I 

the estimated variance-covariance matrices are 

2 2 
PR [1 + BI(Pi + Cpi)/P,l 0 

Ri = 
0 2 

e2 

(3.5) 

(3.6) 

(3.7,) 
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and the reduced residuals are 

ai = [( c*i’pR 
1 -t el(Pi + Cpi)/PR 

)2 + (>)2 11/2 sgn (Fpicpi+ FTicTI) (3.8) 
2 

where Fpi and FTi are the partial derivatives of the model function '(3.1) with 
respect to p and T, evaluated at the adjusted observations. The constraint 
equations are obtained from Eq. (3.1) by setting 

F(pi + cpi, Ti + CTi; A, B, C) = 0 , i=l ,...,S. 

Next we present a numerical example with simulated data and known error 
distribution. The data were obtained by chasing a set A, B, C of Antoine 
parameters, calculating for s = 40 equidista#t Ti v@ues the correspo#ding 
$i from Eq. (3.1), and subtracting from the pi and Ti random errors c . and 

=T 
f 

with known normal distributions. The simulated observations thus ke the 
va ues 

* 
Pi = 1: i - ‘PI ) 

(3.10) 

* 

Ti 
= ?ri - cm 

l 

Figure 2 shows a typical s&t gf simulated data. The Antoine parameters that 
were used to *calcula&e pi(Ti) and the error model parameters for the 
calculation of c . and c The table also contains the 
parameters of thy fitte cPc,"TZe "tEf EI EEel '2 , and of the error ellipses. 
The curve and the error ellipses correspond to an optimal value of e1 that 
minimizes the objective function S for this data set. The second error model 
parameter e2 was chosen such that eT = eoe2 = 0.1 K, that is, the temperature 
standard error eT was preset to the exact value. The least squares fitting 
was done using the utility program COLSAC [2]. The confidence limits for the 
fitting curve were computed by solving the Antoine Eq. (3.1) for p and 
applying the linearized law of variance propagation to the function 
p(T;A,B,C), that is, by 

e = [ ap(TAJ3,C) v ap(T;A,B,C) T 1/2 
P a (A,B,C) ABC ( a(A,B,C) -) I ' 
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17 19 21 23 .25 27 29 31 ml0 1 

TEMPERATURE 

Ftgure. Simulated Data with Fitted Curve. 

Error assumptions for the fitting are 

epi/pR = 1.19 + 0.055 (pi f CPi)/PR3 

eTi = 0.1 K 

The confidence limits and error ellipses correspond 
to 3.4 standard errors. Pressure is shown in torr 
and temperature is shown OC. 
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where ap/a(A,B,C) is the Jacobian matrix of the function p(T;A,B,C) 
(the gradient of p in the A,B,C-space), and VABC is the estimated variance- 
covariance matrix of the parameters A, B and C. The matrix VASC is defined in 
terms of the standard errors of A, B and C, and of the corresponding 
correlation matrix CABC (all given in Table 1) by 

'ABC = DABC 'ABC DABC ' (3.12) 

where DABC is a diagonal matrix with the standard errors in the diagonal. 
About the computation of VABC (and CA=) f rom the least squares adjustment see 
reference [5]. The matrices are part of the output of the utility program 
COLSAC. 

The dependence of the objective function S on the pressure error 
parameter 81 is illustrated in Figure 3 for a fixed temperature standard error 

eT = 0.1 K. The shape of the curve is typical for sample problems with a 
sufficiently large number of data (s > 40) and a reasonable @T < 1.0 K. Also 
the numerical results are only little influenced by the preset value of eT, as 
shown in Table 1. We conclude from these experiments that the pressure error 
heteroscedasticity (the parameters e and eoel) can be reasonably well 
retrieved if s 3 40, but that the tem!erature standard error eT practically 
cannot be retrieved. If the number of data points is too small (s G 10) then 
one observes large variations of the optimal 91 -values between different sets 
of random input errors. If the temperature standard error is preset to a high 
value (eT > 1.0 K) then the least squares adjustment produces a solution were 
practically only the temperature observations are adjusted and, therefore, the 
pressure error parameters cannot be retrieved. The difference between input 
pressure error parameters and retrieved parameters shown in Table 1 is typical 
for the given size of the problem. The differences and case to case 
variations decrease if the number of observations increases. 

The distribution of the reduced residuals is illustrated by Figures 4 
through 6. The figures show the normal distribution compared to the 
cumulative residual distribution in a case described in Table 1 and for 
different values of 01. It is obvious that smaller values of the objective 
function S correspond to reduced residual distributions that are closer to 
normal. For comparison we show in Figure 7 the cumulative distribution of the 
reduced true input errors for the same example. One observes that the optimal 
distribution of the reduced least squares residuals (Figure 5) is closer to 
normal than the distribution of the corresponding reduced true input errors, 
drawn from a random number generator. 

The next example is a case with real data taken from reference [l], The 
data are shown in Figure 8 and numerical results are given in Table 2. The 
dependence of the objective function S on the pressure error parameter 9l is 
illustrated by Figures 9 and 10. In this case S(9) has no minimum for a 
finite 81. Therefore, the optimal choice is a constant relative pressure 

415 



v1 

34 

33 

32 

31 

30 

29 

28 

27 

26 

25 

24 

23 

PRESSURE ERROR PARAflETER THETA-l . 

Figure 3. Objective Function S for.Simulated Data. 

The temperature standard error eT = e. 5 is 
.set to 0.1 K. 
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Figure 4. Comulative Distribttion of Reduced Residuals for Simulated Data 
and Small @l = 10 . 

The temperature standard error is set to eT = 0.1 K. 
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Standard Deviation 

Figure 5. Cumulative Distribution of Reduced Residuals for Simulated 
Data and Optimal ol = 0.049. 

The temperature standard error is set to eT = 0.1 K. 
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-2*s oas 2*s 49s 
Standard Deviation 

Figure 6. Cumulative Distribution of Reduced Residuals for Simulated Data 

and Large $ = 104. 

The temperature standard error is set to eT = 0.1 K. 

1.0 

-2*s 00s 29s 4.S 
Standard Deviation 

Figure 7. Cumulative Distribution of Reduced True Simulated Errors. 
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TEMPERATURE 

Figure 8. Data and Fitted Curve for l-Tetradecanol. 

Error assumptions Curve for fitting are 

epi /PR = 0.0294 (Pi + Cpi) /PR 

'Ti = 0.1 K. 

The confidence limits and error ellipses correspond 
to 11.9 standard errors. Pressure is shown in torr 
and temperature is shown in OC. 
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standard error (corresponding to an infinite 6,>, as indicated in Table 2. A 
S(e) without a minimum seems to be typical if the number s of data points is 
small. 

The difference between the present results and those by Kemme and Kreps 
is between one and two standard errors of the Antoine parameters, It is not 
clear from reference [l] how the Antoine parameters were calculated, but the 
reported values are between those for constant e and for e proportional to 
P* We obtained almost the same Antoine const!tnts as I&me and Kreps by 
assuming eT = 0 and 

epi'pR = 0.139 + 0.139 (pi + cpi)/pR' 

The corresponding S was 0.4663 indicating that this is not an optimal choice 
for the error models. 

Table 1. Result from a Simulated Experiment 

Input Retrieved 

eT = e. B2 

eO 

e. e1 

S 

A 

B 

C 

=AB 

=AC 

=Bc 

de 'AB' 'AC and cBC are corretation coefficients of the Antoine 

0.1 K 

1.0 

0.05 

--- 

7.0 

1900 K 

130 K 

-- 

(0.0 K) 

1.20 

0.056 ' 

0.232 944 

7.567 + 0.629 

2406 + 551 

181.39 k 49.88 

0.998 909 68 

0.995 506 28 

0.998 824 72 

(0.1 K) 

1.20 

0.055 

0.232 945 

7.567 + 0.629 

2406 f 551 

181.40 + 49.88 

0.998 909 86 

0.995 506 93 

0.998 824 86 

(1.0 K) 

1.11 

0.051 

0.233 230 

7.570 + 0.631 

2408 + 552 

181.51 + 49.88 

0.998 927 17 

0.995 571 48 

0.998 839 41 

parameters A, B a& C. 
indicated. 

Yhe temperature error estimate eT wa6 preset as 
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Table 2. Adjustment Results for 1-Tetradecanol 

Present Analysis 

Optimal 
ep'pR 

S 

A 

B (K) 

C (K) 

=AB 

CAC 

=BC 

eT = 0.1 K eT = 0 

0.0294 p/pR 0.0294 p/pR 

0.2974 0.2973 

6.2284 + 0.1846 6.2251 f 0.1851 

1250.2 + 106.3 1248 + 106.7 

76.23 + 12.02 76.01 2 12.06 

0.997 527 0 0.997 525 0 

0.991 019 0 0.991 025 3 

0.997 877 0 0.997 882 1 

2he cAB> eAC' and cBC are correlation coefficients 

Kemme 
and 
Kreps[l] 

eT = 0 

C-I 

6.4840 

1412.907 

95.368 

*-- 

-- 

the Antoine 
parameters A, B, am? C. Yhe temperature pange of obsemations is between 
425.15 and 569.15 K (152 and 296OC). 

4. Summary and Conclusion. Multidimensional residuals arise in model 
fitting problems when more than one component of the observables is subject to 
adjustment. Because the corrected observations must satisfy constraints 
representing the model and because such constraints effectively reduce the 
degrees of freedom for the corrections, the components of multidimenional 
residual vectors typically are strongly correlated. These correlations must 
be eliminated or otherwise taken into account when the residuals are analyzed, 
so that interpretation errors c'an be avoided. We suggest in this paper to 
eliminate the model induced correlations by using reduced residuals. The 
latter generally have less components than the original residuals, and the 
components are dimensionless. The reduction of the number of components 
matches the loss of degrees of freedom, so that there are no correlations 
between components of reduced residuals, except when such correlations are 
present in the observations. In standard least squares problems (curve 
fitting in a plane, surface fitting in three dimensions, etc.) the reduced 
residuals are scalars with an absolute value equal to a norm of the residual 
and a positive or negative sign, depending on the location of the observation 
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with respect to the fitted structure. Hence, by introducing reduced residuals 
one can use in standard least squares problems well known techniques for 
statistical investigation of scalar quantities. As an example for such 
application we presented the investigation of heteroscedasticity of vapor 
pressure measurements. In elementary least squares problems the reduced 
residuals are identical to the usual weighted residuals. 

In conclusion, the introduction of reduced residuals greatly simplifies 
the investigation of residuals arising in general least squares problems. The 
concept has a simple geometric interpretation and the routine' calculation of 
reduced residuals easily can be included in least squares utility routines. 
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APPENDIX 
PROPERT& OF REWCED RESIDUALS 

We provide in this appendix proofs and derivations of the formulas quoted 
in Section 2. 

In the model equations 

F+, t> = 0, i-l ,..., s IA.11 

of the minimization problem (2.1) the r-dimensional vector functions Fi(S,t) 
are assumed to be componentwise twice differentiable with respect to all its n 
+ p arguments. We 'also assume that 

rank aF/X = r (A.21 

in a neighborhood of the least squares solution.. The condition (A.21 insures 
that the r equations in each set in Eq. (A.l) are independent. Furthermore, 
we insure sufficieirt degrees of freedom for the optimization problem (2.1) by 
assuming that the following inequalities are satisfied by the dimensions of 
the problem: 

0 < p < r.s c n-8 . (A.31 
c 

The normal equatiins for the optimization problem can be derived by lagrange's 
multiplier technique. To that end we define a modified obijective function 
iby 

i ' (A.41 

where the ki are r-dimensional correlate vectors (Lagrange multipliers). Then 
the normal equations are obtained by setting equal to zero the partial 
derivatives of $ with respect to the unknown ci, t and ki. The result is 
[6, 7, 8, 91 

C.. - Xi F& = 0 , 1 
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Because of the rank condition (A.2) and because Ri is a positive definite 
matrix, the product FxiRiF:~ is also positive definite and one can obtain from 
Eq. (A.5a) 

ki = (Fxi RiF:i)-' Fxi Cl . 

Substituting this expression back into Eq. (A.5a) one obtains [6] 

5 = RiFzi(FxiRi FTi)-lFxici ' (A.61 

We shall use this important relation later. 

In the n-dimensional space of observables we define the inner products 

hi, bi) = CiT Ri'bi 

,and the elliptic norms 

IlcilI = (CT R;' ci)1'2 . 

(A.7) 

m 
a (A.81 

These definitions are possible because the Ri are positive definite. We 
notice that the norm (A.8) is dimensionless, 

The model equation Fi(&,t) = 0 defines a (n - r)-dimensional hypersurface 
in the n-dimensional space of observables. Let Xi + ci be a point of that 
surface. The hyperplane orthogonal to the surface Fi = 0 at that point is r- 
dimensional and is spanned by the rows of the matrix 

that is, for an arbitrary r-vector z 
i 

the corresponding n-vector 

(A.91 

ni = MFi pi = Ri FEiai 
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is orthogonal to Fi = 0, whereby the orthogonality is defined in terms of 
the inner product (A.7). To show this, we compute the inner product of ni 
with a vector bi tangential to the surface. The latter vector satisfies the 
equation 

F bi=O . xi (A.ll) 

The inner product is 

(n i, bi) = (Mm ai, bi ) = ",T MiiR;' bi 

(A.12) 

-T = ai Fxi bi = 0 

for arbitrary ai . 

Next, we normalize the matrix MFi by defining 

T 
NFi = (Fxi Ri Ffi) -I'* M& 

= (F,i Ri FT )-1'2 Fxi R~ 
xi , 

(A. 13) 
l 

The r rows of the matrix Nii again span the orthogonal hyperplane, but they 
are unit vectors orthogonal to each other, We show this by computing the 
inner product of NFi with itself: 

(NFi, NFi> = Nii Ril NFi 

= (Fxi Ri FT )-1'2 Fxi Ri F;i (Fxi RiF;i)-1'2 = I. (A'14) 
xi 

That NFi spans the same subspace as MFi follows from the formula 

NFi c R F T(F 
i xi 

R F T)-1’2 i; 
xi i xi i 

= M ; 
Fi i 

for arbitrary Ibi and a corresponding proper i.. 1 
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Next we show that the least squares residual ci is an element of the 
orthogonal space. According to Eq. (A.6) the residual satisfies the 
relation 

C. 
1 = Ri. Fzi (Fxi Ri F~~)-1'2 (Fxi Ri F~i)-1'2 'xi ci 

(AJ~) 

=N Fi NFiT Ri 
-1 

'i = NFi ii i 

with a proper ci and, therefore, is an element of the subspace, as claimed. 

The reduced residual ai is defined by Eq. (2.2), or 

a. 1 = CFxi Ri F~i)-1'2 Fxi Ci = NTFi Ril Ci l (A.17) 

It is an r-vector with dimensionless components, and it represents the 
residual cI in the orthogonal hyperplane. According to Eq. (A.16) the 
relation (A.17) also can be solved for the ci: 

=i = NFi ai . 
. . (A.18) 

Hence, either of the two vectors ai and ci are uniqueiy determined by the 
other. 

The Euclidean norm of the reduced residual is, because of Eqs. (A.17) 
and (A.13), 

1 lai( 1 = (a: ai)1'2 = {c: [Fzi (Fxi RT Fxi)-lFxi c~]}~'~ 

= (ciTR;'ci) 1’2= I lC$l I 
Eq. (A.19) shows that the Euclidean norm of the r-vector ai is equal to the 
elliptic rionn (A.8) of the n-vector ci. 

A relation similar to (A.17) also exists between the reduced residual 
* 

;i and the unknown true observational error c. of the observation Xi. Let. 

t be the true value of the model parameter. ihen by definition 

Fi(Xi + *c., 
* 

1 t>=o . (A.20) 
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Expanding the model function F1 at the least squares position one obtains 

* * * * 
Fi(Xi + Ci, t> = Fi(Xi + Ci, t) + FX~(C~ - ci) + F,i(t - t)+... (A.21) 

The left hand side and the first term of*the right &and side are zero. If 
one neglects terms of higher order in c - c and t - t, 
yields the following relation between ci at& f, 

then Eq. (A.21) 

F xi ci = Fxi t, + Fti d -t> . 

Eq. (A.22) is a relation between projections of ci, *,, * and t - t on the 
orthogonal subspace. because ci is an element of that sibspace one can use 
Eq. (A.17) and calculate the contributions of the other two projections to 
the reduced residual ai: 

a. 1 = (Fxi Ri FT )-li2 Fxi f, + (Fxi Ri FxiT)-1'2 Fti(: - t) 
xi l (A-23) 

Figure 1 illustrates the relation (A.23) in a planar curve fitting case. 

The relation (A.17) has the inversion (A.18) that allows one to 
calculate c i if ai is given. A similar,inversion of Eq. (A.23) would permit 
one to compute the unknown true errors c. in terms of the ai that are known 
from the least squares fitting. However: such an inversion of Eq. (A.23) is 
generally not possible. For Eq. (A.17) it was derived by using Eq. (A.6) 
which i# satisfied by the least squares residuals ci, but not by the true 

erroJs ci' This result is geometrically obvious because only a projection 
of ci enters Eq. (A.23) and one cannot reconstruct a vector from its 
projection. An exception is the special case r = n, that is, the case where 
the constraint equation Fi = 0 has as many components as the space of 
observables. In that case the Jacobian matrix Fxi can be inverted and one 
obtains from Eq. (A.22), for instance, the expression 

* 
c.=c -F 1 i ;: Fti(t -*t> 
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as an estimate of the true errors. A corresponding relation between zi and 

ai' which in this case also has n components, can be derived by substituting 
Eq. (A.181 into Eq. (A.24). However, in this special case the reduced 
residuals offer the only advantage that they have dimensionless 
components. Therefore, an investigation of heteroscedasticity can be more 
effectively done in this case in terms of the ci instead of the reduced 
resldgals ai, because of the simplicity of the relation (A.241 between ci 
and =i' 

A least squares model fitting can determine only the projection of the 
true observational errors on the space orthogonal to the surface F = 0. 
Because other components of the true errors are lost it is reasonable to 
carry out any investigations of the residuals only in the orthogonal 
space. This is done by using the reduced residuals, which contain all the 
information about the true errors that is present in the least squares 
results. 
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APPLICATION OF THE PRINCIPAL COMPONENT METHOD 
TO TRAJECTORY ESTIMATION 

William S. Agee and Robert H. Turner 
Mathematical Services Branch 

Data Sciences Division 
National Range Operations Directorate 

US Army White Sands Missile Range 
White Sands Missile Range, New Mexico 88002 

1. TRAJECTORY ESTIMATION. Measurements of range, azimuth, and eleva- 
tion from several different radars are used to estimate the Cartesian posi- 
tion coordinates of a vehicle trajectory at a sequence of times, ti, i=l,N 

_ which cover the entire trajectory. Since the measurements are 
subject to systematic errors as well as random measurement errors, we also 
want to estimate the systematic error parameters or biases in addition 
to the trajectory coordinates. The resulting estimation problem is a 
combined linear and nonlinear estimation problem in which the trajectory 
coordinates appear as nonlinear parameters in the measurements and the 
biases appear as linear parameters in the measurements. 

Let ha($) be a measurement function where ii is the Cartesian position 

vector to the trajectory at time ti. If we have M different radars observing 

the trajectory, then c1 = 1, 3M. For a range measurement from the _th radar 

ha(;;i) = [(Xi-Xp)2 + (yi-yp)2 + (Zi-Zp)2] “2 (1) 

where (x 
P 

, yp, a 
P) 

are the Cartesian coordinates of the origin of the local 

Cartesian coordinate system at the ,th radar. For an azimuth measurement 

from the ,th radar the measurement function is, 

ho(ii) = tan-' w 
i .P 

For an elevation measurement from'the ,th radar 

ha(;;i) = tan-' 
Z. 

1 
A z 

[txiexp12 + (ri-Yp)2] 1'2 

Let zcr(ti) denote the observed value of the 2 measurement. The 

observations are modeled as, 

> + bcr + e,(i) 

(2) 

(3) 

(4) 
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where bcr is a constant measurement bias and es(i) is a zero mean, random 

measurement error. Let b be a 3M-dimensional bias vector bT = [bl b2--bsM]. 

Then the measurement model can be represented as 

Zulti 1 = ha(Xi) + sclb + e, i> (5) 

where sa is a row vector with a one in the ati entry and zeros in all other 
entries. 

su =[O 0 --o 1 0 -0J 

.f * position 

(6) 

Let RLl(ti~ be known variances of the random measurement errors, ea( i ). 

The estimation problem to be considered is to minimize, 

with respect to Yi, i = 1, N and 6. Differentiating (7) with respect to xi 

and b results in the nonlinear normal equations 

N 3M 
ifl .4, St,R-alti ) (Zu(ti ]-hu('i )-S(li;) = 0 (9) 

where "i is the estimate of Xi and b is the estimate of b. In (8) H&) 

ah,($ I 
is the derivative, _ . In order to solve the normal equations, they 

are linearized about a guess trajectory, 

satisfy (8), i.e., 

3M 
c H T(xi(s’ 

cr=l ct 

x.v L 
1 

et Xi(')' i = 1, N and b(S) 

")-SUb(S I)=0 i=l,N ('0) 
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If (8) is linearized about xi (9 and b(S) , we obtain 

(+x~(~)) =-A;'A; N+,(b-,b(s)), 
9 

where 

3M 

Ai = c HGT(xi 
Ci=l 

(S))R, 
1 

and 

f 3M r 1 p)) A! l,N+l = aZIS~'Ru'(ti)Ha(X (13) 

Ai is 3 f : and Ai N+l is 3 X 3M. Linear izing the second normal equation, (9), 
c , * 

about xi\=' and solving for b gives the result, 

(11) 

cm 

(14) 

.(ll) and (14) for ii - x(') and b - b(S) are the basic equations for trajectory 

estimation. The solution to the normal equations are obtained by successive 

relinearization and solution of (8) and (9). 

2. APPLICATION OF.PRINCIPAL COMPONENTS REGRESSION. Although there are no 
convergence problems in solving the normal equations iteratively for the 
M-station radar case, another problem which is fairly common in the solution of 
linear least squares problems also occurs freguently in trajectory estimation. 
Very often, the estimate of the bias vector, b, converges to a solution for which 
several of the components are too large and may have the wrong sign. Sometimes 
the bias estimate is obviously erroneous. One obviously erroneous case which 
arises frequently is that the elevation bias components will all be large and of 
the same sign. This problem of the estimated bias vector being too long is 
usually attributed to multicollinearity among the predictor variables in the 
linear least squares problem. The problem in the linear estimation case is often 
successfully treated by some method of biased estimation. The problem has not 
been properly recognized or successfully treated when it arises in trajectory 
estimation. Although the existence of these erroneous bias estimates has been 
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recognized in trajectory estimation, the source of the difficulty was not 
properly recognized. Some workers in trajectory estimation have stated that 
the existence of this problem demonstrates the need to specify a prior 
distribution for the biases in order to "tie down" or statistically constrain 
the bias estimates. It does not take much experience in using these priors 
for trajectory estimation to realize that the problem of inflated bias estimates 
is as much present with the prior as without the prior. We have attempted to 
treat this problem both with ridge regression and with principal components 
regression. We have had some success with both methods but neither method 
has entirely solved the problem. Of the two methods we have had the most 
success with principal components, probably because it is easier to apply. - 
The principal components method also illuminates a problem that arises in the 
application of either method. 

The linearized equation (14) to be solved for the bias estimate can be 
written as 

Qi = U 

where 

and 
N 3M 

U = C E STR (ti 
i=lpl a Oc 

)CZaCti) -'h,(x{')) * S,b(S)) + Qb(') 

N T 
ISa - i~lAi,N+lA~lAi,N+l 

Partition the bias vector into angle components ba and range components b r 

so that the linear bias estimation equation is 

[: I&][::] = [I:] 
Scale the bias estimates accordir 6 a 

[I 
= 

br 
[ 

cl-’ 0 a 

0 II-1 
r 

(16) 

(17) 

(18) 
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Where Da and Or are diagonal matrices chosen so that Da'Q,Da'= Qi and 

Di'QrDi'= Qk each have diagonals of unity. The transformed bias estimation 

equation is 

[:i- :;I [ ."i] = [ :;?I 
('9) 

with R' = D,'RD;' and UA = D;'Ua,U;'=D;'Ur. Suppose the bias vector is 

further transformed by 

'a Cl n = TB 
b; (20) 

In principal components regression the components of B which correspond 

to very small eigenvalues of Q' are set to zero. Specifically, let r be the 

largest integer for which 

3M 
E ys 

i=3M-r 
3M Llo-2 , 

(22) 

where Yi i=l, 3rd are the eigenvalues of Q' and we have ordered the Yi so that 

Yi +JIyi m Define B: = 0 for r4<3!1 and B* = ~~ otherwise. The principal -- i 
components solution of the original system of equations, denoted by [b; b;], 

(23) 
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Consider the following example from WSMR data. We have three radars, 

R122, R123, and R395 tracking a level flying target, flying at an altitude 

of about 30,000 ft. The graph of Fig 1 shows the relative geometry of the 

target trajectory and radars. The least square estimates of the radar 

biases obtained for this example are 

R122 R123 R395 
Range bias (ft) T18.3 TIT8 -K7 

Azimuth Bias (miliradians) .116 .058 ,148 

Elevation bias (miliradians -.737 -. 947 -.538 

The values of the elevation bias estimates, which are all large and 

negative illustrate a commonly occuring type of erroneous solution in 

radar trajectory estimation. In this example we are able to confirm that 

the radar bias estimates above are greatly in error. Using measurements 

from tracking cameras we are able&to obtain trajectory estimates which are 

much more accurate than trajectory estimates obtained from radars. By 

comparing the optically derived trajectory against the radar measurements we 

obtain t'he following radar measurement bias estimates, whi.ch we use as a 

standard. R122 R123 R395 

Range bias (ft) 157.3 152.9 80.3 

Azimuth bias (miliradians) .05 .02 :09 

Elevation bias (miliradians) .ll -.08 -.09 

in the radar bias estimates espec ially in elevat ion are readily The large errors 

apparent. 
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The eigenvalues for the Q' matrix and the corresponding components of 

the solution vector i are: 

Yi 

1.9306182 
1.7776564 
1.7112154 
1,28B728 
1.2173482 
1.0753069 

.45750007x10-2 

.16010719x10-2 

.30452861x10-3 

-61.638411 
27.106658 
17.060269 

-25.130580 
25.571920 
88.890445 

-481.67132 
-83.385294 

55.338603 

Using the criterion stated in (22) principal components regression will set 

the last three components of B* to zero. The principal component solution for 

the radar bias estimates is 

R122 R123 R395 

Range bias (ft) 11.9 8.2 -22.3 

Azimuth bias (miliradians) .09 .03 .47 

Elevation bias (miliradians) .13 -.08 -.13 

The principal components method for this example gives large errors in the 

estimates of the range biases and a large error in the azimuth bias estimate 

for R395. Thus, it appears that the principal components method does not 

yield useful results when applied to this example. However, we have found 

that the principal components method does give good results when applied to 

this example in a slightly different way. 

Consider the partitioned bias estimation equation in (19). Transform the 

angle bias vector ba as bQ = Ti, where T is orthogonal. The ranqe bias, b;, 

can be eliminated from (19) by substitution. We obtain 

i; = Q;.-’ (U; - VT+ 
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and 

TT(Q; " RtTQt-1 r R')T; = TT(U; - RITQ;-'U;) (24) 

Choose T so that 

Then ri = ,TT(Ui - RtTQ;-'U;] (26) 

The values of the radar bias estimates for the current example obtained from 

applying the principal component method to this reduced problem are: 

Range bias (ft.) 

R122 Rl23 R395 

147.7 144.1 70.2 

Azimuth bias (miliradians) ,Ol -.04 .ll 

Elevation bias (miltradians .13 -.oa a.06 

The biases computed by applying the principal component method to the reduced 

bias estimation problem are statistically compatible with the radar biases 

derived by comparison with optical tracking data. Another example of inflated 

radar bias estimates comes from a recent missile vs. drone engagement at NSMR. 

This example will indicate some additional difficulties in applying principal 

components to the radar bias estimate problem. In this example we have three 

radars, R124, R125, and R442 tracking the missile. The least squares 

estimation of trajectory and radar biases obtained the following bias estimates. 

Range bias (ft) 

Azimuth bias (miliradians) 

Elevation bias (miliradians) 

R124 R125 R442 

253 307 164 

.21 .21 -.57 

-.39 -.71 -*El 
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For this example the eigenvalues of the reduced matrix, QA - R'TQ'ilR', and 

the corresponding components of the solution vector i are: 

1.8357080 38.432177 
1.4980308 -42.134995 
1.0704788 7.2953978 
1.2442094 26.848291 

.25488164 -171.70691 

.096690436 -442.92985 

If we apply the criterion stated in (22) for zeroing components of i 

corresponding to small eigenvalues, we find that no components should be 

zeroed since even the two smallest eigenvalues are not very small. Nevertheless, 

we zero the components of B corresponding to the two smallest eigenvalues. 

This results in the bias estimates, 

R124 R125 R442 

Range bias (ft) 263 308 193 

Azimuth bias (miliradians) -.07 -.05 -.12 

Elevation bias (miliradians) .05 -.08 0 

From optical tracking data on this drone we computed the following estimates 

of the radar biases. 

R124 R125 R442 

Range bias (ft) 254 297 204 

Azimuth bias (miliradians) 0 -. 04 -.16 

Elevation bias (miliradians) 0 -.08 -.09 
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The bias estimates obtained by applying principal components are much more 

compatible with the optically derived bias estimates than the bias estimates 

obtained from least squares. We have tried several other examples from 

which we obtain similar results and conclusions. 

We believe that we have made significant progress in solving the problem of 

inflated measurement bias estimates in trajectory estimation. However, before 

we could be confident in the routine application of the principal component 

method described above to M-station radar trajectory estimation, several 

questions should be carefully considered. 

(1) Why must the principal component method be applied to the reduced 

bias estimation problem (angles only) rather than the full bias estimation 

problem? 

(2) What criterion should be used zeroing components of i corresponding 

to small eigenvalues? 

(3) Should the principal component method somehow be applied to 

obtaining improved range bias estimates? 

(4) Are there other biased estimation methods such as ridge regression, 

fractional rank regression, etc., which would yield better results than 

the principal component method when applied to the estimation of measurement 

biases in M-station radar trajectory estimation? 
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OPTIMAL REDUCED ORDER CONTROLLERS 
for 

DISCRETE-TIME LINEAR SYSTEMS 
with 

PARTIAL STATE ESTIMATION 

Maurice F. Hutton 

IBM Corporation 
Federal Systems Division 
Owego, New York 13827 

ABSTRACT 

The solution to the standard steady state LQG problem is a 
controller whose order equals the order of the plant model. 
For many high order plant models, a reduced order controller 
which is easier to mechanize can be used with good 
performance. A methodology is described for solving the 
discrete-time, steady state LQG problem with the constraints 
that the controller be of reduced order and that linear 
combination5 of the controller states estimate particular 
plant model state variables, Formulas for simplifying the 
gradient calculations are introduced. 

NOMENCLATURE 

Dimensions 
Symbol Definition 

k = number of plant states 
1 = number of plant input5 
m = number of plant outputs 
P = number of plant noise inputs 
r = number of controller states 
s = number of variable5 being tracked 

Sire 
kx k 
kxl 
mx k 
kxp 
5x5 
rxr 
rxm 
lx r 

Matrices 
Symbol Definition 

A = plant 5y5tem coefficient5 
B= plant input coefficients 
C = plant output coefficient5 
D = plant input noire coefficient5 
E= performance weights on tr&king error 
F = controller system coefficients 
G = controller input coefficient5 
H= controller output coefficients 
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5% 
k+: : 
k+r x 
ki-r x 

k x 
lx 

p+m x 
5% 

k+r x 
P x 
IllX 

k+r x 
k+r x 

k 
r 
k+r 
p+m 
ktr 
k 
1 
P+m 
k+r 
k+r 
P 
m 
k+r 
k+r 

Size 
5 

k+r 
P+m 

r 
1 
P 
m 
k 
m 
5 
5 

K= tracking coefficients 
L = approximate tracking coefficients 
H = closed loop system coefficients 
N= closed loop input noise coefficients 
P = variance of closed loop state vector 
Q= performance weight5 on plant state 
R= performance weight5 on plant input 
s= variance of closed loop input noise vector 
T = closed loop tracking coefficient5 
u= composite performance weight5 
V = variance of plant input noise vector 
w= variance of plant measurement noise vector 
Y = Lagrange multipliers 
2 = performance weights on closed loop state 

Vectors 
Symbol Definition 

; 
= tracking error 
= closed loop state 

g = closed loop input noise 
9 = controller state 
U = plant input 
v = plant input noise 
w = plant measurement noise 
X = plant state 
Y = plant output 
z = variables being tracked 
h = estimate5 of the variables being tracked 

Scalars 
Symbol Definition 

b = step 5ize in steepest descent method 
J = performance index 

i = modified performance index 
n = discrete-time index 

INTRODUCTON 

The motivation for this 5tudy was an idea for improving the 
design used to fly target aircraft in formation under 
computer control I This Drone Formation Control System 
(DFCS), currently in operation at the White Sands Missle 
Range in New Mexico, places a premium on the complexity of 
the control design because the computations must be 
performed -in real time. However, the plant models for a 
single drone which include airframe, actuator, and autopilot 
dynamics have had as many as 32 states. Applying the 
standard steady state LGG method in such a case would result 
in a 32 state feedback controller. 
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An attractive alternative is to design a reduced order 
controller that minimizes a quadratic performance index. The 
minimum value of the performance index for the reduced order 
design will be larger than the value achieved by the high 
order design. Nevertheless, a reduced order drone controller 
should meet the performance requirements since only a few of 
the 32 modes are dominant. The decrease in complexity is 
expected to be worth the small difference in performance. 
This property applies to many other applications involving 
high order linear models. 

In the reduced order approach the designer specifier the 
order and structure of the controller. Hence the design 
problem is to find the controller gains that minimize the 
performance index I The theory for solving this problem in 
the continuous-time case is described in Ill-143. 

A disadvantage of using the reduced order approach is that 
the controller states lose their physical meaning. For the 
standard LGE method, the controller states (for a particular 
realization) are estimates of the plant states. This is not 
true for the reduced order controller. Because DFCS must not 
only control but also track the drones, this limitation of 
the reduced order approach presents a problem. Fortunately, 
estimates of all 32 drone states are not needed. FOF 
tracking purposes, the DFCS controller only needs to 
estimate position and velocity. 

To resolve the tracking problem, the reduced order approach 
is extended to provide estimates of scme state variables of 
special interest to the designer. To be more exact, linear 
combinations of the state variables may be estimated. The 
extension is accompished by modifying the performance index 
and the structure of the controller. 

The basic equations for designing the reduced order 
controller with partial state estimation are described 
below. The definitions of the symbols used in the equations 
are given in the nomenclature section. 

PROBLEW FORMULATION 

The linear, time-invariant model of the plant to be 
control1 ed is 

x(n+l) = Ax(n) + Bu(n) 4 Dvjn) 
(1) 

y(n) = Cx(n) 4 w(n) 

In this state space representation the vectors x, U, y 
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denote the state, input:, and output, respectively. The 
random vectors v and w modeling the plant disturbances and 
measurement errors are zero mean white noise sequences with 
variance matrices V and W, respectively. 

EC vv'3 = v 
(2) 

EC wwp3 = w 

.The operator T< 3 is the steady state expectation. 

. The feedback controller is assumed to have the following 
structure 

qln+l) = Fq(nl 4 Gy(n) 
(3) 

u (l-t) = -Hq(n) 

ihe order of the controller F is selected by the designer 
and is less than OF equal to the order k of the plant model. 

I I r s k (4) 

In addition to computing the feedback contru19 the 
controller must also compute estimates h of particular plant 
model variables z which are linear combinations of the plant 
states. The estimates h are linear combinations of the 
controller state5. 

z(n) = Kx (n) (5) 

h(n) = Lq (n) (6) 

The tracking error e is the difference between the estimated 
and actual values for the particular plant model variables 
to be tracked. 

e(n) = h(n) - z(n) (7) 

The performance index is the steady state expectation of a 
quadratic form weighting the state, input, and tracking 
error. 

J = ZC X*QX 4 U’RU + e’Ee 3 (8) 

The first 2 terms in (8) correspond to the standard 
definition of the performance index for the steady state LQG 
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discrete-time problem. The additional term provides a means 
of extending the controller design to perform partial state 
estimation. 

To summarize, the objective is to find the matrices F, 6, H, 
L that minimize the performace index (8) subject to 
conditions <l)-(7). A block diagram of the closed luop 
structure is shown in Figure 1. It is assumed that the 
design parameters or controller gains in the minimization 
are particular elements of the matrices F, 6, H, L. This 
assumption is more general than necessary but adequate for 
many applications, including the applications of current 
interest to the author. The designer specifies which matrix 
elements are to be design parameters as part of the problem 
setup. In order to have a unique solution, not all the 
elements of the controller coefficient matrices can be 
considered as design parameters. Denery t51 has shown that 
only r(l+m) unknown parameters are needed in general to 
determine the matrices F, 6, H defining the feedback 
control. 

It is also assumed tha% a solution exists. The conditionsV 
guaranteeing that the optimization procedure will convwge 
to a unique solution remain to be studied. 

Figure 1 Block Diagram of Closed Loop System with 
Reduced Order Control 1 er 
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THEORY 

The first phase of the derivation is to express the closed 
loop dynamics in state space form. 
Let 

[ 

m 
x 

f = -- 

q . 

V 
I  9 = --- [ 1 w (9) 

r A : -BH ---- 1 D : 0 M = 1 -I-- ; N = ; (10) 
GC : F 

[ --- 
0 : 
e-w 1 

G 

Then the closed loop dynamics are described by 

f In+11 = Hf (n) + Ng (t-t) (11) 

FIlso let 

1 = t -K : L] (12) 

Then the tracking error,in terms of the clcsed loop dynamics 
is 

e(n) = Tf (n1 (13) 

The second phase is to find an equation for the variance P 
of the closed loop state vector f as a function of the 
vari anca S of the closed loop input noise vector g - 
By definition 

EC ff’) = P 

EE gg*3 = s 
(14) 

which from (2) and (9) imply that 

Since (111 is a linear, time-invariant disccete-time system 
excited by a white noise seqence 

P = MPH’ i- NSN’ (16) 
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The third phase is to express the performance index in a 
form more suitable for differentiation. Rewriting (8) gives 

J = EC trl: i&x' + Ruu’ + Eee’ 3 > (17) 

The operator trt 3 denotes the trace of a square matrix 
which equals the sum of the diagonal elements. The 
performance index is next written in terms of the closed 
loop state vector, In order to do this, define 

Substituting (3) in to the 2nd term and (7) into the 3rd 
term Of (17) give5 after applying (5?, (6), (91, (121, and 
(13) 

J = EC trC Zff’ + ETff’T’ 3 3 (19) 

Using the commutive property of the trace operator, (191 
simplifies to 

J = E< trl: Uff’ 1 1 (20) 

where 

U = z + T’ET (211 

Transposing the trace and steady state expectation operators 
plus substituting (14) results in 

J = trI:lJPl = trC PU 3 (22) 

The problem can now be stated as finding the matrices Fg G, 
H, L that minimize ( 22) subject to the equality constraints 
imposed by (16). 

This problem is equivalent to minimizing the following 
function in which the independent variables are the unknown 
elements in the matrices F, G, H, L, P, Y: 

(23) 
5 = trC UP + ( MPH’ + NSN’ - PIYJ 

The matrix Y contains the Lagrange multipliers. The use of 
the modified performance index (23) instead of (22) and (16) 
removes the constraint equations. The minimal solution of . 
(231, which is also the minimal solution of’ .(22), is 
computed numerically as described in the next section. 
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COMPUTATIONS 

The optimum solution of (23;) can be found by setting to zero 
the partial derivatives of the modified performance index 
with respect to the unknown matrix elements, Differentiating 
(23) with respect to Y yields (16). Differentiating (23) 
with respect ta P gives the following adjoint equation: 

y -= M'YM f u (24) 

If the symmetric matrices P and Y are partitioned accarding 
to 

P = 

P : P 
1: 3 

---- ; --- 
P' :P 

3: 2 I - Y :Y 
1: 3 

Y = [ ! ---a : -I-- 
Y' : Y 

3: 2 

(2s) 

then the modified performance index in (23) can be rewritten 
as an explicit function of the matrices F, 6, H, and L. 
Differentiating the resulting expression, with the aid of 
the formulas in Appendix A, yields 

1 a3 
-- = Y’( AP - BHP 1 + Y t GCP + FP 1 
2 aI=> 3.‘. 3 2 2 3 2 

1 aS 
-- = YGW + 
2 a3' 2 

(2b) 

(27) 

c Y’( AP - BHP’) + Y ( GCP + FP’) 3 C’ 
3 1 3 2 1 3 

1 aJ 
-- = RHP - (28) 
2 aH’ 2 

B’i: Y’( AP - BHP 1 + Y t GCP f FP 1 J 
1 3 2 3 3 2 

1 aJ 
-- = E ( LP - KP 1 
2 aL’ I 2 3 

(29) 
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Recall that not al 1 the elements of the matrices F, G, H, L 
are neccessarily design parameters. Hence setting (261-(29) 
to zero will most likely result in more equations than 
unknowns. This difficulty is resolved by applying the 
following property: Let Fij be a design parameter of the F 
matrix located in row i and column j, The derivative of the 
performance index with respect to this design parameter is 
simply the element of the matrix computed by (26) that is 
located in row i and column j. In other words 

a5 a: 
- I 

1 I 

- 
bFij aF' ij 

Equations similar to (301 apply to (27)-(29). 

(30) 

The approach described by (261-(301 for computing the 
partial derivatives eliminates the need of differentiating 
the modified performance index seperately for each design 
parameter, Hence, this approach is especially useful far 
computer programming purposes. 

The equations obtained by setting 126)-(29) to zero can not 
be solved analytically for the design parameters in the 
matrices F, 6, H, L. Based on the gradient of the modified 
performance index I the design parameters are, instead, 
adjusted iteratively to converge toward the minimum 
solution. This technique is the steepest descent method and 
the key steps in the numerical solution are briefly 
described below. 

1. Hake an intial guess of F, 6, H, L. 

2, Solve (16) for P. 

3. Solve (241 for Y. 

4. Use (25)-(29) to compute the partial derivatives or 
gradient matrices. Those elements of the 4 gradient matrices 
that are not the design parameters should be set to zero. . 

5, Compute a new set of design parameters according to 

F = F - b (&aFz) 
-b>Q 

G = G - b 6/aGy ) 

H = H - b (a%aH’ 1 . . 

L = L - b C&aL= 1 

451 

(31) 



The scalar b determines the magnitude of the adjustment in 
the solution. The value of b is selected large enough to 
provide rapid convergence and yet small enough to insure an 
accurate solution. 

6. Repeat steps Z-6 using the new values of the matrices F, 
G, H, L until convergence occurs, 

CONCLUSIONS 

An attractive method for computer-aided control system 
design is the steady state LGG theory modified to permit 
reduced order controllers. To apply this approach the 
designer has the additional task of specifying the order and 
configuration of the controller. The advantage is that the 
resulting controller design is simpler and hence better able 
to meet the demands of real-time control. - 

One of the 1 imitations of using the reduced order 
control 1 er, which is addressed by the this paper* is that _ 
the controller states can no longer be interpreted as 
estimates of the plant states, It is shown that the design 
method can be extended so that the controller will also 
estimate key variables. -This extension does not alter the 
basic mathematical structure of the equations to be solved 
for the controller design, 

The extension permits the designer to tradeoff estimation 
accuracy versus control accuracy by varying the weighting 
-matrices in the performace index, The sensitivity of the 
closed loop performance to increases in the weighting on the 
estimation accuracy remains to be investigated. 

Special formulas are presented for computing the derivative 
of the trace operator with respect to a matrix. These 
formulas are useful in developing a general computer program 
to implement the design method. 

The discrete-time control problem is considered in'this 
paper but the method readily extends to the continuous-time 
case. 

The future use of the method for real-time drone control and 
other applications appears promising. 
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Appendix A: MATRIX GRADIENT FORMULAS FOR TRACE OPERATOR 

Formulas for computing derivatives of scalar functions with 
respect to a matrix are listed below, The class of scalar 
functions is the trace of a matrix product. These formulas 
are useful in the computation of the gradient used by the 
steepest descent method in finding the solution that 
minimizes the performance index. 

H = btrt FCXIG’ 3 / ax* 

F X = H G = 

F = AX H = A’G 

F = AX’ H = G-A 

F = XB H = GE’ 

F = X’E H = EG’ 

F = AXE H= A’ GE’ 

F= AX’B H = EG’A 

F = X’AX H = AXG’ + A’XG 

F = XAX’ H = GXA’ + G’XA 

F= B’X’AXB H = AXBG’E’ f A’XEGE’ 

F = EXAX’B’ H = B’G’XA’ + E’G’EXA 
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ABSTRACT. As part of a program to select an optimal tactical weapon sys- 
tem for specified environmental conditions a procedure is presented for pre- 
dicting the apparent infrared image of a target in a background that would be 
seen by an infrared sensor in a missile or airplane, Environmental effects 
are introduced through the exchange of energy between the target, atmosphere, 
and background by radiation, conduction, convection, and latent heat. The 
diurnal variation of the temperature and radiance of target and background 
surfaces are calculated including the effect of target orientation relative to 
the sun. Numerical calculations are presented for temperatures and radiances 
of the facets of a petroleum storage tank. 

INTRODUCTION. In any future conflict, technology may provide us with our most 
effective advantage over a numerically superior foe, Technology in this sense 
infers not only more capable and sophisticated systems, but also the ability 
to use them effectively. Emphasis on high technology has generated numerous, 
remarkably capable systems exemplified by the list of Army electro-optical de- 
pendent systems given in Table la. These devices and more advanced systems 
under development will provide significantly enhanced surveillance, target ac- 
quisition, and terminal homing capabilities. Doctrine and tactics to.exploit 
the advantages these systems provide must account for their increased sensi- 
tivity to the operational environment, the price tag for extended performance 
and increased autonomy. 

The European environment can be especially hostile to electro-optical 
sys terns. Table lb illustrates that visual systems are nearly useless in the 
winter to detect and lock on to a tank target at a range of 2750 m (1). Infra- 
red (IR) systems fare better; however, they are still ineffective for a signif- 
icant fraction of the time, especially in the winter. A synopsis of West Ger- 
man weather shows that in the winter overcast cloud conditions occur 70 to 
80 percent of the time (Table lc) (1). Cloud cover can severely impact visi- 
ble and IR system performance by obscuration (reduction of atmospheric trans- 
mission) and for IR systems a suppression of target-background contrast. 

Obviously, a single high technology system is not always the optimum 
choice for a particular mission. It is imperative to know when they will work 
and when they will not, which systems will be most effective in an anticipated 
set of conditions, and what performance level can be expected for the system 
selected. This requires the implementation of the second component of tech- 
nology mentioned in the first paragraph, the ability to project system per- 
formance and optimize the effectiveness of systems by choosing the most appro- 
priate alternative for the anticipated operational environment. This is the 
essence of the Tactical Decision Aid (TDA) concept (Figure la). 

455 



In the case of advanced electro-optical controlled weapon systems the 
concept embraces the development of analytical methods to forecast system per- 
formance for the conditions anticipated at the time of target engagement. 
This includes the type of target, the terrain conditions (background) sur- 
rounding the target, weather conditions, and atmospheric transmission. It is 
in essence an analysis of sensor-environment interactions coupling forecasts 
of future weather conditions, atmospheric transmission, and the dynamic re- 
sponse characteristics of targets and backgrounds using mathematical algo- 
rithms that mimic the most significant interactions. The TDA is a projection 
of performance for alternative systems, formulated to clearly illustrate which 
system to use, when to use it, and how well it will work. As such, the TDA is 
a near-real time mini-war game that strives to optimize effectiveness of our 
high technology systems. 

The prediction of the performance of a sophisticated system must, realis- 
tically, account for some rather complex phenomena. For this reason, the 
basic models should be based on physical principles, and should predict the 
strength of the intrinsic signal of the target and its attenuation during 
transmission through the environment to the weapon sensor. The environment 
affects both the intrinsic target signal and the apparent signature. The pre- 
diction schemes must be easily executed and simple to use, and therefore the 
final package, from the outward appearance, may not reflect the true character. 
and sensitivities of the internal analytical relationships used to formulate 
the prediction. For this reason the user must be familiar with the structure 
of the procedures and the potential limitations of the analytical tools used. 

The performance of modern weapon systems depends on the acquisition of 
target location and appearance data. Weather conditions affect the appearance 
of a target relative to its background. Prediction of this appearance is 
crucial to the selection of a weapon system. It is desirable to be able to 
predict the image of a target in different modes of energy transfer such as 
radar, infrared, millimeter and submillimeter waves, and others. A model that 
predicts the characteristic signatures of a target in various forms of energy 
transfer and in all weather conditions is needed to project system performance. 
Some weapon systems will be better suited for a particular battlefield en- 
vironment than others. Modern defense systems are fast and accurate thereby 
limiting the time available for the on site selection of the appropriate wea- 
pon system. 

The TDA concept is based on the idea that a particular weapon system can 
be selected which is best suited for locating and destroying a specified tar- 
get under expected environmental conditions. Ideally this selection would be 
made before the launch of the weapon system. The probability of success of a 
weapon is determined in part by environmental factors. These probabilities 
are used to assess alternatives and to select an optimum system. The antici- 
pated appearance of the target with respect to the background would be used 
also to brief a pilot or for insertion into the memory of a missile computer. 

The types of environmental information required are: weather, terrain 
elevations, soil moisture content, vegetation, soil and vegetation temperatu,re, 
position of the sun in the sky, latitude of target, atmospheric dust, smoke, 
and smog. The environmental factors can be obtained from a variety of sources. 
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For instance, weather conditions can be obtained from satellite pictures, ter- 
rain elevations, and slopes from photogrammetry, soil moisture, and the temper- 
ature of soil and vegetation from infrared photographs, and,atmospheric dust, 
smoke, and smog from measurements of light scattering and attenuation (2). 
However, systematic methods for obtaining the data to support combat opera- 
tions remains a problem. 

A complete environment-target model would predict the quality and 
strength of the target and background signatures for different modes of energy 
transfer and different detectors. These signatures will vary with the time of 
day as well as with environmental conditions. On the basis of this informa- 
tion an optimal weapon system can be selected and programmed to recognize and 
attack a target in a background for specified weather conditions and at any 
time of day or night (Figures lb and lc). 

OBJECTIVE. The objective of this paper is to present details of a concept for 
predicting thermal signatures of high-value targets and their backgrounds and 
to illustrate the role of such a capability as a critical component in a TDA 
procedure. The TDA concept is first discussed within the perspective of the 
overall structure, sources of inputs, and the sophistication of critical com- 
ponent algorithms. Through this discussion an effort is made to outline the 
critical component of TDA procedures and to illustrate the inherent complexity 
required to forecast the performance of modern weapons systems. 

The concepts for high-value target and background thermal signature pre- 
diction is presented in detail. High value targets are defined as large crit- 
ical facilities such as airfields, POL storage, bridges, power plants, and 
rail yards. While the procedures presented are generic in nature, the high- 
value target model described is being developed for the Air Force Armaments 
Laboratory and Air Force Geophysics Laboratory as a component to their TDA 
program (Figure Id). 

A HIGH VALUE TARGET TDA. A procedure for projecting the performance of an IR 
weapons system design to detect and lock-on high value targets would require 
four major components: a target-background signature model, a sensor charac- 
teristics model, an atmospheric transmission model, and systems models to tie 
together the basic component models and provide a means to estimate system 
performance for the scenario described by the input data. 

The target-background signature model function is to project the inherent 
(at the target) appearance of the target within the background for specified 
weather conditions, If the weapons system of interest detects and locks-on by 
a simple contrast criteria the model description of target and background 
geometry may remain quite simple. The average radiance of the target and the 
background may be sufficient information to project performance. If back- 
ground complexity is a factor in sensor performance OK the target has specific 
parts that are significantly hotter than the remainder of the structure of 
facility a more complex description of the target and background are required. 
This may require supplementing an overall average contrast value with informa- 
tion on background complexity (clutter level) and/or target hot spots that may 
be more critical to system performance than the average contrast value. If an 
imaging sensor is being considered the full geometric complexities of the 
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target and background must be included. The signature simulation then expands 
essentially to a full scene simulation. 

The actual signature calculation consists of an energy budget analysis of 
the various natural background and target surfaces that would be within the 
field of view of the sensor. The energy fluxes are driven by the character- 
istics of the surfaces and the weather. While one dimensional models may ade- 
quately handle surfaces for simple targets and contrast dependent sensors, 
consideration of energy fluxes for scene simulation requires much more complex 
models that allow energy exchanges between target and background surfaces as 
dictated by their orientation and proximity. 

Sensor characteristic models essentially describe the interaction of sen- 
sor components with the received signals from the target and background. The 
sophistication of the model is in direct proportion to the sophistication of 
the sensing device and any internal logic used to detect, classify, and 
lock-on to a target. Once again a contrast seeker is more simply simulated 
than an imaging system. The first requires only a signal-to-noise analysis 
while the later requires consideration of the radiance, geometry, texture, and 
association of the target and background. 

Atmospheric transmission models are needed to project the inherent target 
and background signatures estimated at the location of the target to the sig- 
natures received at the position(s) of the sensor system. For modeling real- 
istic battlefield conditions it is necessary to include the effects of natural 
atmospheric absorption and scattering phenomena as well as the very dramatic 
impacts of battlefield induced contaminants such as dust and smoke. 

The systems performance model integrates the previously described com- 
ponent models to mimic the entire system from signature generation, through 
atmospheric attenuation, to interaction with the sensor. It acts as an execu- 
tive program for providing inputs to the specific component models, trans- 
ferring one component’s output to another component for further processing and 
finally shaping the output of the entire system. While the systems perfor- 
mance model is the glue that ties the components together it is the complexity 
and capabilities of the component models that really dictate the capabilities 
of the overall TDA procedure and its limitations. 

INPUTS AND THEIR SOURCES. The individual component models require some common 
and some unique inputs. The sensor characteristic model primarily requires 
indicies related to sensor performance such as electrical bandwidth, spatial 
resolution, spectral sensitivity, signal processing transforms, and logic/ 
classified criteria. 

The atmospheric transmission model requires a description of atmospheric 
aerosol and molecular constituents. Inputs should be tied closely to regional 
atmospheric characteristics, local weather conditions, and battlefield activi- 
ties. This can be handled most easily by using a series of preestablished 
look-up tables representing a range of anticipated atmospheric conditions. In 
this manner, an appropriate atmospheric condition is selected from a menu and 
the system performance code provides the required information to the atmo- 
spheric model to make representative atmospheric transmission calculations. 
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The major input requirement is for the target-background signature model. 
Calculation of energy fluxes requires a description of the thermal and physi- 
cal characteristics of the target and background surfaces of most significance. 
These are basically static parameter values that can be provided from look-up 
tables keyed to specific surface types and conditions. Some surface thermal 
properties, such as the thermal conductivity of soil, are dynamic and correct 
parameter value estimates require a determination of the state of the surface 
for the time of signature forecast and in many instances some prior period. 

Weather is the principal driver of the energy fluxes as well as the state 
of the surfaces. As such it becomes the most critical input to the TDA pro- 
cedure . Wind speed, air temperature, humidity, cloud cover, rainfall, and 
solar insolation data on a timely basis are critical to accurate calculation 
of surface IR signatures. Since the object is to estimate signatures and 
sensor performance at some time in the future, the weather data input by neces- 
sity must result from forecasts or extensions of measured data. As the time 
lapse between the last measured weather input and the time of engagement in- 
creases, the accuracy of the forecast weather. data input to the model clearly 
diminishes. The TDA procedures must be designed to provide any advantage pos- 
sible to offset the possible inaccuracies in the weather inputs. 

Since weather data are critical to the execution of a high-value target . 
TDA a near-real time weather data acquisition, reduction, and processing capa- 
bility is needed to provide the procedure with the best possible information. 
Progress in mesoscale weather models would add materially to the reliability 
of such TDA performance projections, 

INFRARED TARGET AND ENVIRONMENT MODEL FOR TDA. A specific example of a target- 
environment model that can be used in a TDA program is the IR imaging of high 
value targets such as airfield runways and industrial complexes such as petro- 
leum storage tanks. The predicted image of a target in a background should 
agree with the image displayed by an infrared detector in a missile or air- 
plane. This prediction tells the pilot or missile computer what type of ac- 
tual IR image to expect during a tactical military mission. This will reduce 
the recognition time for a target which may be camouflaged and not easily seen 
in visible light. 

The IR imaging model consists of two basic components: 1) a target and 
background IR radiance model, and 2) a scene generation model which projects 
the intrinsic target and background radiances into the focal plane of the 
sensor of the attacking missile or airplane. The target and background radi- 
ances are calculated using the computer program Terrain Surface Temperature 
Model (TSTM) , and the infrared scenes are generated from a computer program 
called Scene Generator (SCNGEN) (3,4). The SCNGEN computer program requires 
as input the target and background radiances generated by TSTM. Both compo- 
nent models require input data from the environment (Figures 2a and 2b). 

BASIC PHOTOMETRIC DEFINITIONS. The spectral radiance of a target surface is 
defined as the amount of power radiated per unit area, per unit solid angle, 
and per unit wavelength as follows (5-7) 

dP = NA cos 0 dA dR dh (1) 
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where 

P = emitted power, watts 

Nh = spectral radiance, watts l m -2 
’ Pm 

-1 -1 
l sr 

e = angle between direction of observation and the normal to the target 
surface, radians 

A = area of target surface, m2 

R = solid angle, steradians (sr) 

h = wavelength, pm 

(23 

and is associated with specified wavelength intervals. The target facet radi- 
ances used in TSTM are associated with the 3-5 and 7-14 micron wavebands. 

The magnitude of the IR radiance associated with the background and tar- 
get is due to a number of physical processes associated with the absorption, 
emission, and reflection of electromagnetic energy. The total IR radiance as- 
sociated with target and background surfaces consists of a thermal component 
and a reflected component. The thermal radiance depends on the absolute tem- 
perature of the target and background facets. 

GROUND TEMPERATTJRE. The surface temperature of the background is calculated 
by the TSTM (3). Several physical processes are included in this model (Fig- 
ure 3a): 

a. radiative absorption and thermal emission of the surface - 

b. conduction of heat in target and background 

C. - conduction and convection by the atmosphere 

d. Jatent heat of evaporation - 

The equilibrium surface temperature is determined by satisfying an energy flow 
budget equation at the surface of a target or background (3,8). The energy 
budget includes the absorption of a SW insolation component and a LW atmo- 
spheric term. The ground temperature is calculated from the following two 
major irradiance terms: 

a, Direct SW Insolation on Ground 
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The SW solar irradiance on the ground is given by (3) 

I-$ (SW = sow1 cos zs 

where 

Ht(SW) = solar irradiance on ground, watts l m -2 

sO 
= solar constant = 1395.0 watts l m -2 

W, = cloud cover function (reference 3) I 
z, = solar zenith angle 

b. Direct LW Atmospheric Irradiance on Ground 

The atmospheric 
tion (3) 

LW irradiance on the ground 

Hftm(LW = W2(Ta,ea) 

(3) 

is given by the Brunt equa- 

(4) 

where 

Hftm = LW irradiance on ground, watts l m -2 

W2(Ta,ea) = air temperature and water vapor function (reference 3) 

Ta = air temperature 

e a = water vapor pressure 

The LW irradiance is diffuse. 
coefficients. 

The W2(Ta,ea> function contains empirical 

IRRADIANCE ON TARGET FACET. The TSTM was originally designed to predict the 
ground temperature and the temperatures of horizontal surfaces. This model 
has been modified to describe vertical surfaces by including the important 
radiative interchanges between the vertical target, the atmosphere, and the 
background. 

The radiative transfer at the target surfaces has longwave (LW) and 
shortwave (SW) components and include the following five major irradiance com- 
ponents (Figures 3b-3d): 

a. Direct SW Insolation on Target 

The direct SW solar irradiance on a target surface is given by 

HLar(SW = sow1 cos qt 
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where 

Hkar(SW) = solar irradiance on target surface, watts l m 
-2 

@t = angle between surface normal and the direction of the sun 

A simple analysis shows that 

cos 0, = sin 2s sin (SL) cos (SAz - SLAz) + cos Zs cos (SL) 

where 

SL = slope angle of target surface 

‘AZ = solar azimuth angle 

SLAZ = azimuth angle of normal to target surface 

b. SW Solar Radiation Reflected from Background to Target 

The SW irradiance on the target surface due to reflection from the 
ground is given by 

Hz:: g(SW) = rg(SW)SoW1 cos zs cos 4: 
, 

where 

rg(SW) = SW reflected coefficient of ground = 1 - rg(SW) 

cg(SW) = SW absorptivity of ground 

$ = angle between surface normal and the reflected sun ray 

The SW reflectivity may depend on the solar zenith angle, especially for 
case of water surfaces. Simple geometry shows that 

cos 4; = sin Zs sin (SL) cos (SAz - SLAz) - cos Zs cos (SL) 

c. Direct LW Atmospheric Irradiance on Target Surface 

The atmospheric LW irradiance on a target surface is assumed to be 
given by the Brunt equation as in the case of the LW irradiance on the 
ground (equation 4) 

HL;;(LW = W2(T,)ea) 
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where Hi;: (LW) = direct LW irradiance on target surface, watts l m 
-2 

d. LW Atmospheric Radiation Reflected from Ground to Target 

Because the atmospheric LW radiation is diffuse in nature the radiation 
reflected from the ground will also be diffuse, and the irradiance on a raised 
target surface is given by 

H;;; gW =- ; 
NFef (LW) cos et cos 8 

, t r2 
g dAg dA, 

where the diffuse reflected LW ground radiance is given by 

NFef W) 
1: WI 

= + Hftm(W 

and where 

(10) 

(11) 

At 
= target area 

% = angle between normal to target and reflected ray 

8 
& 

= angle between normal to ground and incident ray 

r = variable distance between points on ground and on target 
surface 

A = 
g 

area of ground 

rg (LW = LW reflectivity of ground = 1 - cg(LW) 

Eg(LW) = LW absorptivity of ground = LW emissivity of ground 

For the case of a homogeneous half-plane background the integral in equa- 
tion 10 simplifies to the result 

H:;; g(LW) = ; Nfef (LW) (lOa> 
, 

e. LW Irradiance on Target Due to Thermal Radiance of the Ground 

The diffuse LW irradiance on a raised target due to the thermal radi- 
ance of the ground is given by 

N;her(LW) cos Gt cos D 

r2 
4 dAg dA, (12) 
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where the thermal ground radiance is obtained from Planck's law as 

$her (Lw) = Eg (Lw) cf: I dh 
A5 

A1 
C 

exp (C;/hT) - l] 
(13) 

where 

NEher(LW) = thermal radiance of ground 

Cy = 1.192 X lo8 watts * (vm)4 . m -2 -1 
l sr 

Cz = 1.4338 X lo4 pm * OK 

T = ground temperature, OK 

The IR wavebands are taken to be 3-5 and 7-14 microns. For the case of a 
homogeneous half-plane background the integral in equation 12 simplifies to 

H;;Ir g(Lw) = ; Nfher(LW) , (12a> 

The total SW irradiance on the target surface is obtained from equa- 
tions 5 and 7 to be 

Htar(SW) = H;ar(sw) + H:;; g(SW) 
, (14) 

The total LW irradiance on the target surface is obtained from equations 9, 
10, and 12 to be 

Htar(LW) = Hk;;(LW) + HE:; g(LW) + HEi& g(LW) 
, , 

Finally the total irradiance on a target surface is given by 

Htar = Htar (SW) + Htar(LW) 

(15) 

(16) 

which has a SW and a LW contribution. For horizontal surfaces such as the 
ground, the target irradiances given in equations 14 and 15 reduce to those 
given in equations 3 and 4, respectively. 

Less important radiative transfer effects are: 

a. SW solar radiation reflected from target surface to the background - 
and reradiated as IR thermal emittance which irradiates target. 
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b. - Atmospheric IR radiation reflected from target surface to the back- 
ground and reradiated as a thermal IR emittance which in turn irra- 
diates the target. 

TARGET FACET TEMPERATURE. The absorbed part of the total irradiance on a tar- 
get surface enters the calculation of the target surface temperature. The ab- 
sorbed power per unit is obtained from equations 14 and 15 as 

Htar 
abs = Et(SW)Htar(SW) + ETHOS’ (17) 

where 

Htar 
= power absorbed per unit area, watts l m -2 

abs 

.z~(SW) = SW absorptivity of target surface 

Ed = LW absorptivity of target surface 

It is this total absorbed power that enters the calculation of target facet 
temperature using the computer program TSTM. The procedure for calculating 
the target surface temperature using equation 17 is essentially the same as 
used for calculating the ground temperature. 

For surfaces that are not horizontal the orientation of the surface with 
respect to the direct and reflected radiation components enters the irradiance 
calculation. This introduces a dependence of the predicted target surface 
temperature on the slope and azimuth angles of the surface, and a dependence 
on the solar zenith and solar azimuth angles. 

TARGET FACET RADIANCE. The total IR emittance from a target or background 
surface is the sum of a reflected IR component and a thermal IR emittance 
which is calculated from the predicted target surface temperature. 

a. Thermal IR Radiance of Target 

The thermal radiance of a target or background surface is calculated from 
Planck’s black body radiation law as follows (Figure 3d) 

N;&(LW) = ETCH: 

where 

Ntar = thermal radiance of target, watts * m -2 
ther 

* sr- 

T = target surface temperature, OK 

(18) 
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The IR transmission windows are taken to be 3-5 and 7-14 microns. The im- 
portant parameters for the determination of thermal radiance are the target 
surface temperature, the emissivity of the surface, and the transmission 
wavebands. 

b. Reflected IR Radiance 

In addition to the thermal IR radiance of a surface there is also a re- 
flected IR radiance which for a vertical surface is due in part to the IR 
atmospheric radiation reflected directly from the target, and in part to the 
IR atmospheric radiation reflected from the background and then reflected 
again from the target surface. There is also an IR reflected component due to 
the thermal emittance of the background which is reflected by the target sur- 
face. The reflected IR radiance is calculated, under the assumption that it 
is diffuse, in the following manner from equation 15 (Figure 10) 

rt (LW) 
N;Ef(LW) = TI Htar (LW) (19) 

where rt(LW) = LW reflectivity = 1 - .z~(LW) . 

The total target facet IR radiance is obtained finally as the sum of the 
thermal radiance and the LW reflected radiance as follows 

Ntar(LW = N;;,‘,(LW, + N;z;(LW) (203 

This is the intrinsic target radiance that serves as input for the determina- 
tion of the apparent radiance seen by the IR detector. 

APPARENT TARGET AND BACKGROUND RADIANCE. The apparent target and background 
IR radiances measured in the focal plane of an IR detector in an aircraft is 
less in magnitude than the intrinsic radiances for the following reasons: 

a. geometrical attenuation according to the inverse square of the dis- 
tance between target and detector 

b. atmospheric absorption and scattering 

C. obscuration due to smoke, clouds, dust, etc. 

d. orientation of the missile relative to the ground plan 

The synthetic IR imaging of a target in a background will be accomplished by 
the SCNGEN computer program (4). 

The terrain background is represented by several textures such as trees, 
grass, roads, etc. In order to construct a scene the target must be located 
within the background, and the detector position, viewing direction, and 
orientation must be specified. The angular field of view of the detector de- 
termines the footprint on the ground plane which is centered about the pierce 
point of the line-of-sight between sensor and ground plane. 
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The target surface is approximated by planar triangular facets. Each 
facet is assigned a value of intrinsic radiance by the TSTM computer program. 
As discussed earlier in this paper the intrinsic radiance values depend on the 
orientation of the facets relative to the sun. Facets not visible from the 
sensor's location and orientation are systematically eliminated by SCNGEN. If 
more than one target is considered, additional targets are implanted so that 
occlusion of one target by another is accomplished. The effects of transmis- 
sion of the IR image through the atmosphere are handled by a version of the 
LOWTRAN 4 computer program. 

NUMERICAL RESULTS. Numerical calculations have been done for the surface tem- 
peratures and intrinsic radiances of the facets of a petroleum storage tank 
(Figure 4a). A petroleum storage tank is constructed of steel plates whose 
surfaces are painted or rusted to some degree. There is sometimes an airspace 
over the petroleum, and heat conduction in both petroleum and air was con- 
sidered. Table 4 gives the thermal conductivities, diffusivities, and spe- 
cific heats of air, petroleum, and soil, and also gives the LW emissivities 
and SW absorptivities of the surface coatings considered for this numerical 
study (3,9). 

Figure 4b shows a typical diurnal variation of soil temperature and air 
temperature. Figure 4c shows horizontal facet temperatures for the top of a 
petroleum storage tank, and Figures 46 and 4e give the diurnal variation of 
vertical facet temperature including the dependence on the azimuth angle of 
the facets. Figure 5a shows a typical diurnal variation of the radiance of a 
soil background, while Figure 5b gives the radiance of a horizontal facet of a 
tank. The diurnal variation of the vertical facet radiances and their de- 
pendence on azimuth are given in Figures 5c and 5d. Figures 5e through 6b 
give examples of the expected intrinsic radiance contrast for the facets of a 
petroleum storage tank. 

Figures 4e through 6b show that the predicted surface temperatures ad- 
jacent to the airspace and to the petroleum are nearly the same. However, 
the difference in the values of the thermal inertia (density times specific 
heat) of air and petroleum suggests that a large temperature difference and 
phase lag should exist between the air and petroleum temperatures. Prelim- 
inary experimental results suggest that this is the case. The TSTM computer 
program is totally insensitive to the thermal diffusivity (thermal inertia) 
of the working material (3). This represents an unphysical prediction of the 
TSTM computer program and is the reason for the nearly identical thermal 
response of air and petroleum presented in this paper. 

The calculation of apparent target-background radiance, as would be seen 
by an aircraft IR sensor, is in progress using the SCNGEN computer program. 
When completed an experimental validation program will be carried out by com- 
paring the predicted apparent radiances (IR scene) of a petroleum storage tank 
with the digitized experimental values of the apparent radiances as given in 
the Target and Background Information Library System (TABILS) database (Fig- 
ure 6~). 

CONCLUSION. An environmental model and an IR image formation model have been 
developed which are based on the use of physical principles to describe the 
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basic processes involved in the exchange of energy between the target and the 
environment. Changing weather conditions affect the energy exchange and alter 
the appearance of a target in a background. The degree of contrast of the IR 
image of a target in a background will vary with the hour of day, azimuthal 
angle of attack, target surface conditions, and local weather conditions. 
This degree of contrast can be used to predict the performance of alternate IR 
sensor weapon systems against a specified target and background (Figure 6d). 
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TABLE 1 

Amy ElectrG-optical systems 

ARMY E-O DEPENDENT SYSTEMS 
(OPTICAL) 

ARMY E-D DEPENDENT SYSTEMS 
(INFRARED) 

a. 

WEST GERMANY CLOUD COVER 

PERCENT FREOUENCY 
CLOUD COVER SUMMER WINTER -- 

PERFORMANCE OF 
VISUAL AND INFRARED 

DETECTORS - WEST GERMANY 

mtet1e1 

Thermal Thermal 
Condurtivit~ Diffueiviry 

(cellcm-min* K) (cm2lmin) 

SOil 0.20 0.3 0.3 
Asphalt Pavement 0.106 0.28 0.3 
water 0.084 0.084 1.0 
Pecrolaum 0.02 0.033 0.6 
Air 0.0036 12.9 0.243 

TANK TARGET At S76t-H RANGE 
AND CLOUD CEILING Ott-M 

FREQUENCY 
OF FAILURE 

DETECTOR JAN JUL --e 

b. 

Thezwdynamic and Radiometric 
Properties of Maccrials 

Rsdiomertlc Properties* 

Shorrvave Longwave 
Absorptivitp Emissiviq 

RUSC 0.94 0.90 
white paint 0.20 0.91 
Aluminum paint 0.20 0.40 
soil 0.90 0.70 
Asphalt pavement 0.90 0.96 

* These properties may vary considerably with composition 
and weather conditionrl. 

cl. C. 
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ORTHOGONAL SCHEMES FOR STRUCTURAL 

OPTIMIZATION * 

M. W. BERRY,S M. T. HEATH,+ R. J. PLEMMONS? and R. C. WARD+ 

Abstract. Historically there are two principal methods 
of matrix structural analysis, the displacement (or stiffness) 
method and the force (or flexibility) method. in recent times 
the force method has been used relatively little because the 
displacement method has been deemed easier to implement on 
digital computers, especially for large sparse systems. The 
force method has theoretical advantages, however, for multiple 
redesign problems or nonlinear elastic analysis because it 
allows the solution of modified problems without restarting the 
computation from the beginning. In this paper we give an 
implementation of the first phase of the force method which is 
numerically stable and preserves sparsity. A primary feature 
of our work is the development of an efficient algorithm for 
computing a banded basis for the null space by orthogonal de- 
composition. Numerical test comparisons for several practical 
structural analysis problems are provided. 

Key Words: structural optimization, force method, 
orthogonal factorization, Givens rotations, turnback-QR method. 

1. Introduction. Given the external loads on a structure, the object of 
structural analysis is to determine the resulting internal forces, stresses, end 
displacements, The solution to this problem is provided by a variational principle 
(minimization of energy) subject to the linear elastic relationships among the 
nodes and elements of the finite element model of the structure. Either the forces 
or the displacements may be taken as the primary quantities to be computed, 
and the other can then be determined as a by-product. These two approaches give 
rise to the force (or flexibility) ,method and the displacement (or stiffness) 
method, respectively. In recent times the displacement method has predominated, 
largely because it is easier to implement on digital computers, especially for 
large sparse systems, and makes use of well established techniques of numerical 
linear algebra. The displacement method can be inefficient, however, for 
structural optimization problems in which a sequence of related structural 
analysis problems must be solved (e.g., problems having a fixed layout but 
differing material properties). The force method is then preferable because it 
utilizes a portion of earlier computations in order to solve such modified problems 
without starting the computations over from the beginning. Unfortunately, most 

* Research sponsored by the Applied Mathematical Sciences Research Program, Office of 
Energy Research, U.S. Department of Energy under contract W-7405-eng-26 with the Union 
Carbide Corporation, by theUS.Army Research Office under contract no. DAAG29-81-k-0132. 
and by the Air Force under grant no. AFOSR-u-0255. 
+ Mathematics and Statistics Research Dept. Computer Sciences Div., Oak Ridge 
National Laboratory, Oak Ridge,Tennessee 37830. 
f Depts.of Mathematics and Computer Science, North Carolina State Univ., Raleigh, 

N.C. 27650. 477 



implementations of the force method have suffered from excessive fill or numerical 
difficulties, or both. In this paper we give an implementation of the first phase 
of the force method which is numerically stable and preserves sparsity for large- 
scale problems. The complete implementation will be published elsewhere [l 3. 

Before stating our problem precisely, we need to develop some notation. The 
notational conventions used by structural engineers and by numerical analysts are 
quite different. As a compromise, we will use the same letters to denote various 
quantities as are commonly used by structural engineers (see, e.g., [ 3]), but 
we will retain the usual convention in numerical analysis that lower case letters 
represent vectors, while upper case letters represent matrices. Our notation is 
summarized in Table 1. 

‘ 

equilibrium matrix : E 
element flexibility matrix : D 

clement stiffncas matrix : D” 
system stiffness matrix : K-ED-‘ET 

self-stress matrix : B 
system flexibility matrix : F = B’DB 

nodal load vector : p 
system force vector : f 

nodal displacement vector : r 
system displacement vector : Y 

redundant force vector : x 

TABLE I 

The known, defining quantities for a structural analysis problem are the 
equilibrium matrix E, 
stiffness matrix D-l), 

the element flexibility matrix D (or equivalently the element 
and the nodal load vector p. The unknowns to be determined 

are the system force vector f, the system displacement vector v, and the nodal 
displacement vector r. The remaining variables in Table 1, such as the redundant 
force vector x, are derived, intermediate quantities. We assume that E is an 
m x n matrix of rank m and that D is a symmetric positive definite matrix of 
order n. Here D is block diagonal with the diagonal blocks having orders ranging 
from one to six, depending on the finite element model of the structure. An 
example of a two-dimensional frame and its equilibrium matrix are shown in 
Figs. 1 and 2. 
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The linear elastic relationships for the system are 

1, Equilibrium Equation: 

2. 

3. 

EC - p 

Compatibflity Equation: 

E1r = v 

Material Equaclnn: 

Df - v. 

The equilibrium and compatibility equations represent constraints on the forces and 
displacements, respectively, and the material equation represents the material 
characteristics. 
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The fundamental problem of structural analysis is that of solving the 
quadtadic programming problem 

m:, LgTDf subject to Ef = Pm 

The force method is. motivated by the observation that problem (1.1) is asking 
for a weighted, minimum-norm solution to the equilibrium equation. Given any 
particular solution s to such an underdetermined system, any other solution can be 
expressed as a sum of s and a solution to the corresponding homogeneous system 
Ef = 0. Thus we may write the system force vector f as 

f = s + Bx, (1.2) 

where the n x (n-m) matrix B, called the self-stress matrix, is chosen so that 
its columns form a basis for the null space of E. Once s and B have been determined, 
we then need to determine the proper linear combination of the columns of B, 
represented by the vector x, so that f solves problem (1.1). The force methods is 
usually carried out in two phases: 

Phase 1: Compute a particular solution s of the equilibrium equation, together 
with a self-stress matrix B such that EB = 0. 

Phase 2: Compute the redundant force vector x and the system force vector f 
from (1.2). 

Since Phase 1 depends only on E and p, it need be executed only once in order to solve 
a sequence of problems which differ only in D, with just Phase 2 being repreared for 
each new value of D. In order for the force method to be viable in practice, however, 
we need numerically stable algorithms for both phases which preserve sparsity. 
Phase 1 is the subject of this report. Phase 2 and its combination with Phase 1 will 
be considered elsewhere [l]. In the following section we describe a refined method 
for computing a banded basis matrix B for the null-space of E. 

2. Band Schemes. 

For a general sparse equilibrium matrix E it is difficult to say anything about 
the structure of the resulting self-stress matrix B other than that it might be quite 
full, If E has a banded structure, however, Topcu [4] and Kaneko, Lawo, and Thierauf [2] 
have shown how by elimination methods to compute ti B which also is banded. By 
modifying and extending their algorithm, we will show how by orthogonal methods to 
produce a banded self-stress matrix B. Since E and B are not square matrices, perhaps 
we should first point out that we do not mean banded with respect to the usual main 
diagonal, but with respect to a line from the upper left corner to the lower right 
corner of the matrix. Also, for our purposes the distinction between band and profile 
(also known as variable band, envelope, or skyline) implementations is unimportant, 
and so we will use the shorter term "band" to mean both possibilities. 

We now give a refined tumback scheme, developed originally by Topcu [4] and by 
Kaneko, Lawo and Thierauf [2], for computing a banded basis matrix B for the null-space 
of a banded matrix A. 

Given: An m X n banded matrix A, with full row rank m. 

Purpose: To compute an n x p, p = n - m, banded matrix B, with a small profile, 
whose columns form a basis of the null space of A; that is AB = 0, 
rank B =p . 

Notation: ,(j), ,(jl denote the j th columns of A and B respectively. 
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Step 1: Construct a sequence bl < b2 < ,.. e b where b denotes the row index 
(j) P' 

for the last nonzero entry in column B 
1 

of such a B, for j = 1, .,,, p. 
Let Am denote the first m columns of A. We determine the sequence of column 

indices c1 < c2 <, . . . c c , if any, s where column dependencies ("zero" pivots) occur 
when Am is reduced to upper triangular form. Here either Gaussian elimination with 
row pivoting (or orthogonal reduction by Givens rotations) is applied to Am. In 
particular, define, for t = 1, . . . . s, 

ct kllkzmand 

3 . . . . Aw 
1 

is a linearly dependent set, 
1 

(Here C A 
(Cl) (C J 

, ..,, A '-I) I is missing if t = 1.) 

Now we define the row indices b 
j 

as follows. For j = 1, . . . . p, 

iflcj X3 
b = 

'j -- 
j 

l 

m -I j otherwise 

Step 2:’ (Turnback step). For j = 1, l a., PI consturct the column B (j> as follows: 

(1) Set 

t 

and define a matrix E 
j 

of columns from A as follows: 

E 
(bj) 

=[E IE 
(bj-l) 

j I I . . . . 1 EC+ 

where the columns of Ej are columns of A, beginning with the b. th (bj) (bj > 

in decreasing column subscript order. 
J 

column E =A , 

vectors 
More specifically the columns of Ej are the columr 
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r (b;) 
A J, . . . . A'--' A A , 

AL 
. . . , A '- 

in decreasing column subscript order, where A(?), ..~s A(tj-l) 

3 
is missing 

if j = 1, where the t's are given by (2.1) below, 
C 

(2) Apply either Gaussian elimination with row pivoting or orthogonal 
reduction by Givens rotations to E 

j' 
producing an upper trapezoidal matrix 

,(bj) *Ct.) 
=[E . ..EJ] 

where 
t. = max 
3 

iS a linearly dependent set. 

Then necessarily ij is m x (b j 
- tj> and has the form 

* U 
E = 

[ j 0 

1 k c bj and l(bj), . . . . .((J)) 

5) 
I 0 ’ 

where U is square of order b. - t, - 
(the zero blocks may be miss?lng).J 

1, upper triangular and nonsingular 

(3) Solve the, triangular system 

-* ttj 1 
Uy = -E 

by back substitution for y = (y,), 11 s 2 bj - tj - 1. 

(4) Define the column B(j) =(,l(j)) of B as follows 

i 

! 

1 if ?j) is cohun Aci) of A 

B (j) = y 
s 

if EcS) is colum Aci) of A, 12 s < b. - t. - 1 
-J 7 

0 otherwise. 

a 

(2.1) 
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3. Numerical Comparisons for Phase 1 

3.1 Structural Test Data: 

In addition to the two dimensional frame example described in section 1, five 
other structures provided a means for preliminary testing of the orthogonal tum- 
back algorithm. Some preliminary comparisons were made between the orthogonal 
and the Gaussian elimination implementations of the algorithm. Each of the examples 
described below was kindly provided by M. Lawo of Essen, Germany, 

Example 2: 
Three Dimensional Frame. 

The finite element model has 16 nodes and 24 elements and E is 72 x 144. 

Example 3: 
Plane Stress Problem (Slab). 

The finite element model has 25 nodes and 16 elements and E is 40 x 80. 

Example 4: 
Plate Bending Problem. 

The finite element model has 25 n8des and 16 elements and E is 59 x 144. 

-Example 5: 
Plane Frame Problem (Wheel). 

The finite element model has 32 nodes and 40 elements and E is 96 x 120. 

Example 6: 
Plane Stress Problem (Wrench). 

The finite element model has 57 nodes and 48 elements and E is 112 x 216. A 
distinguishing feature here is a "hole" in the model. Also, three different 
node and element orderings were tested for this model: block angular, minimal 
bandwidth and minimal skyline. 
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3.2 Numerical Comparisons. Some preliminary comparisons were performed 
using each of the six structural analysis problems just described. In each 
example, the banded null-space basis matrix Z for the equilibrium matrix was 
computed by (1) the turnback algorithm implemented with Gaussian elimination 
and (2) the turnback algorithm implemented with orthogonal transformations by 
Gfvens rotations. The basic turnback algorithm in our refined form was given 
in Section 2. 

All the software for this project was written at North Carolina State 
University in FORTRAN and executed on the large-scale IBM 3081 at the 
Triangle Universities Computing Center (TUCC). Each problem was tested in 
IBM double precision. IBM single precision was also used for certain of 
the problems in order to obtain a better basis for comparison. Various 
tolerances were tested for.declaring a floating point zero pivot, i.e., a 
rank dependency among the columns of E. We settled on the tolerance 10-e 
since the nonzero elements of E generally had magnitude approximately 1 and the 
data was given to six digits. This tolerance worked quite well in the computations. 

We now give some obsentations on the performances of our software on these 
examples. In order to obtain some measure of the accuracy of a given method 
for computing a basis matrix B for the null-space of the equilibrium matrix E, 
the Frobenius norm, 1 IEBl IF was calculated. In what follows, B will denote a 
basis matrix computed by the back substitution method and Z will denote a basis 
matrix obtained by the refined turnback algorithm. 

1. In each case 1 ]EB] 1, was smaller than I ]EZ] I,. In fact, the first norm was 
zero for the frame examples, Examples 1 and 2. Very little difference in 
accuracy was observed between the Gaussian elimination and orthogonal factori- 
zation implementations of the refined turnback method. Essentially, 

-lo-6 
IIWF = 

I 

in single precision 
low15 

in double precision 

2. Surprisingly, the orthogonal transformation implementation of the refined 
rurnback algorithm executed faster than the Gaussian elimination implementation. 
We suspect that this situation is primarily due to the fact that row pivoting 
is used with Gaussian elimination while no pivoting is necessary for stability 
with Gfvens rotations. Such pivoting can consume an inordinate amount of time 
in the lengthy tumback phase of the algorithm. 

The computations we have performed thus far are preliminary in nature, but 
on the basis of the results discussed above, the orthogonal factorization 
implementation of the refined turnback algorithm appears to'be an attractive 
method for computing a banded basis for the null-space. 

Further refinements of these methods followed by numerical tests will be 
made in the near future under grants from other funding agencies. 
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ABSTRACT 

This study presents the results of a three dimensional elastic- 
plastic dynamic stress analysis of one of the structural joints encoun- 
tered in artillery projectiles. The particular spline joint analyzed 
has equally spaced set screws around the surface of the projectile. In 
general, these types of structural joint problems are variable contact 
problems in that the interaction between the set screws and their bearing 
surface along with the interaction between the interfaces of the joint 
are nonlinear in nature. Due to the complexity of the structural 
configuration and loadings of the joint, the finite element method has 
been used to solve the problem. The numerical analysis covers the time 
from initial launching to barrel exit. Stresses and deformations in the 
joint are determined at various stages of loading. The effect of the set 
screws and set screw holes on the stress distributions in the joint is 
examined in detail. 

INTRODUCTION: 

Artillery projectiles are subjected to extremely high loads during 
firing. At present, the design of artillery projectiles is greatly 
facilitated by the exploitation of the finite element method. But the 
application of the method has been limited to the simplified two dimen- 
sional or axisymmetric analysis. This is due to the complexity of the 
geometries of the projectiles thus requiring ver:y long computer analysis. 
Although successes were achieved in the previous designs, there have 
always been concerns of the structural integrity of the projectiles with 
the presence of high local stresses. In the case of XM753 projectiles, 
high local stresses appear in the region of the pinned joint. In the 
case of XM785 projectiles the use of spline joint with set screws in the 
design also leads to high local stresses in the joint area. 

After firing, an artillery proje-ctile is subjected to various loads 
continuously changing with time. It experiences first a very high 
compressive load in the axial direction during in bore flight and then a 
high tensile load at barrel exit. Such a loading history causes the 
projectile to undergo a stress reversal i.e. from a stress state of 
compression to that of tension, However it has been a common practice in 
the design of artillery projectiles to perform either one or two simple 
independent stress analysis. The one which is generally carried out is 
a two dimensional quasi-static analysis in which the loads at the peak 
linear acceleration during in bore flight are used to compute the 
stresses and deformations in the projectile. 
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Sometimes a two dimensional dynamic analysis is also conducted to 
determine the stresses and deformations in the projectile caused by 
the sudden drop off of pressure of the propellant gas at barrel exit. 

In the present investigation a detailed three dimensional elastic- 
plastic dynamic stress analysis of a spline joint of XM785 projectile 
is performed. The. purposes of the study are:* 

(1) to verify the structural adequacy of a proposed design. 

(2) to asses the effect of set screws and set screw holes on the 
stress distributions in the joint region of the projectile. 

In addition the present work also serves as an initial effort to 
d.etermine the extent of the influence of the stress reversal or 
Bauschinger effect on the structural integrity of the projectile. 

DESCRIPTION OF LOADING CONDITIONS 

After a projectile is fired and before it departs the gun barrel 
it is subjected to a combination of the following loads: 

(13 axial compressive load due to linear acceleration of the 
projectile 

(2) centrifugal load due to angular rotation of the projectile. 

(3) torsional load due to angular acceleration of the projectile. 

(4) internal load due to interaction of interior components and 
projectile. 

(5) external load due to gun tube constraint, rotating band pressure 
and balloting. 

As the projectile departs the gun barrel, it experiences a tensile load 
or a negative set-back load (elastic release) in the axial direction 
resulting from the sudden drop off of propellant pressure at the barrel 
exit. Among the loads the axial load is the dominating one. 

It has been a general practice to omit the effect of the torsional 
load induced by the angular acceleration in the design of the projectiles. 
Analysis has shown that as a result ofi such an omission, the magnitude of 
the effective stresses in the projectiles are about 2% - 4% lower (1). 
Since the present investigation concerns the determination of the stress 
distributions in the region of the joint, only the portion of the 
projectile in the neighborhood of the joint is considered. The area where 
the rotating band is located is exciuded. Thus the load due to rotating 
band pressure is not included in the analysis. Only the axial, centrifugal 
and internal loads during in bore flight and the negative set back load at 
barrel exit are considered in the three dimensional dynamic stress 
analysis of the joint. Fig. 1 shows the linear acceleration of the 
projectile used in this analysis for the calculation of the axial load. 
The projectile reaches an acceleration of 17,000g in about 6 milliseconds, 
zero acceleration at barrel exit and immediately is subjected to a 
negative acceleration of 2000g. 
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METHOD OF STRESS ANALYSIS 

Figs. 2 and 3 shows respectively the geometric configuration of 
an artillery projectile and a typical section of its joint. The latter 
is formed by passing a plane at the midpoint ,of two neighboring set 
screws and another plane through the center of-one of the set screws. 
The two planes are parallel to the axis of the projectile. 

In the initial phase of the analysis, the finite element model of 
the joint (see Fig. 4) was created by using the computer program PATRAN-G 
(23 * It employs sophisticated interactive color graphics and a powerful 
geometry-based language for geometry construction and finite element 
modeling during the first phase of the program. Then nodal point and 
finite element generation, assignment of physical properties, application 
of external loads and definition of sliding interfaces are accomplished 
in the second phase of the program. 

The explicit three dimensional finite element code DYNAJD (3) was 
used to compute the stresses and deformations in the finite element 
model of the joint. DYNA3D is designed to analyze the large deformation 
dynamic response of inelastic solids. It has a contact algorithm that 
can model gaps and sliding materials interfaces. It uses a g-node constant 
stress solid element and one point integration in element stiffness 
calculations. It is programmed to take full advantage of vector 
optimization on the CRAY-1 (a class VI machine) and can execute at less 
than 0.67CPU (central processor Units) minutes per million mesh cycles. 
A symmetric, penalty based, contact-impact algorithm was implemented 
that not only reduced hourglassing problems, but also was considerably 
faster in execution speed and exceedingly reliable. 

There were 1773 eight node brick elements and 2611 nodes in the 
finite element model of the joint. Four sets of gap or sliding interfaces 
were required in the model. Three sets of sliding interfaces were 
used to model the contact between the case structure and the wedge. A 
sliding interface with small initial gap was used to model the interaction 
between the set screw and the hole. 

The computations were performed on a CRAY-1 computer at Sandia 
National Laboratories. The computer time required to complete the dynamic 
analysis was about 2.8 CPU hours. 

DISCUSSION OF RESULTS 

The post processor program GRAPE (4) was used to obtain plots of 
stress contours on the surfaces of the joint and the deformed shapes of the 
joint at the time when the maximum linear acceleration is reached and 
also at barrel exit. These are shown in Figs. 5 to 11. Examination of 
the results of the analysis leads to the following findings:: 

(1) Due to the presence of set screws, a larger portion of 
the axial compressive load is transmitted, during in-bore 
flight, through the center sections of the regions bounded 
by each pair of set screws. Consequently, the center 

489 



sections experience higher stresses. This is different 
from the uniform stress distribution in the circumferential 
direction found in the two dimensional stress analysis. 

2. Higher stresses occur on the outer surfaces of the case 
structure and the wedge at both peak axial compression 
and -tension at barrel exit due to bending effect. 

3. Local yielding occurs in the set screws, set screw holes 
and other areas in the case structure-and the wedge at 
time of peak axial compression and that of tension at 
barrel exit .- Initial examination of the plastic strains 
(or Bauschinger effect) at peak axial compression leads 
one to believe that they have a negligible effect on the 
level of stresses in the joint at barrel exit. This is 
because their magnitudes are small (.OOl) and their 
locations are also different from the plastic strains 
induced by the tensile load or negative set-back at 
barrel exit. 

4. Similar stress distributions were obtained when a wedge 
made of either steel or titanium was used with a titanium 
case structure. 

In summary, a detailed three dimensional elastic-plastic dynamic 
stress analysis of an artillery projectile was obtained to determine 
the adequacy of a proposed design. The analysis was performed by 
using the DYNA3D finite element program. The results of the present 
analysis will be verified by laboratory test currently under preparation 
at AMMRC . Future analytical work will include. application of fracture 
mechanics to the problem ,and accurate determination of the Bauschinger 
effectby using actual stress strain curves of the materials. The 
present analysis employed isotropic strain hardening which does not 
accurately represent the material behavior in a loading condition where 
there is a reversal of applied loads. 
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Fig. 1 Linear Acceleration of Projectile 
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Fig. 2 Projectile, Atomic, 155MM: XM785 
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Fig. 3 Typical Joint Section 
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Fig. 4 Finire Element Model 
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See Table 1 for Values of Symbols 

Case 1 Case 2 

Fig. 5 Axial Stresses in the Case Structure 

Case 1: At time of maximum compression 

Case 2: At time of barrel exit 

Case 1 Case 2 

Fig. 6 Effective Stresses in the Case Structure 
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Case 1 Case 2 

Fig. 7 Effective Plastic Strains in the Case Structure 

Case 1 
Case 2 

Fig. 8 Axial Stresses in the Wedge 
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Case 1 Case 2 

Fig. 9 Effective Stresses in the Wedge 
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Case 1 Case 2 

Fig. 10 Effective Plastic Strains in the Wedge 
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Case 1 Case 2 

Fig. 11 Deformed Shape of Finite Element Model 
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1 
* 

Strain (case 1) Strain (case 2) I Stress (ksi) I ------- 

A -200 0 0 

B -180 . 001 . 01 

C -160 . 002 . 02 

D -140 l 003 . 03 

E -120 

F -100 

G -80 
I 

H -60 I 

Table 1 - Levels Of Stresses and Strains 

I -40 

I J -20 

K 0 

L 20 

M 40 1 

N 60 

0 80 

P 100 T- 





A SIMPLE APPROACH FOR DETERMINATION OF 

BURSTING PRESSURE OF A THICK-WALLED CYLINDER 

SHIH C. CHU 

TECHNOLOGY BRANCH, ARMAMENT DIVISION 
FIRE CONTROL 6 SMALL CALIBER WEAPON SYSTEMS LABOaATORY 

U.S. ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND, DOVER, NJ 07801 

I ABSTRACT 

By using the true-stress true-strain relation, a simple finite-strain incom- 

pressible analytical solution technique is developed to predict pressure- 

deformation relations up to the failure of thick-walled cylinders subjected to 

internal pressure. The material is assumed to be an isotropic hardening material 

that obeys the von Mises yield condition. The flow law for the material incor- 

porates the Prandtl-Reuss stress-strain relations and a loading function repre- 

sented by the true-stress versus true-strain diagram. Poisson's ratio is assumed 

to be equal to one-half for both elastic and plastic strains; The bursting pres- 

sure for thick-walled cylinders made of either SAE 1045 steel or copper is 

presented graphically for various ratios of outer and inner radii of undeformed 

cylinders. The true location of inner surface of cylinders made of both metals 

at various pressure levels was determined and presented graphically. Pressure- 

expansion curves for cylinders made of SAE 1045 steel and OFHC copper are 

presented. 
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NOMENCLATURE 

p, Q , Q 8 z 

5, Ee' % 

Qe, E e 

=01' =02 

=l' =2 

r 

=0 

U 

pl* p2 
E 

V 

u. 

u 
Oi 

EO 

K 

B 

B 

fu 
Pu 

true-stress components 

true-strain components 

effecive true stress and effective true strain 

inner and outer radii of the undeformed thick-walled cylinder 

inner and outer radii of the deformed thick-walled cylinder 

variable radius of deformed thick-walled cylinder 

variable radius of undeformed thick-walled cylinder 

r-r0 is the radial displacement 

internal and external pressures 

Young's modulus 

Poisson's ratio 

uol is yield stress 

stress at intersection of equations 3 and 4 

uo/E is yield strain 

ratio of E, to ~~ at r=rl 

ratio of Ed to cecrmr ) 
1 

r02/rol radius ratio 

ultimate tensile stress 

bursting pressure 
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INTRODUCTION 

Thick-walled cylinders, such as gun tubes and pipes to hydraulic presses, 

often are required to resist internal pressures that will cause inelastic 

I strains. It is important for the engineer to have a relatively reliable and 

simple solution technique that can be used to predict the load-deformation rela- 

tions for thick-walled cylinders subjected to internal pressure up to fracture 

load encountered. This information would enable the engineer to determine the 

factor of safety of his design against failure by fracture. In the case of auto- 

frettage, it would enable the engineer to determine safe pressures to be used or 

to determine safe limits for the deformations. Partially plastic, thick-walled 

cylinders have been investigated by many investigators [l-6], In all the solu- 

tions [l-6], it has been assumed that subsequent to the initial yield the elastic 

plastic interface is cylindrical and concentric with the bore. This assumption 

is correct in many cases but not correct for a material with a large drop of 

stress at yield. In addition most of the solutions are based on the total strain 

theory, though Taylor has pointed out that the incremental theory should be used. 

However, the total strain theory gives a solution which is only slightly in error 

in this particular problem. The governing equations have been derived for par- 

tial yield thick-walled cylinders, assuming the dimensional changes are negligi- 

ble, but in the region of the bursting pressure the strains are considerably 

large and this assumption is no longer valid. 

Based on the closed-euded cylinder condition, bursting pressure was investi- 

gated by Manning and Chem [ 71 and Crossland and Bones [8]. In their approach the 

plastic strain in the axial direction is assumed to be zero. Experimental data 

for closed-ended cylinders [9] indicates that the assumption is reasonable. 
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Some empirical equations for bursting pressure of thick-walled cylinders have 

been proposed by Faupel and Furbeck [lo] and Iterson Ill]. Those empirical equa- 

tions are derived either based on experimental data or on intuition. The well- 

known mean-diameter formula is 

pU 
m2f ( 1) 

u P+l 79 

A finite total-strain incompressible analytical solution is presented for 

thick-walled cylinders subjected to internal pressure. Using the strain calcula- 

tions, the geometry of the deformed cylinder is calculated at the end of each 

load increment. Since the deformed geometry of the cylinder is used in making 

the calculations of the strain increments for each load increment, the computed 

strains are true strains and the solution is yalid for finite strain. One might 

question the advisability of considering a solution not readily acceptable to 

experts in the field of plasticity when an incremental compressible solution is 

available. The total-strain solution was used because it was inexpensive to use 

and the computer program did not have convergence problems. On the other hand, 

the computer program for the incremental solution would not converge unless the 

plastic-strain increment for each increment of load was small. In order to 

obtain a compressible incremental solution it was necessary to make the load 

increments smaller and smaller as the plastic strains increased in magnitude. 

because of the convergence problems and the excessive computer cost for imple- 

menting the compressible incremental theory, the present solution technique is 

presented. 
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GOVERNING EQUATIONS 

ln this investigation, the material is assumed to be an isotropic hardening 

material that obeys the von fises yield condition. Poisson's ratio is assumed to 

be equal to one-half for both elastic and plastic strains. 

Cylindrical coordinates are used with z being the axial direction and r and a 

being the radial and circumferential directions, respectively. The nonzero 

stress and strain components are Q , Q , 
r 0 2 Q B T&l EC' EQP Es and? Y&' For the 

thick-walled cylinder subjected to pceSBure, the eEfecrive Htrcea on alId 

eEEective strain se are deEined by the relations 

1 
a = 

e V-J 2 (dr-Q2 + L3pz>2 -t (crp)2 

If- 2 
E, = - 3 2 + (E&2 -t (EZ-5)2 

(2) 

(3) - 

The flow law for the material incorporates the Prandtl-E&uss stress-strain 

relations and a loading function represented by a tension true-stress versus 

true-strain diagram. The loading function for the analytical solutions is 

obtained from a tension specimen whose effective true-stress (s> versus effec- 

tive true-strain (Ed) diagram is approximated by a finite number of straight 

lill@S. The straight line through the origin is given by the relation 

B = EEe 
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where E is Young's modulus. All of the straight lines are given by the relation 

ue = (l-mi)ooi + miEEe (5) 

where ooi is the stress at the intersection of the two straight lines given by 

eqs. (4) and (5) and miE is the slope of the straight line given by eq. (5). 

The condition of incompressibility for the cylinder is given by 

S+Eg+Ez=O (6) 

The equation of equilibrium for the thick-walled cylinder is given by the 

relation 

d”r rr= u-u 0 r (7) 

where r is the variable radius for the deformed cylinder, A point at radius r. 

in the undeformed cylinder has a radial displacement u during loading of the 

cylinder so that r = r. + u. The true magnitude of the radial and circumferen- 

tial strains for incompressible conditions are given by the relations 

'r = A++&) 
0 

and 

53 = Rn(1+ >I 
0 

(9) 

The compatibility condition for the thick-walled cylinder can be obtained by 

taking the derivative of eq. (9) with respect to ro 
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Equacion (10) can be simplified by using eqa, (61, (a), and (9) LQ give 

where a % is independent Qf r. and is assumed to be k.mw~ 

Based on I*nclcyts stfess-strain relations: 

03) 

By using the condbtion of incomgwessibIUty, eqs + (6) and (13), one can fdnd 

Skuilarly, 



The problem considered here is a thick-walled cylinder subjected to internal 

pressure only. The computer solution for the total-strain, incompressible anal- 

ytical solution is obtained by specifying the deformations for the thick-walled 

cylinder and calculating the pressure. This is done by specifying values for the 

true strains sB and Ed at the inner radius of the deformed cylinder. The effec- 

tive true strain is speciEiad as 

Ee( r=f 1) = ICE0 (17) 

where ho = oo,/E and oO1 is the value of ooi in eq. (5) when i = 1, 81 Is 

assumed, to be the elastic limit of the material. The axial strain ss Is given by 

specifying values for p in the relation 

/ 

% = @Kc0 (18) 

The. solution of the differential equation, eq. (LL), can be found iu the form 

(19) 

wkre C Ls the constant of integratkn which is obtained from the fact that 

EezEG~ is known when c = rl (ro = rO1), thus 

2 

solving for C 

.2E '1 1 
e 81 -7 =E + 3 

01 ez 01 

2 2 
rleEz - rol 

C= 
eEz 

(20) 

(21) 
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Subtitutiag c into eq, (19) gives 

lf cQ ie eUminated by using eqm (6) 

(22) 

(23) 

The effective strain may be obtained from eq* (3)* By eliminating + one has 

The stress distributions in the deformed thick-walled cylinder cm be deter- 

mined as faUms, Substituting eq. (18) into eq+ (16) one obtains L 

Equation (2) and &. (24) reduces to 

which can be substituted into the equation of equilibrium, aq4 (7), to give 

, 
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(28) 

Before eq. (28) can be integrated, it is necessary that ue and me be expressed as 

functions of r. This cart be carried out by the fallowing computational pro- 

cedure. 

COMF'UTATIONAL PROCEDURE 

The undeformed-thick-walled cylinder is divided into N rings of equal thick- 

n18s-s. For each specified value (monotone increase) of @ and K, the following 

computation will be performed: 

step 1. 

Step 2. 

Step 3. 

Step 4. 

step 5. 

Calculate .ze(r=rl) and zZ, by using eqs. (17) and (18). 

Solve sel, by substituting se and me into eq. (25). 

Calculate tl by using eq. (20). 

Calculate C, by using eq. (21). 

Calculate sB, &r, and sr at each ring stations, by using eqs. (22), 

(181, and (231, respectively. 

Step 6. The deformed Position of each ring can readily be determined by 

using the following relation 

f = roe Ee (29) 
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step 7. The effective‘strain me at each ring station in the deformed cylin- 

der can be determined by using eq. (3). 

Step 8. The loading function represented by eqs. (4) and (5) is used to 

calculate the effective stress ue at each ring station. 

Step 9. Starting tith the known radial stress Q 
r2 

= -P2 at the outer 

radius, the radial stress or is obtained by numerical integration 

of eq. (28). 

Step 10. Substituting or into eq. (27) oe can be calculated. 

Step 11. Calculate us by substituting o8 and ~1: into eq. (26). 

Step 12. For each specified value of 8, the loads on the thick-walled cylin- 

der are calculated for increasing values of K. Calculations are 

stopped when the current value of internal pressure is smaller than 

the value of internal pressure for the previous specified value of 

K. The bursting pressure is defined as the internal pressure P1. 

I COMPUTATIONAL RESULTS 

Based on experimental testing data, true-stress versus true-strain relations 

for the two metals, steel and copper, are shown in Fig. 1. The plastic portion 

of the true-stress versus true-strian diagram is approximated by five straight 

lines for the SAE 1045 steel and by seven straight lines for OFHC copper. Each 

straight line is represented by eq.(5); values of o. and m for each straight line 
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are listed in Table lm Each true-stress versus true-strain diagram can be 

staight-line segment approximation wit;h the difference no more than One percent 

(lx), the error introduced by the appramtion will be a fraction of l%+ 

Table 1. Values of m and o. far Straight Unes Approximating Plastic Portfoa of 
'Stress-Strain Diqpm 

43+4 

54*0 

so+0 

95.0 

lll.Cl 

2*50 

3.25 

4.QQ 

L37 

8.40 

2LO 

39,o 

SAE 1045 Steel 

299 

372 

552 

655 
Y 

765 

17,2 0.17125 

22.4 OmO7063 

27,6 U.03125 

37+0 oJI1991 

57r9 CL01313 

14418 0,00450 

269 +9 0.00078 

Or05083 

0.02858 

0.00847 

QJlO309 

O.QO128 



The bursting pressures for thick-walled cylinders made of S& 1045 steel and 

OPTIC copper for various radius ratios (p = 1.25, 1.5, . . ,, 3.75 and 4.00) were 

calculated based on the computational procedure proposed in the previous section. 

The resulting bursting pressure is plotted against the radius ratio as shown in 

Pigs. 2 and 3. 

The pressure-expansion curves for cylinders made of SAE 1045 steel and OFHC 

copper are shown in Figs. 4 and 5, respectively. Each curve is stopped when the 

bursting pressure is encountered. 

The displacements of the inner surface for thick-walled cylinders made of SAE 

1045 steel and OFHC copper were calculated by using eq. (20) and are shown in 

Figs. 6 and 7, respectively. 

CONCLUSIONS 

By using the true-etrees true-strain relation and finite-strain approach, an 

incompressible solution is developed to predict the pressure-deformation rela- 

tions up to the failure of thick-walled cylinders subjected to internal pressure. 

The proposed numerical computation procedure is simple and very effective. The 

total computation times (execution time) for 12 thick-walled cylinders (p = 1.25, 

1.5, . . . . 3.75, 4.00) made of SAE 1045 steel and OFHC copper are 2.871 and 14.195 

CP seconds, respectively. 

The bursting pressures and pressure-expansion curve8 for thick-walled cylin- 

ders with various radius ratios were presented graphically. This information can 

readily be used by the designer. 
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Fig. 3. Bursting pressure of thick-walled cylinders made of OFHC copper 
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ABSTRACT. The modified version of the endochronic theory of plasticity 
is applied to the problem of a cylindrical bar subjected to cyclic fully- 
reversed torsional loading. The governing equations of integral form are 
derived for pure shear deformation. Analytical techniques are employed in the 
solution of these equations. A material with appreciable cyclic hardening 
behavior is studied. The shear stress-strain curve of such a material under a 
strain-controlled condition is presented for all cycles until a steady loop is 
reached. The stress distributions in a cylindrical bar at different stages of 
loading and unloading are calculated. Some numerical results are presented. 

I. INTRODUCTION. In recent years much research has been devoted to 
developing realistic constitutive equations to describe complex material 
behavior such as cyclic plasticity 11-91. The majority of these arks are 
along the lines of the classical theory of plasticity, however, some attempts 
have also been made in developing new and independent theories. The 
endochronic theory developed by Valanis [81 is based on the notion of 
intrinsic time and thermodynamic theory of internal variables. The original 
definition of intrinsic time has led to difficulties in cases where the 
history of deformation involves unloading. Valanis 191 has since introduced a 
new concept of intrinsic time to overcome these difficulties. The new theory 
has been successfully applied to describe the cyclic hardening phenomenon 
under uniaxial loading [lo]. 

In this paper the uodified version of the endochronic theory of 
plasticity is applied to the problem of a cylindrical bar subjected to cyclic 
fully-reversed torsional loading. The governing equations of integral form 
are presented for pure shear deformation. Analytical techniques are employed 
in the solution of these equations. The stress distributions in a cylindrical 
bar at different stages of loading, unloading, and reloading are calculated. 
The solution for this problem based on a numerical iterative technique was 
reported recently [ll]. A different approach and additional numerical results 
are to be presented here. 

II. ENDOCHRONIC THEORY. According to the modified version of the 
endochronic theory of plasticity 191, the intrinsic time for the one- 
dimensional case is defined by 
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(1) 

where kl is a positive scalar such that 0 C kl G 1, 't and y are shear stress 
and strain respectively, and po is the shear modulus. When kl = 0, the 
original form of intrinsic time is recovered; but when kl = 1, S? = y - (~/1-\o) 
is the plastic atrain, and 

Equation (2) is used throughout this investigation so chat the concept of 
plastic etrain may be incorporated into the present development. 

In the case of pure shear, the governing constitutive equation of 
integral form is given by 

't = PO I2 da;-2') 
d61 
- dz' 

0 dz' 
where 

lJoP(d a P&O 6(Z) + ule’az + ~2 

(3) 

(4) 

in which po, a, ~1, and ~2 are material parameters, 6(z) is the delta 
function. 

A ~)re general form of the intrinsic time measure involving the strain 
rate effect is proposed in [lOI as 

dc = k(lhl) IdQj (5) 

where k, the strain rate sensitivity function, is a function of Li, In this 
case, Eq. (3) can be written as 

(6) 

The constitutive Fq. (6) is applied in this paper to describe the material 
behavior at constant plastic strain rate. The intrinsic time z is related to 
5 by the following time scale 

dl; 
- =I f(Z) 
dz 

(7) 

where f(r,) describes isotropic hardening and is, therefore, termed the 
' hardening function. In this paper, the form 

f(z) = c - (c-l )e'Bz (8) 

will be used because of its simplicity and its proved usefulness in cases of 
cyclic loading [lo]. The parameters c and B are material constants. 
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III. CYCLIC SHEAR RESPONSE. By using the hardening function given in 
Eq. (8), the constitutive equation for loading with constant plastic strain 
rate is written as 

T = (~o/k)[z p(z-z')f(z')dz' 
0 

(9) 

where P(Z) is defined by Eq. (4) and k is a cmetant.. Integrating Eq. (91, 
the following explicit result is obtained: 

T = (ry/k)f(d + hq/k)(g(z)-g(o)) + (Irdk)h(z) (10) 

where 

‘Y = uopo 1s the yield stress (11) 

h(z) = cz + &c-l)(e-sx-1) (12) 

g(z),, g(o) are the values of the function g(z') evaluated at 2’ f z, o, 
respectively, and 

Equation (10) is now the response function for loading. If unloading occurs 
Mhen the plastic strain reaches nl (or z = zl), then the response function for 
z > zl can be obtained aa 

7 = -$Jk>fW + bq/k) t-g(z) + 2gCq) - g(o) 1 + bq/k) [-h(z) + 2h(zl)I (14) 

If Eqs. (10) and (14) are examined at z - zl- and zl+, respectively, a drop in 
stress of 2(ry/k)f(zl) results during elastic unloading. 

If reloading takes place after unloading and, assuming that reloading 
occurs at 52 = 522 (or z = 22, where 22 2 zl), the response function for z > 22 
is obtained as 

t =: $/k)f(z) + (pl/k)[g(z) - 2g(z2) + 2&l) - g(o)] 

+ (u2/k)[hW - 2hb2) + 2hkq)l (15) 

When Eqs. (14) and (15) are, examined at z = z2- and z2+, respectively, a jump 
in stress of 2(Ty/k)f(z2) is again obtained during elastic reloading. 

This procedure of obtaining a theoretical expression for each part of the 
cyclic loading process may be continued. Thus, a general expression of the 
response function for the constant total strain amplitude cyclic torsion test 
may be found to be 

r = (-l)N(ty/k)f(z> + bq/k)G(d + bq/k)n(z) (16) 
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where 

G(z) = (-l)Ntg(z)-g(z~)l + 7 (-l)n+l[g(zn) - dz*-113 (17) 
n=l 

Q(z) = (-UNth(z) - h(zN) + i (-l)n+l[h(zn) - h(zn-1) (18) 
n=l 

Note that N # 0 is the number of half-cycles, odd for unloading and even for 
reloading. 

After many cycles when the values of z become large, the hysteresis loop 
of the stress-strain-curve will approach a steady state. If Eq. (16) is 
examined at 2 = zN*and z = zN*, a drop or jump in stress of magnitude 
2(ry/k)f(zN) results, which corresponds to the elastic response upon the 
reversal of the loading or unloading direction. When ZN is sufficiently 
large, the jump OK drop of stress becomes a constant value 2c ‘ry/k at the 
steady state. 

IV, CYLINDRICAL BAR UNDER TORSION. For a cylindrical bar under 
torsional loading, the external torque is 

=a 
TS - 2lrJ rr2dr 

0 
(19) 

where ‘c is the currant shear stress corresponding to location r, and ra is the 
radius of cross-section. Geometric considerations show that radial lines have 
to remain straight after deformation. Thus, one concludes that 

Y 3 (Yalra>r (20) 

where Ya is the strain at the outermost fiber. Since a yield stress is 
introduced in Rq. (4), an elastic core always exists during deformation whose 
radius re is given by 

=y ra 
re p -- - (21) 

% Ya 

If the experiment is strain-controlled with strain at ra varying between 
-~a and *a, and with Ya in the plastic range, then the torque can be computed 
as 

where 

71 Ya 
Tg a ; =y =e 3 + 2drJYa)3J =y2dy (22) 

Ye 

ye = (Ya/ra)re , Y = 61 + r/p0 (23) 

r and D are given by Eqs. (16) and (la), respectively. 
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Now that Y is knowu, the values of z and T at each fiber can be 
calculated and used in Eq. (22). Note that there exists an explicit 
expression for all cycles 

1 
dy/dz = cl’(z) + -- f’(2) = p(z) 

where 

Q’(z) - (-IIN f(Z) , f’(2) m S(c-l)e”Sz 

r’(z) = WN[ry/k)f’(z) + (uz/k)f(z)] + (ul/k)P’(z> 

r’(Z) = (-l)NIF’az - F’Nz] - F’(n-l)zl 

F’ZZ - [B(c-t>/(a-B)le’BZ 9 F’nz = ‘aFnz 

and 
C 

Fnz a (x e -a(z-zn) - (CZ)e-aZ + (a-B)zn 
a-6 

The integral in Eq. (22) can be replaced by 

I 
Ya 

.cy2dy = j 
=a 

ry2p(z)dz 
Ye 0 

(24) 

(25) 

(26) 

where Za can be calculated by Eq. (23) with known value Yaa Now the numerical 
integration becomes very easy because the values of the integrand can be 
evaluated directly. 

v. NIJMEKICAL RESULTS AND DISCUSSION. To apply the developed nmdel the 
material constants (a, 8, c, ‘y, uo, I.I~, 112) in the theory have to be 
determined. These material constants can be determined if the cyclic shear 
stress-strain curve for the material has been obtained experimentally. The 
usual procedure is to perform a cyclic torsion test using a thin-walled 
tubular specimen. Such a test for the annealed AISI 4142 steel was carried 
out by the Plasticity Research Laboratory at the University of Iowa. The 
values of constants were then used to predict the results for a solid bar 
test. The theoretical aud experimental results were in reasonable agreement 
[ill. This real material does not show any appreciable amount of cyclic 
hardening. 

For purpose of investigating the implications of the developed model, a 
hypothetical material with appreciable cyclic hardening behavior was studied. 
The shear stress-strain behavior of such material under fully-reversed 
torsional loading is presented in Figure 1. The material constants were 
determined as: a = 1000, B = 50, c = 1.5, my = lo4 psi, u. = lo7 psi, IJ~ = 
4x106 .psi, ll2 = 0. A steady loop is established after a few cycles. The same 
set of constants were then used to predict the stress distribution in a 
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cylindrical bar subjected to cyclic torsional loading. We have carried out 
the computational process seven cycles after inftial loading. The numerical 
results are presented here for the initial loading half-cycle and two cycles 
of unloading and reloading. 

Figure 2 presents the numerical results for the torque as related to the 
shear strain at the outermost fiber. The distribution of stress in the 
cross-section at different magnitudes of torque during the initial loading 
half-cycle is presented in Figure 3. The corresponding shear strains at the 
outer fiber are 0.1, 0.3, 0.6, and 1.0 percent, respectively. Notice that the 
outer fiber is the first one to yfeld at Ya = 0.1 percent; subsequently as 
more torque is applied, the radius of the elastic inner core gets smaller. 
Also notice that the rate of hardening for each fiber decreases which is, of 
course, in accordance with strain hardening phenomena. 

Figure 4 presents the distribution of the shear stress in the bar at 
three stages of the first unloading half-cycle. The top and bottom curves 
correspond to the beginning and end of the unloading stages, i.e., ~a = f I 
percent. The corresponding values of torque are 1256, -1387 lb-in., 
respectively. The middle curve represents the residual stress distribution 
when the applied torque is equal to zero* A few fterations are needed to 
reach this state and the residual shear strain at the outermost fiber is 
0.378 percent. Figure 5 presents the distribution of the shear stress in the 
bar at three stages of the first reloading half-cycle, i.e., T, = -1387, 0, 
1461 lb-in. The middle curve represents the distribution of residual stress 
when the torque is equal to zero. Reverse yielding occurs within the outer 12 
percent of the section when Ts = 0 during unloading and reloading. The 
distribution of residual stress during unloading is quite different from that 
during reloading as shown in Figures 4 and 5 for the first cycle. Similar 
results for the residual stress distribution during the second unloading- 
reloading cycle are shown in Figure 6, The solid curve is the favorable one 
if the applied torque during service is in the same direction as the initial 
loading, 

REFERENCES 

1. z. Mroz, "Simplified Theories of Cyclic Plasticity,'* Acta Mechanica, Vol. 
22, pp. 131-152, 1975. 

2. A. Miller, "An Inelastic Constitutiva Model for Monotonic, Cyclic, and 
Creep Deformation: Part I - Equations, Development, and Analytical 
Problems," J. Eng. Materials and Tech., Vol. 98, pp. 97-105, 1976. 

3. M. A. Eisenberg, "A Generalization of Plastic Flow Theory With Application 
to Cyclic Hardening and Softening Phenomena," J. Eng. Materials and Tech., 
Vol. 98, pp. 221-228, 1976. 

4. E. tiempl, M. C. M. Liu, and D. C. Nairn, "An Exponential Stress-Strain 
Law for Cyclic Plasticity," J. Eng. Materials and Tech., Vol, 98, pp* 
322-329, 1976. 

526 



5. E. P. Popov and H. Peterson, "Cyclic Metal Plasticity: Experiment and 
Theory , " J. Eng. Mech. Div., Proc. ASCE, Vol. 104, EM6, pp. 1371-1388, 
1978. 

6. S. R. Bodner and I. Partom, "Uniaxial Cyclic Loading of Elasto- 
Viscoplastic Materials," J. Appl. Mech., Vol. 46, pp. 805-810, 1979. 

7. D. C. Drucker and L. Palgen, %n Stress-Strain Relations Suitable for 
Cyclic and Other Loading," J. Appl. Mech., Vol. 48, pp. 479-485, 1981. 

8. K. C. Valanis, "A Theory of Viscoplasticity Without a Yield Surface, Part 
I and Part II," Archives of Mechanics, Vol. 23, pp. 517-551, 1971. 

9. K. C. Valanis, "Fundamental Consequences of a New Intrinsic Time Measure- 
Plasticity as a Limit of the Endochronic Theory,” Archives of Mechanics, 
Vol. 32, pp. 171-191, 1980. 

10. H. C. Wu and M. C. Yip, "Endochronic Description of Cyclic Hardening 
Behavior for Metallic Materials," J. of Eng. Materials and Technology, 
Vol. 103, pp. 212-217, 1981. 

11. P. C. T. Chen, M. R. Aboutorabi, and H. C. ti, "Cyclic Torsion of a 
Circular Cylinder," Proc. of 8th Army Symposium on Solid Mechanics, AMMRC 
MS82-4, pp. 405-415, 1982. 

527 



I 

528 



I----- 
-- -.--- 



. 

I \ , 

530 



I  

I  

L 

I  

I  

I 
I  

I 
i 

I 

i 
i 

/ 

/ 

/ 

531 



I -5 , 

I 
i 
\ 

i 
i 
\ 
‘\ \ 

\ 
, 
\ 
‘\ 
‘\ 

,  

* 

8 
,  

5 
,  

, 
5  
I 

532 



s 
:1 
A 
Ii 
S 
T 
R 
E 
S 
S 

-ksi 

20 

?5 

10 

5 

0 

-5 

-10 

-- 1 s 

-20 
1 I I 1 I I I I 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

FSDIUS r/r, 
Figure 6. Distribution of Residual Stresses in Second Cycle. 





FINITE ELEMENT RESULTS OF PRESSURIZED THICK TUBES 
BASED ON TWO ELASTIC-PLASTIC MATERIAL MDDELS 
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US Army Armament, Munitions, and Chemical Command 

Armament Research and Development Center 
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Watervliet, NY 12189 

ABSTRACT. The loading and unloading problems in thick tubes subjected to 
uniform internal pressure have been analyzed with the ADINA finite element 
code. The elastic-plastic materials are tmdeled by two strain-hardening 
rules - isotropic and kinematic. The von Mises yield condition, the 
associated flow theory, and a multi-linear stress-strain curve are used in 
both material models. The numerical results of the stresses and displacements 
for thick tubes with different wall ratios are obtained as functions of 
loading history. A comparison of numerical results based on two material 
models is made. 

I. INTRODUCTION. The problem of pressurized thick-walled tubes is of 
practical importance to pressure vessels and the autofrettage process of gun 
barrels. Many solutions for this problem have been reported over the.last 
three decades [l-7], This is a result of different mathematical methods, end 
conditions, and material nrodels. Different assumptions for the material k._ 
properties such as compressibility, yield(..,@riterion, flow rule, hardening 
rule, etc. can lead to many material lmdels. A co-n feature in all earlier 
investigations is to introduce certain restrictive assumptions so as to 
simplify the mathematical analysis (l-41. The recent development in numerical 
methods makes it possible to use more realistic material model and to consider 
more general problems. Both the finite element method [51 and the finite 
difference tpethod [6,7] have been used to solve the elasto-plastic problems 
with different end conditions and mre general loading conditions. The 
material nrodel was based on the von Mises yield criterion, the Frandtl-Reuss 
flow theory, and the isotropic hardening rule. 

The finite element method is nmxe powerful and can be used to solve more 
general nonlinear problems [8,9]. Many finite element codes have been 
developed as seen in a recent survey paper [lo]. The ADINA code, developed by 
K. J. Bathe, is a general purpose finite element program for Automatic Dynamic 
Incremental Nonlinear Analysis [ll]. The standard version models the elastic- 
plastic behavior of metals by the use of the Misea yield criterion, the 
associated flow theory, and two strain-hardening rules - isotropic and 
kinematic. Both hardening rmdels were limited to linear hardening in our 
first version acquired in 1981. The multi-linear option was allowed in our 
second version one year later. This paper shows an application of the ADINA 
code to our pressurized thick tube problems. A multi-linear stress-strain 
curve is used in both material mdels and thick tubes of different wall ratios 
are considered. The numerical results together with a brief summary of the' 
elastic-plastic theory, finite element formulation are presented below with 
emphasis on the basic assumptions used. More detailed theoretical information 
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can be found in a forthcoming report [12]. 

II. ELASTIC-PLASTIC THEORY, In elastic-plastic analysis the material 
behavior is described using three properties in addition to the elastic 
stress-strain relations, namely a yield criterion, a flow nAe, and a 
hardening rule. 

The initial and subsequent yield condition for isothermal kinematic OK 
isotropic hardening can be written as 

f(Uij-aij) - o(/dEP) f 0 

where oi 
the yiel !I 

is the stress tensor, aij is a tensor denoting the translation of 
surface, f is the yield function, and o(/dep) represents the 

dependence of the yield stress on the accumulated increments of effective 
plastic-strain. The von Mises yield function for kinematic hardening is 

f = If (sij-qj)(sij-aij)11~2 

where _ 
1 

w = Qij - ; okk%j 

and 
aij = 0 for isotropic hardening 

Restricting the analysis to associated flow rules, the plastic strain 
increment dsij p is derivable from the plastic potential function f by 

dsijp = qijdX and qij = af/aoij 

(21 

(3) 

(4) 

where dX is a scalar to be determined. 

During active plastic deformation the yield function must be satisfied 
continuously, so that the consistency condition is 

(doij-daij)af/ aaij = 0 (5) 

The original kinematic hardening concept was Prager's rule [13] that 

daij = (; H')dsijo and H' = do/dEP (6) 

Prager's rule was used in the ADINA formulation although its roadification by 
Ziegler [14] is IIy3re popular. Equations (1) through (6) are the basic 
equations of the elastic-plastic theory. In addition, we need the elastic 
stress-strain relation 

(7a) 

536 



where Eijmn is the elastic constitutive tensor. If the material is initially 
isotropic, then 

(7b) 

where E and v are the Young's rmdulus and Poisson's ratio, respectively. 

Using the basic equations (1) to (7), we can obtain the incremental 
stress-strain relation for elastic-plastic material models 

duij i Dijmn d%n (W 

where 
Eijtu qtu qvw Evwmn 

Dij ~ = Eijm - -.-IIII-~~~-~~~- 
U' + qkl Eklrs qrs 

(8b) 

This constitutive relation holds for the combined isotropic-kinematic 
hardening model. For the special cases using Eqs. (2) to (41, we have 

isotropic hardening: w = 3sij/W (%d 

kinematic hardening: w = XSij-uij )/(2a) (9b) 

III. FINITE ELEMENT FORMULATION. The finite element formulation used in 
AJJINA is very general that large strain dynamic analysis has been considered 
[11,12]. Since the present problem requires only a small strain static 
analysis, a very brief summary of the special formulation is presented here. 
The geometry of the body is dlscretized by two-dimensional 8-nodes 
isoparametric elements. The coordinates and displacements are interpolated by 
the same shape functions Ni, i = 1 to 8, i.e., 

x = Nixi , u = NjUi , etc. (10) 
I - m 1 

where xi, yi, ui, vi are the coordinates and displacements at the nodal 
points. The strain increments in elements can be obtained by differentiation 
and in matrix notation we have 

{AsI = [B](AU} and [B] = [L][N] (11) 

where [Ll is a linear differential operator and {AU) is a vector of all nodal 
displacement increments in an element. 

Once we know [D] and [B], we can compute the element stiffness matrix by 

[Kl = [ [BITDl[Bl d(vol) 
V 

(12) 

To carry out numerical integration, we express all matrices and volume element 
in terms of local coordinates and evaluate them at integration stations with 
the aid of Gauss quadrature formulae. For double summation we use either 
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(2x2) or (3x3) points in a rectangle. This finite element formulation is 
based on displacements so the kinematic equations and constitutive equations 
are satisfied locally. The principle of virtual displacements is used to 
express the equilibrium of the body in the current configuration. Since the 
principle is in integral form, we can sum all element contribution to the 
system. 

IV. THICK TUBES. Consider a long thick tube, internal radius a, and 
external radius b, which is subjected to internal pressure p. Thick tubes of 
different wall ratios are considered. The geometry of the tube is discretized 
by two-dimensional axisymmetric &-nodes isoparametric elements along the 
radial direction. We use 10 elements for smaller wall ratios (b/a = 1.5 and 
2.0) and 20 elements for larger wall ratios (b/a = 3.0 and 4.63). All 
elements are of equal size and 3x3 points are used in carrying out the 
numerical integration. The displacements at the nodal points and the stresses 
at the integration points are obtained as functions of loading history. At 
each stage of loading, we have N+l results for the displacements and 3N 
results for the stresses where N is the number of elements used. 

The common input data for both material models are E = 2.583~10~ psi, I, = 
0.3, and 6 points on the unlaxial stress-strain curve, i.e., (u in Ksi, E in 
X) = (155, 0.6), (167, O.&S), (172, 1.25), (177, 3.0), (181, S), (181, 15). 
These six points are chosen to give a piecewise linear representation to the 
actual stress-strain curve for a high strength steel as shown in Figure 1. 
The ADINA code allows a maximum of 7 points to represent two multi-linear 
hardening rmdels (model number 8 and 9 for isotropic and kinematic hardening). 
These two hardening models are widely used because of their simplicity. 
Isotropic hardening is generally considered to be a suitable model for large 
plastic flows. Kinematic hardening is the simplest theory that can llbodel the 
Bauschinger effect. If unloading does not occur, there is no difference 
between these two models. For unloading with reverse yielding, the finite 
element results based on these two roodels will be different. 

The loading and unloading problems in thick tubes of different wall 
ratios have been analyzed using the ADINA code and two hardening models. The 
tubes of wall ratios 1.5 and 2.0 have been loaded to reach fully plastic state 
and then unloaded completely. No reverse yielding occurs during unloading for 
tubes with both wall ratios and the usual assumption of elastic unloading is 
justified on the basis of these two material models. The numerical results 
for the tube with b/a = 2 are shown in Figures 2 through 4. Figure 2 shows 
the boundary displacements (U, and Ub) as functions of pressure history. We 
use 11 steps during loading and 2 steps during unloading. Figure 3 shows the 
hoop stress distribution at different t steps (t = 1, 6, 11, 13) where t is a 
time-like parameter for the purpose of bookkeeping, Figure 4 shows the 
distributions of residual radial and axial stresses and equivalent plastic 
strain. The residual stresses are considered to be elastic according to these 
two models. The unloading process may not be purely elastic if other mdels 
[4] are used. Future work should search for a more realistic model including 
the Bauschinger effect in a high strength steel (151. Experimental 
measurements, if available, should be used for comparison with numerical 
predictions. 
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The tube of wall ratio 3(a = l", b = 3”) has also been loaded to reach 
fully plastic state and then unloaded completely. We use 11 steps during 
loading and 4 steps during unloading. Figure 5 shows the boundary 
displacements (Ua and Ub) as functiong of pressure history, The numerical 
results for the displacements during unloading are very close between the two 
models, However, there are noticeable differences in the size of reverse 
yielding and the stresses within a small zone near the bore. There are 60 
stations along the radial direction at which the stresses are calculated. At 
the end of complete unloading, reverse yielding occurs at 3 or 7 stations near 
the bore according to Isotropic or kinematic mOdels, respectively. Figure 6 
shows the stresses at a Point near the bore as functions of pressure history. 
The differences between the two models for the hoop and axial stresses during 
unloading are not small as can be seen in the figure. 

Finally, the autofrettage solution for a closed volume chemical "bomb", 
is obtained for a tube with a = 0.865" and b * 4.005". The tube is loaded to 
P a 250 Ksi in 10 steps and then unloaded completely in 5 steps. At maximum 
pressure, 26 of its 40 stations have become plastic. At the end of complete 
unloading, reverse yielding occurs at 2 or 5 stations near the bore according 
to isotropic or kinematic nr>dels, respectively. Figure 7 shows the boundary 
displacements (Ua and Ub) as functions of pressure history. There are small 
dffferences for the displacements during unloading based on two models. The 
results for the stresses within the inner half of the tube are presented in 
Figures 8 and 9. Figure 8 shows the hoop stress at different stages of 
loading and unloading. Three stages (t = 1, 10, 15) represent the stage 
corresponding to initial yielding, maximum loading, and complete unloading, 
respectively. The differences for the hoop stresses during unloading based on 
two hardening mdels, are not small as can be seen in this figure. Figure 9 
shows the differences for the axial and radial stresses within the inner half 
of the tube after complete unloading. 
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A FINITE INTEGRAL TRANSFORM (FIT) METHOD FOR DIFFERENTIAL 
EQUATIONS HAVING ASYMPTOTIC SOLUTIONS 

Charles J. Daly 
Earth Sciences Branch 

Research Division 
Cold Regions Research and Engineering Laboratory 

Hanover, New Hampshire 03755 

ABSTRACT. An analytical method is developed for differential equa- 
tions whose solutions y(t) decay asymptotically for large t. The approach, 
called the finite integral transform (FIT) method, is based upon the use of 
selected transform-inverse pairs for which the inverses are koown explicit- 
lY= Using the method, approximate analytical expressions for y(t) are 
obtained in the form of series of orthogonal functions q,(t). Asymptotic 
behavior of the approximating series is guaranteed by requiring each +n 
to be asymptotic for large t. The central feature of the FIT approach is 
the generation of a system of algebraic equations which is solved for the 
vector of coefficients appearing in the orthogonal series solution. The 
FIT method amounts to a discretization of the unbown solution in a fre- 
quency domain. This is in contrast to finite difference and finite element 
methods which discretize over the domain of independent variables. The FIT 
approach is demonstrated by application to a simple linear ODE with vari- 
able coefficient. 

BACKGROUND. The theory of finite integral transforms is well lDlown, 
having its genesis in Fourier's analyses of the differential equations of 
heat flux. As Sneddon (1972) points out, finite transforms arise from the 
solutions of well-posed differential equations of the Sturm-Liouville 
variety. Since the different eigenfunctions corresponding to a particular 
Stunn-Liouville problem are mutually orthogonal, simple, yet extremely 
useful finite integral transform-inverse pairs can be formulated. For 
example, the problem: 

d2 4 dx +x2+=0 f+(O) = $'(f) = 0 

gives rise to the familiar finite sine transform-inverse pair: 

G(n) =$(g(x); x+n) = i g(x) sin nx dx 

g(x) = 1 F G(a) sin nx . 
n=l 

(1) 

(2) 

(3) 

Other examples are the finite cosine, Hankel, Legendre, Tchebycheff, 
Mellin, and Laguerre transforms cited by Sneddon (1972). 
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Finite integral transforms, In general, have a remartible and extreme- 
ly useful property. Consider f(x) to be a piecewise continuous function 
for which the integral of a finite transform exists for all n. The enumer- 
able set of values F(n) (the transform amplitudes) amounts to a complete 
description of f(x) over the interval of definition of the transform, 
excepting discontinuities. This observation is the basis of the FIT method 
for solving differential equations that are not amenable to the techniques 
of classical analysis. For example, given that the solution to a differen- 
tial equation g(x) satisfies the boundary condition of (l), then there must 
be a finite sine representation of g of the form of (3); the problem 
becomes one of determining the values G(n). Using this approach, Daly and 
Morel-Seytoux (1981) were able to solve linear elliptic, and time invariant 
parabolic PDE's in terms of finite sine, cosine, and modified Laguerre 
transform series. 

ANALYSIS. The Laguerre polynomials: 

4 et dn Jt) =x- 
dtn 

(tnemt) (4) 

are the basis of a transform-inverse-pair described by McCully (1960) and 
Hirschman (1963): 

A(n) =&a(t); ten) = a eatdn(t) a(t) dt 

a(t) = i A(n) dn(t> t>O 
n=O 

(5) 

(6) 

From a practical standpoint, the usefulness of a transform-inverse 
pair depends on the ability to approximate the inverse, for all t, by a 
finite number of terms. Considering (6) it is eaey to demonstrate that any 
partial sum of two or more terms diverges as t becomes large. A modified 
Laguerre transform which fs more appropriate for representing asymptotic 
functions is: 

Y(n) =&y(t); t+n) = a e-t'2$n(t) y(t) dt 

y(t) = e-t" F Y(n) Gn(t) t>O 
n=O 

To illustrate the FIT method consider the simple linear ODE: 

g + a(t) y = b(t) y(O) = E 

(7) 

(8) 

(9) 
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such that y decays asympotically as t becomes large. Assume that a(t) is 
given by M+l terms of (6) so that (9) becomes: 

2 + Y F A(m)c$,(t) = b(t) Y(O) = 5 
In=0 

(10) 

Taking the modified Laguerre transform of (10) according to (7) gives: 

-25 + Y(n) I- 2 y Y(P) 
P'G 

+ 2 ? Mm) 7 e-t'2 O%,(t) G,(t) y(t) dt 
UFO 0 

= 2% Y2& (t) b(t) dt E 2 B(n) (11) 

where the transform of the derivative is obtained by partial integration 
(Daly, 1979). 

The product of two Laguerre polynomials can be written as a sum of 
Laguerre polynomials: 

C%mct) 4, (t) = np R(k; n,m) 
k=O 

c$k(t) (12) 

The coefficients R are derived in the Appendix. Substitution of (12) in 
(11) gives: 

Y(n) + 2 nil Y(p) + 2 F A(m) ny R(k;n,m)Y(k) = 2(S f B(n)) (13) 
p=o m=O k-0 

For n = 0,1,2,... N, (13) amounts to a set of linear algebraic equa- 
tions for the N+l values of Y(n). Assuming that y(t) is adequately repre- 
sented by those Wl coefficients: 

y(t) FJ e-t’2 
N 
1 Y(n) $no = y,(t) 

n=O 
(14) 

A Gauss-Seidel iterative procedure can be used to solve (13) for the Y(n). 

As an example, consider the simple problem: 

jf + 2cy = (4t-1)e -t/2 y(0) = 10 
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which can be solved for the exact solution: 

ye(t) = 8egt 
2 

+ 2e -t/z 
(16) 

Using the FIT approach, where it is assumed that y(t) can be adequate- 
ly represented by N-t1 = 21 terms, (15) is solved for the spectral ampli- 
tudes Y(n) shown in Figure 1. Amplitudes are calculated to five digit 
accuracy by the Gauss-Seidel procedure. 

Figure 2 is a comparison of y,(t) and y,(t) given by (16) and (14) 
respectively. The FIT solution is an excellent fit to the closed form 
solution. 

CONCLUSIONS. The finite integral transform method has been demon- 
strated for the solution of a linear ODE with variable coefficient. The 
apparent success of the procedure is an indication of the potential of FIT 
methods for solving more complex problems. Advantages of the approach 
include the generation of analytic expressions and the lack of node or' grid 
systems as required by many alternative numerical methods. 
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APPENDIX. Because the Laguerre polynomials are orthogonal on (0,-j 
with respect to emt, (12) becomes 

R(k;n,d = 7 ewtdk(t) dn(t) d,(t) dt 
0 

Expanding the product of Laguerre polynomials gives: 

$Jt) $,(t) = y Jy (;) tp y + (;) tr 
p=o * r=O 

= T E i,t,‘51 (,I (p:,)tP 
p=oi=a ' 

i<n 

Let: 

C(P) = E 
t-1)' ("1 ( m ) 

i=o i!(p-i)! i p-i 
i<ll 
izp-m 

Then: 

R(k;n,m) = ny c(p) 7 emtO& ,<t) tPdt 
p=o 0 

Evaluating the integral of (A4) and substituting (A3) gives: 

R(k;n,m) = ny C(P) (-lIk (pk)P! 

Et 

(Al) 

(A21 

(A3) 

(A4) 

(A5) 

iTp-m 
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A FINITE DIFFERENCE METHOD FOR ANY PARTIAL DIFFERENTIAL EQUATION 

R. YALAMANCHILI 

TECHNOLOGY BRANCH, ARMAMENT DIVISION 
FIRE CONTROL & SMALL CALIBER WEAPON SYSTEMS-LABORATORY 

U.S. ARMY ARMAMENT RESEARCH AND DEVELOPMENT CENTER, DOVER, NJ 07801 

ABSTRACT 

The most general heat diffusion equation possesses not only first- 
and second-order derivatives in space but also first-and second-order 
derivatives in time. Therefore, the governing equation can be parabolic, 
elliptic or even hyperbolic depending upon the parameters chosen. The 
model includes various physical problems, such as, steady and unsteady 
classical heat conduction (usually known as classical Fourier model), 
heat pulse (Non-Fourier model),abrasive cut-off and surface grinding 
operations in machining of metal components. An explicit and uncondi- 
tionally stable finite difference scheme is developed for the general 
purpose governing equation. The heat transfer example is included to 
discuss the accuracy and stability of this numerical scheme. 

I. INTRODUCTION. 

The mathematical model, considered here, represents various physical 
problems in the area of heat transfer. These include numerous problems in 
steady and unsteady heat conduction; large heat flux applications, such as, 
plasma torch and hypervelocity weapon systems; and problems arising from 
manufacturing operations, such as, abrasive cut-off and surface grinding. 
Although all these physical problems look entirely different, one may be 
able to generalize them into a single model and prepare a single numerical 
method for its solution. It is important to realize that the generalized 
model can be specialized to parabolic, elliptic or even hyperbolic depending 
upon the problem of interest. 
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Currently the finite-difference methods are common for the solution of 
partial differential equations in both design and research and development 
because of the advent of super and inexpensive computers. The numerical 
methods for the unsteady heat diffusion equation receive most attention 
not only because of heat transfer applications but also because they are 
the basis for any study of parabolic partial differential equations. It 
is common to test the heat conduction example first even though the methods 
are developed for complex nonlinear parabolic partial differential equations 
which may arise in other fields. Yalamanchili [l, 21 showed that the finite- 
element and finite-difference methods belong to the class of method of weight- 
ed residuals. It is also concluded that the finite-element method is more 
conservative in both stability and notioscillation characteristics than the 
finite-difference method, but not as conservative as the method of weighted 
residuals. Since the finite-element method is unique because of Gurtin's 
[3] variational principle and numerous finite-differences can be constructed 
with ease, it is found that some finite-difference schemes are better than 
the finite-element scheme in accuracy also. Therefore, further attention is 
focussed here on finite-difference schemes only. An example is considered 
to show where the present solution method stands in comparison to similar 
numerical solution methods. 

II. GENERALIZED HEAT COND~~CTIONMODEL. 

The generalized model including charring ablation [4] may be stated as 

aT aT aT 1 a2T -= 1 a 
--57’st+zz -- at J ar 

where T 

t 

CL 

a 

= Temperature 

= time 

= speed of tool or work piece in the radial direction 

= speed of tool or work piece in the axial direction 

= radial coordinate 

f axial coordinate 

= 0, plane 

= 1, axisymmetric body 

ZU thermal diffusivity 

SC speed of sound 

(1) 
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The following dimensionless variables are introduced for dependent 
and independent variables: 

8 = a.R/e , y = az/a , d = a2t/a , and e = (T - T )/(T 
0 W 

- T ) 
0 

where R - r for a plane 

= anr for axisymmetric case 

TO = Initial temperature 

TW = -wall temperature 

The resulting governing equation in terms of dimensionless variables 
is shown as 

P equal to unity represents a heat pulse (large heat flux) problem. 
Otherwise, it is zero. Q equals unity for. any transient case. C is one 
for abrasive cut-off, whereas G is unity for surface grinding. Otherwise, 
C and G will be zero. The value of D will depend upon whether plane or 
axisymmetric, as defined before. H will be zero for,one-dimensional prob- 
lems. Otherwise, it is one. 

- 
III. NUMERICAL METHOD. 

The dimensionless governing equation is not o:rly- general from the 
physical point of view, but also mathematically. T:ris can be reduced to 
parabolic, elliptic, or hyperbolic by appropriate szlection of parameters 
P, Q, D, C, H, and G. It is quite common to use an entirely different 
method depending upon its mathematical characteristics. However, a simple 
explicit finite-difference formulation is utilized to obtain the solution 
numerically. 

The following difference notation is utilized: 

@ = @(B,Y,S) = @i,j,k 

Adn = new time-step 

A6 0 = previous time-step 

Let f(sj = a + bs +-cS2, 
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Choose 6 equal to zero at a time when the old time step AS has 
been changed to new, A6 . Let the corresponding time subscripts 'be 
k-l, and k+l. The coeff%ients of the quadratic equation become 

a = 1> f 
K 

fk+l - fk I f A6 + fk+lAdo - (A6n f A60)fk 
b = 

k-l n 
A6n A6n(A60 + A&O) 

f k-lA&n f fk+lASo - (ASo + Asn)fk 
c = A6nASo(A6n + A6& 

1 

The derivatives at time, k, can be written as 

af 
a6= b 

a2f 
as2 = 2c 

af f k+l - fk 
as= A6 if forward differences are utilized. 

n 

In addition to these time derivatives, if central differences are 
utilized for second order spatial derivatives, the governing equation in 
difference format may be written as: 

2P 
'A6,(Adn + A60) + J$-IO, n l,j,k+l = 

2P D 
*'i,j,k - ~6~ (A&, f AgO) 'i,j,k-1 + (hBz + $)Ci+l,j,k 

(5) 

(6) 

(7) 

D 
+ 3 'i-l,j,k 

++ 
by i,j-l,k ' 

IV. STABILITY ANALYSIS. 
The difference equation, mentioned above, is not unconditionally stable. 

According to Dusinberre [5], based on laws of thermodynamics, this scheme 
is stable only if the following condition is satisfied: 

2P 
ASuA6 

0 n 
(8) 

562 



However, substitution of the following relationship into some of the 
terms of the above difference equation yiels an unconditionally stable 
difference equation. 

0 
A6nOi 

i,j,k = 
,i ,k-1 + A6cOi . 

,J ,k+l 
A6c f ASn . 

This relatio implies a linear variation of temperature between times 
subscripts (k-l) and (k+l). the resulting unconditionally stsble fifference 
equation is given below: 

A8 = 
i,j,k+l 

( 2p 
A&nAs 

0 
+ *"i j ,k - B'i j k-1 + (~ ' ~"i+l j k 

n ' , 9 I I 

D H 
f v 'i-l,j,k + (ze A6 %I H 0 i,j+l,k ' P -i,j-1,k ' 

Where A =' 2P 2H 
A6,(66,+ AdO) zF+ f-8 A&A': A6 

n 0 

/ 

and B = 2P 2D 
A60(A8n + Ado) + (z+ A6 C+&+ s) A& ">A, ' 

n 0 

The truncation error of the difference equation did not increase due to 
the assumption of linear variation of temperature within any two consecutive 
time-steps. Surprisingly, the truncation error is reduced somewhat due to 
the cancellation of some of the terms. The subitutfon of an assumption also 
elimates one deficiency exhibited by the Dufdrt and Frankel method [6] for 
nonlinear problems in ,that large variations in 'cl' can be tolerated without 
introducing significant errors. 

The unconditional stability can be shown by assuming an error, E, as a 
linear combination of terms of the form 

Q = 
i,j ,k 

rlk efi iSaAB ,Ej$Ay 

and substituting into the final difference equation, one can obtain the 
relation for damping ratio (n) as 

iI2 -fn+! = 0. 
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Where E = A&2I6 + Ad + (s+ L 
n 0 n 

D 
+se 

-fi$lAB - 

(15) 

It can be shown that the magnitude of the damping ratio (for amplitude), 
rl will be less than or equal to unity for any chosen parameters. Therefore, 
the ;inal difference equation will remain stable for any constant integration 
interval.or when the new interval is not larger than the old step plus the 
critical step increment aA6d/(AB2 -t Ay2). 

v. PARABOLIC EXAMPLE. 

An exact analytical solution [7] exists for the one-dimensional problem 
with zero initial temperature everywhere and length, L. The boundary conditions 
are a step change to a temperature of unity on one end and insulated (zero heat 
flux) on the other end. Instead of approximating the heat flux boundary con- 
dition by a difference equation , one can also consider a body of length 2L and 
apply a step change in temperature to unity on both ends. In this case, there 
is no error involved in consideration of zero heat fluxes or insulated surfaces. 
The typical computer time is 18 seconds for 40 spatial-steps and 600 time-steps. 
The results obtained by the present method as well as by several other methods 
are shown in Tables 1 and 2. 

TABLE 1. Comparison of Errors (x105) 

Method X/L=O.2 XIL=O.6 X/L=O.8 

Analytical l O80929 .371439 .654747 

Crank-Nicholson[8] 121 244 175 

Saul'yev[S] 218 252 231 

Liu[lO] 351 240 134 

Dufort-Frankel 90 367 296 

Present 194 96 35 
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TABLE 2. Comparison of Errors(X105) 

Method X/L=O.2 X/L-O.6 X/L=O.8 

Analytical .647367 .782053 .885416 

Crank-Nicholson[8] 4.1 2.6 1.4 

Saul'yev[S] . 120 72 33 

Liu[lO] 72 45 26 

Dufort-Frankel 126 79 42 

Present 27 16 9 

VI. CONCLUSIONS. 

The Fourier number is 0.1 for the results in Table 1. The present 
method is more accurate than not only other stable explicit schemes but 
also the famous implicit scheme at dimensionless positions of 0.6 and 0.8. 
Similar results are shown in Table 2 for a later time (Fourier number) of 
0.5. The present method is much better than any other stable explicit 
scheme for all positions. Only, the Crank-Nicholson implicit scheme ex- 
ceeded the accuracy of the present approach for larger dimensionless times 
(but not for small times). However, the Crank-Nicholson scheme requires 
more computer time because of implicit procedures than the present method. 
Therefore, the generalized model and the numerical method are a great asset 
for scientists and engineers. 
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NUMERICAL BOUNDARY CONDITIONS FOR FLOW PROBLEMS 

George J. Fix and Max D. Gunzburger 
Department of Mathematics 
Carnegie-Mellon University 

Pittsburgh, PA 15213 

ABSTRACT. The development, analysis, and implementation of 

numerical boundary conditions for flow calculations in infinite 

domains are discussed. Emphasis is placed on potential flow, 

periodic acoustic, and incompressible viscous flow problems. In 

all cases, the infinite domain problems are approximated by 

problems posed on a bounded domain. To close the numerical 

problem, an artificial numerical boundary condition is imposed. 

The effect of these approximate boundary conditions on the accuracy 

of the numerical computations is examined. 

I. INTRODUCTION. When a physical problem is posed on an 

unbounded domain, its solution cannot be directly approximated 

by a numerical technique. There are four classes of methods 

employed to treat such problems. The first is to map, either 

numerically or analytically, the infinite domain into a finite 

one, and then discretizing the governing partial differential 

equations by standard techniques, e.g., finite difference or 

finite element methods. This class of methods has often proved 

to be quite successful, especially for potential fLow problems. 
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However, for complicated regions, e.g., the exterior to an airfoil, 

the numerical generation of the mapping function may be rather 

costly, Furthermore, for problems with oscillatory solutions, 

e.g., periodic acoustic problems, mapping to a finite domain just 

trades the problem of the infinite domain for the equally impossible 

problem of resolving very rapidly (in fact, infinitely rapidly) 

oscillating solutions within the new bounded domain. 

A second popular approach for exterior problems is to transform 

the partial differential equation problem on an infinite domain into 

an integral equation problem posed on the finite boundary of the 

domain. The integral equation may then be discretized by the usual 

techniques. This type of approach is limited to problems for which 

a free space Green's function is known. Furthermore, discretization 

of the integral equation leads to dense (but finite) matrix problems. 

A third method of treating infinite domain problems is related 

to the integral equation approach. This approach couples a far 

field solution with a discretization by finite differences or 

finite elements in a bounded.region. The coupling is effected 

by introducing auxiliary variables, defined on the artificial 

boundary of the truncateddomain, and requiring these auxiliary 

variables to satisfy an integral equation along that boundary. 

This integral equation carries information about the solution 

in that part of the original domain lying outside the truncated 

domain. In order to apply this method, we need only know a free 

space Green's function for the differential operator governing 
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the solution outside of the truncated domain. One way to view 

this method is to think of it as solving the partial differential 

equation problem on a bounded truncated domain, with the integral 

equation serving as an exact non-local boundary condition. By 

non-local we mean that the (unknown) solution at all the points 

on the artificial boundary are coupled. This method is effective 

but involves the introduction of additional unknowns and often 

results in complications in the resulting linear systems which 

must be solved. 

The fourth method, which is the one considered in this paper, 

again solves the partial differential equation problem on a 

truncated domain. However, we now impose, on the artificial 

boundary, an approximate local boundary condition. By local, 

we mean that the boundary condition holds pointwise at the boundary. 

Since this approach involves only an approximate boundary condition,- 

it is desirable to develop artificial boundary conditions of high 

accuracy. Indeed, the method can be cost effective only when the 

truncated domain is relatively small in its extent. However, when 

the method works, it is the simplest to implement, since it 

essentially consists of a direct discretization of the partial 

differential equations on a bounded domain with local boundary 

conditions, i.e., as far as the discretization technique, it is 

essentially one for an interior problem. 

In Section II, we discuss potential flow, periodic acoustic, 

and incompressible viscous flow problems in exterior domains. 
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In Se&ion 111 we discuss incompressible viscous flow problems 

in channels. We also refer the reader to [l] which was presented 

at a previous Army conference, which treats numerical boundary 

conditions for unsteady wave propagation problems. 

II. FLOW PROBLEMS IN EXTERIOR DOMAINS. In this section we 

first consider problems governed by second order elliptic partial 

differential equations and which involve exterior domains, i.e., 

domains which are the exterior of a bounded body in R2 or R3. 

In the vicinity of the body, the "near field", the equation may 

have variable coefficients. However, away from the body, the 

"far field", we assume that the equation reduces to one with 

constant coefficients, at least in an asymptotic sense. We 

introduce an artificial boundary, denoted by TR, and assume 

PC N that it contains the inner 
\ / 

/ 
k 'R boundary which is denoted by r. 

\ 
/ r The original infinite domain we 

0 

\ 

I I denote by 0, and the truncated 

\ I domain, i.e., the region between 

\ 
I 

CR 
r and rR, by s. We assume 

/ 
\ / that the artificial boundary FR 

\ 0 A --- 0 is placed sufficiently far away 

from the inner boundary F so that the differential equation, in 

the vicinity of TR, is already in its far field, "constant" 

coefficient form. Also, in practice one would naturally pick TR 
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to be geometrically simple, e.g., a box, circle, or sphere. The 

method essentially assumes that the given differential equation 

holds in the region %f that the given boundary conditions hold 

on r, and that the truncated problem is closed by choosing an 

artificial boundary condition on the artificial boundary IYR. 

The particular choice of this artificial boundary condition is 

crucial to the design of an effective algorithm. The specific 

boundary conditions described below were first developed and 

analyzed in [2]. 

As a prototype acoustic problem, consider the following 

Helmholtz type problem. We have 

Au + k2u =f in 0 (1) 

-au x=g on F. (2) 

In order to ensure that a unique solution exists, we must also 

impose a radiation condition, i.e., the Sonunerfeld condition 

(in R3) 

&I -iku f - = ar O($) as r-93, (3) 

which essentially allows only outgoing waves. In (1) k is the 

given frequency and f is a given source which we assume is of 

compact support or decays sufficiently rapidly as 1: - a, In 

the near field, (1) may be replaced by a variable coefficient 

equation, while in the far field, (1) may be replaced by more 
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complicated constant coefficient differential equations such as 

a reduced convected wave equation. The boundary condition (2) 

may be replaced by a Dirichlet boundary condition and/or mixed 

boundary conditions. 

Now, it is known [3] that the solution of our problem (l)-(3) 

may be represented by the convergent expansion 

e ikr Co F.(e,cp) 
u=-ks 

jf0 (kr)j 
(4) 

where 8,cp represent-spherical angles. One easily verifies that 

for u given by (4) 

-iku + $ = 0 1 as r - co 
0 r2 

so that (3) is certainly satisfied. 

Now, our truncated problem is given by 

Aum + k2um = f in !$ (6) 

"um -=g on r an 

BmUm = 0 on TR 

where Bm is an operator to be defined below. 

(5) 

(7) 

(8) 

The goal on the 

one hand, is to choose the operator Bm so that the difference 

(u- um), i.e., the difference in the exact solution of the infinite 

domain problem and the exact solution of the truncated problem, is 
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as small as possible. On the other hand, we wish to choose ~~ 

so that the discretization of (6)-(8) is straightforward. 

Our choice of boundary conditions is motivated by the 

representation (4). Indeed, consider the family of operators 

Bm = = @&-ik+F)Bm-l. 
(9) 

It is easily verified by applying (9) to (4) that 

BmU I r=R = O(l/RZm+l), (10) 

Thus we see that by requiring that (8) hold, we are making an 

error of 0(1/R2m+1 1 at the.artificial boundary rR if the latter 

contains the sphere of radius R. Thus, insofar as minimizing the 

error made at the artificial boundary, one would like to choose m 

as large as possible. However, practical implementation considera- 

tions preclude choosing m > 2. Basically, the difficulty is due 

to the fact that Bm involves an m-th order partial differential 

operator with respect to r. For m=l, this poses no problems; 

for m>l, one can use the differential equation to eliminate 

all r-derivatives of order greater than one. However, this 

procedure proves to be practical only for the case m= 2. See [21 

for details. For these reasons, we focus attention on the operators 

( a B1= =- ik+$) 

and 

(11) 

(12) 
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Note that the Sommerfeld operator is not a member of our 

family Bm. 

We should monitor the error in the truncated problem as a 

function of the frequency as well; indeed, the constants in the 

order relation (10) are functions of k. The representation (4) 

suggests that the proper parameter is (kr), although we should 

keep in mind that the functions Fj(6,cp) also depend on k. 

However, we have computational and theoretical evidence [21 that 

indeed as k increases, the error in our boundary condition 

decreases. This partially mitigates the resolution problem. It 

is well known that as k increases, one must decrease the grid 

size h in order to accurately resolve waves, (kh) being the 

relevant parameter, However, as k increases, we are able to 

bring the outer boundary closer to the inner boundary, thus making 

the computational region smaller. 

In two dimensions, an analogous family of boundary operators 

may be developed. They are based on the asymptotic expansion 

I- 
= f'. (8) - ,i(kr-m/2) c 1 . - 2 

U- rkr j=O rJ 
(13) 

(Actually, an exact representation, analogous to (4) is known, 

but as it involves Hankel functions, (13) is easier to work with.) 

The family of operators Bm is now given by 

Bm = j!l($+q-ik). 
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AlSO, for Poisson problems where k=O in (11, we may use the 

multiple expansion 

1 43 F.(%cp) 
u=*E c 

k=O rj 

(in R3) to generate appropriate boundary operators. These simply 

turn out to be given by (9) with k=O. Similarly, we may relate 

the Poisson problem in R2 to (14) with k=O. 

In [21 are collected many computational and theoretical 

results concerning the accuracy of the solution of the truncated 

problem (6)-(8). Note that from (11, (2) I (6)-(8), and (10) that 

the difference E = u-u m satisfies the problem 

AE + k2s =0 in !+ 

g=O on r an 

'rn' = Bmu = rR' 

The questions answered in [2] are how does the known error committed 

at the boundary TR affect the error in the interior % and at 

the inner boundary r. Roughly speaking it is found that error in 

the interior is of O(l/R2) for the boundary condition Bl and is 

of 0(1/R') for the boundary condition B2. Also in [21 is found 

a discussion of the implementation of the boundary conditions Bl 

and B2 in conjunction with finite element discretizations of 

(6)-(8). 
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Although the results of [al are for second order elliptic 

partial differential equations, the artificial boundary conditions 

described above have been successfully used in other settings, e.g., 

transonic flow calculations with a subsonic free stream [4]. 

Recently, artificial boundary conditions have been studied 

for incompressible viscous flows in exterior domains,[5]. Here, 

the governing equations are the Navier-Stokes equations. We 

assume that in the far field the flow approaches a uniform flow. 

Indeed, it is known that the velocity ; and pressure p approach 

their free stream values .gm and P, at the rates 0(1/R) and 

0 (l/R21 , respectively. The following artificial boundary conditions 

have been studied. First, we simply impose u = go3 at the 

artificial boundary. This is often done in the literature; however, 

we show that this is unsatisfactory from a computational point of 

view. Indeed, the 0(1/R) error made at the boundary rR can 

lead to O(1) errors in the interiors, and at best, in special 

situations, yields an O(l/RI'* ) error in the interior. A second 

boundary condition is to impose a zero stress boundary condition 

l.e., 

(p-pan + graduan = 0 on rR. - - (15) 

We show that this boundary condition has an error of 0 (1/R2) , 

i.e., the actual stresses on l?, are of O(l/R2). Furthermore, 

we show that the solution of the truncated problem then differs 

from that of the infinite problem by 0(1/R) in the interior of 
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the truncated region. Although this is a significant improvement 

over the errors incurred by specifying the velocity on TR, we 

feel that the results are still not good enough for practical 

computations. Indeed, we note that (15) plays the role of the 

Sommerfeld condition, i.e., they both are in an error of O(l/R2L 

Therefore , present work is centered on developing boundary conditions 

of higher accuracy, analogous to the family Bm described above. 

The starting point, analogous to the representation (41, is the 

theory of hydrodynamic potentials. 

To close this section, we make some remarks concerning finite 

element discretipations of the truncated problem. Once we have 

defined our truncated problem, e.g., (6)-(8), it seems like a 

straightforward task to discretize it by a finite element (or 

finite difference) scheme. After all, the truncated problem has 

the appearance of a standard bounded domain problem. However, 

from a practical point of view, a naive discretization of a 

problem such as (6)-(81, e.g., using quasi-uniform grids, will 

usually require too many degrees of freedom, and thus lead to 

an inefficient algorithm. Advantage must be taken of the fact 

that the exact solutions decay as r increases. The way to do 

this is, of course, to grade the mesh, using increasing mesh 

sizes as r increases. The apparent decrease in accuracy caused 

by the increasing mesh size is counteracted by the fact that the 

exact solution, measured in the norms appearing in the error 

estimate, is decaying. By balancing these effects, one can easily 
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design near optimal grids which lead to great savings in computer 

memory and processing time when compared to a naive approach. 

See [5] for a more detailed discussion of these ideas. 

III. CHANNEL PROBLEMS FOR VISCOUS FLOWS. In this section 

we briefly consider downstream boundary conditions for incompressible 

r2 
fY 
I 

I- ; 

! 5 r. : 

. ;?-F----” 

viscous flows in channels. A typical 

configuration is given by the 

accompanying figure. Here, the 

boundaries 5 and F2 represent 

solid walls, JYI represents an inflow 

boundary, and r. represents an 

outflow boundary. Along FI, r1 

and r2, boundary conditions are given, e.g., along Fl and r2 

the velocity vanishes and along rI. the velocity is specified. 

However, along F. a boundary condition is not known and therefore 

an artificial numerical boundary condition must be imposed in order 

to define a solvable discrete problem. In the absence of accurate 

asymptotic information at the outflow, one variously imposes some 

derivative of the solution at the outflow boundary. In [6], we 

carried out an analytical and computational study of the errors 

incurred by the imposition of such artificial boundary conditions. 

These studies were carried out for model linear transport equations 

and for the Navier-Stokes equations. Four choices for the artificial 

boundary conditions were considered. These involve specifying 
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u rR I 
or 

i&J 

ax, 

R 

(16) 

(17) 

or 

or 

J J UdxdY 
-d 0 

(18) 

(19) 

where in the last integral, we refer to the coordinate system 

defined in the figure, and .d is a fixed number, The first three 

choices seem "natural", and especially the second and third have 

been variously recommended in the literature. The last choice, 

although seemingly "unnatural", is of use in certain geophysical 

problems. See [6] for details. In (16)-(19), u represents a 

component of the velocity field, or perhaps the stream function 

or vorticity if a formulation involving those variables is employed. 

The actual values assigned to any of (16)-(19) are either determined 

by known boundary data (which of course, should be used whenev.er 

available), or is arbitrarily set, e.g., to zero, when unknown. 

The study of [6] was aimed at determining the effect of the latter 

type specification on the solution of the channel problem. 

It was found that the incorrect specification of any of the 

boundary conditions (16)-(19) resulted in errors only in a boundary 
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layer adjacent to the outflow boundary TR. The thickness of 

this boundary layer decreased with increasing Reynolds numbers. 

See [6] for a detailed discussion. 
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LHAST SQUARES APPROXIMATIONS 
TO COMPRESSIBLE FLOW PROBLEMS 

George J. Fix and Max D. Gunzburger 
Department of Mathematics 
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Pittsburgh, PA 15213 

ABSTRACT. A type insensitive scheme based on a weighted least square 
variational principle is used in conjunction with appropriate finite element 
spaces. Shocks are treated through a modified density formulation natural 
to this scheme. Selected numerical results are reported along with a qualita- 
tive analysis of the approximations. 

I. INTRODUCTION, Finite element schemes based on variational principles 
of the least squares type have a number of advantages as well as disadvantages 
when applied to compressible flow problems. The most striking advantage is 
their insensitivity to type; i.e., the approximations are typically just as 
accurate for supersonic flows as they are in the subsonic case. Moreover, 
in transonic flows, points in the supersonic region do not require special 
treatment. A closely related property is ability of this type of approach to 
generate Hermitian definite algebraic systems. 

The primary defect of the least squares approach is that their accuracy 
deteriorates in the presence of shocks or other types of singularities. 
Moreover, this deterioration is far more severe than is seen in other types 
of finite element or finite difference formulations. 

In this paper we treat this problem using suitably weighted norms in the 
least squares formulation. This approach does require a priori knowledge 
about certain qualitative features of the solution, but given this knowledge, 
it along with appropriate mesh refinement (or singular elements) can be used 
to accurately model singular behavior. 

II. WEIGHTED LEAST SQUARES FORMULATIONS. For simplicity we consider 
steady potential flows. The governing equation is 

div p gr:d v = 0 in rj, (1) 

where Cp is the velocity potential and p is the density. Bernoulli's 
equation permits us to write p as a function of the flow velocity 
rl 
v = gr-ad cp. The problem statement is completed by supplying conditions on 
the boundary r of the flow region CL: 

Here V is the outer normal to r and v is the given normal velocity. 
On solTd walls where there is no normal flow we have v,, = 0. 

We reformulate (1) in terms of the mass flow 
r+ 
u = p gzd cp. (3) 
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Indeed, (1) is equivalent to 

div z = 0 (4) 
3 

curl(G) = O- (5) 

4 

where the density p is now regarded as a function of u. In addition we 
assume the boundary condition takes the form 

4 
u-u = u 

V 
on I?. (6) - 

for a given normal mass flow uv. 

To approximate this problem we select a finite element space4bh,functions in 
which must be continuous.. We then seek an approximate mass flow uh in h- 
This function is defined by first applying Newton's method to (4)-(6). Indeed, 

suppose 70) 
% is an initial guess to the mass 

Then one step of Newton's method produces 

flow, and let 

(7) 

-(I) “h = ;;LO’ + Gh 

where the correction z h satisfies the linear problem 

div zh = -div go' 

(8) 

curl(Uo~h) + curl[(grad Go l (10) 

-I -to) Uh l v = ‘l.lh -V on I?, _ 

In (lo), Go -to1 denotes U(uh 1. To solve (9)-(10) we use the least squares 
-I 

method. In particular, we require that Uh minimizes 

h {ldiv[f+;r)]12w1 + I~url[G~~(~) +$v' + (grad Cro-%?01112w2~ (12) 

as G ranges over all functions in i? satisfying the boundary condition (11). 
In (121, wl and w2 are weighting functions which vary with spatial locations. 

-8 
The iterations are continued until the corrections 

small. 'h are suitably 
One attractive feature of this approach is that typically few Newton 

iterations ars xequired. In addition, the least squares formulations for the 
corrections U lead to positive definite Hermitian systems which can be 
readily solved by a number of methods ([1],[2]). Finally, the approach is 
not sensitive to the presence of- supersonic region where the equations are 
hyperbolic. 
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The approach does, however, have a major drawback. At points where the 
solution u is singular, or in the case of shocks, where it has very large 
gradients,-there is a serious loss of accuracy in the approximation. This is 
where the weighting functions wl,w2 play a major role. 

First suppose the flow region has a re-entrant corner as iS shown in 
Figure 1. If the flow is subsonic at the corner A, then it is known that u 

Figure 1. Corner singularity 

behaves like O(rmCL) for a suitable number CC > 0. In this case if the weights 

w1'w2 vanish at A like B O(r ), where @ > 2U, then with appropriate mesh 

refinement full accuracy can be achieved. 
that fhe correct weights are essential. 

Numerical 'experiments 131 indicate 
Mesh refinement alone is not sufficient. 

A similar situation exists with shocks. Here it has been observed that it 
is sufficient for the weights'to vanish like the first power oE.the distance to 
the shock. It is also necessary to add a small amount of dissipation, either 
through the density p or by a dash pot term. S 

III. A NUMERICAL EXAMPLE. To illustrate the above ideas we consider a 
time periodic flow over an oscillating plate as shown in Figure 2. Boundary 
conditions and other details are given in 131. An exact solution can be 

? 
-+ 

4 
? /B3 4 

Figure 2. Oscillating plate 

obtained in the case of a small time periodic disturbance of a uniform flow, 
and we compare this with the approximations obtained from the least squares 
method. The velocity field (and hence the mass flow) has a singularity like 
o (,-WI at the tip of the plate (point A in Figure 2). 

583 



. 

The pressure coefficient ACp (which is proportional to the mass flow) 

is plotted in Figure 3 as a function of the distance along the plate. The 
solid line is the exact solution. The circles xepresent the weighted least 
squares approximation with mesh refinement, while the squares represent the 
unweighted least squares approximation on the same grid. The serious loss of 
accuracy in the latter is evident as the singularity at A is approached. 
Moreover, additional mesh refinement only makes marginal improvements. However, 
by adding the weights, which in this case behave like O(r), there is a 
significant improvement in the accuracy. 

,AC 
P 

Additional examples are given in [3] including those containing shocks. . 

-T 
f 

Figure 3. Pressure coefficient along plate 
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ABSTRACT. Geometric Programming (GP) can solve two types of 
problems: non-linear minimization formulations and simultaneous 
non-linear equations. Since a large number of problems in this world 
are non-linear, there are numerous potential applications. 
Furthermore, GP can provide the general solution to a given 
non-linear problem if the problem is reduced to what is called zero 
degrees of difficulty. Sample solutions to some problems are 
provided. 

I. INTRODUCTION. Geometric Programming is mathematically 
simple to use. One does not have to take derivatives, pivot, or 
transform into some exotic N-space. All that is required is 

'high-school level algebra and a bit of practice. One doesn't even 
need a computer, although for larger problems it can be useful. Many 
small problems can be solved by hand for the general case without 
even using a calculator. 

If this sounds like a sales pitch, it is. Geometric Programming 
can be a nice alternative to trying to stuff a non-Linear problem 
into a piecewise-linear Linear Programming package, or using a huge 
Conjugate Direction package on a relatively small non-linear problem. 
Furthermore, GP doesn't run forever. 
different non-linear techniques, 

When compared to several 

be faster. 
Geometric Programming has tended to 

This is not to imply, however, that Geometric Programming is the 
cure-all of every non-linear problem, 
well against linear problems. 

and it generally doesn't do 
The restrictions on the uses of GP are 

presented below, as well as what types of problems Geometric 
Programming really prefers. 
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II. Preferences of Geometric Programming. As mentioned 
the two types of problems which GP can solve are: 

above, 

1) non-Linear minimization optimization, and 
2) solutions to simultaneous non-linear equations. 

Only minimization optimization problems can be solved by GP, but of 
course one can always transform a maximization problem into a 
minimization problem by suitably transforming the objective function. 
This transformation can be done by either multiplying the objective 
function by minus one, or by inverting the objective function 
(minimizing the reciprocal). 

GP also prefers non-zero solutions. Since many nonylinear 
problems have multiple solution pbints, especially in simultaneous 
equation problems, one does not know a-priori which solution will be 
found. However, one can be guaranteed that if there is any other 
solution than the zero solution, GP will find it. This factor can 
sometimes be used as an advantage when one desires to find multiple 
solution points. 

Another feature of GP is that at optimality, all of the 
constraints will be "tight". In this context, "tight" means that all 
of the inequalities will be equalities. If this is not supposed to 
be the case at optimality, then the user must define his/her own 
artificial variables, just as is done in Linear Programming. 

Geometric Programming also prefers that the problem is solved 
once in the general case rather than solved iteratively. (Don't we 
all!) This can be accomplished when the problem is formulated in the 
proper manner, called zero Degrees of Difficulty. This, too, will be 
explained later in more detail. The point we wish to make here is 
that sensitivity analysis is made trivially easy when the general 
solution to a problem is known, and GP allows the user to find the 
general solution without taking derivatives. 

Problems involving trigonometric functions and powers to powers 
cannot yet be solved by GP. Also, 
for integer solutions. 

there is no particular preference 
Unlike the Transshipment problem in Linear 

Programming, even all-integer coefficients 
integer solutions in GP. 

will not guarantee 
There is no way, yet, to force integer 

solutions in Geometric Programming. 
There are a couple of transformations which will allow the user 

to solve non-linear problems which include logarithms and exponential 
functions. Since these are two of the more common functions in 
non-linear problems, these transforms come in handy. 
into the details here, 

We will not go 

Phillips: 
but they may be found in Beightler and 

The types of, problems which GP really likes are those with Lots 
of variables multiplied together, 
negative real power. For example: 

with each variable to a positive or 
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Minimize 2.45 * X2*2 * Yla3 + 3.14 Jc X-3gl+ 4.02 * Y--5 (1) 

A constant times a variable to a real power times another variables 
to a real power, plus another term of the same form, is the type of 
problem formulation Geometric Programming really prefers. Before 
explaining the solution to the above example, let us first define 
some terminology. 

III. Terminology. The following definitions are used in 
Geometric Programming in order to, simplify the discussions to follow. 

A Term: Any group of variables separated by a plus or minus 
sign. In our example, there are three terms, one involving 
X, one involving Y, and one involving both X and Y. 

An Objective Function: That which is to be minimized, In our 
example, it is all of equation (1). 

-A Constraint: That which must be satisfied while minimizing. 
There are no constraints in our example, but usually they 
are of the form of a sum of terms less than or equal to a 
constant. 

A Weight or Delta: The contribution of that term to the final 
solution. In our example there would be three weights--one 
for each term. At optimality, the first delta would be 
equal to the contribution of the first term to the overall 
value of equation (1). This will turn out to be a number 
greater than zero and less than one. 

Degrees of Difficulty: This is a measure of how difficult it is 
to solve the problem in its current formulation. This 
measure is defined to be equal to: 

Number of Terms - Number of Variables - 1 

This is similar to having the same number of equations as 
unknowns in order to solve for the variables. 
of Difficulty are ranked by number. 

The Degrees 

Zero Degrees of Difficulty (ODD) is good. One can find the 
general solution to the problem if the sign of all the coefficients 
is positive. (If any are negative, you have to check to see if you 
are at a minimum, a maximum, or a saddle point.) 
Difficulty is one (lDD), 

If the Degree of 
one can find the general solution, but only 

after taking logs, derivatives, and exponentiating. This is messy 
and is not usually done unless the genral solution is required. 
higher number for Degrees of Difficulty requires that iterative Any 
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solutions be used in order to find the optimal solution. Using 
iterative solutions does not guarantee a global optimal solution, but 
it usually works out that way. Furthermore, the number of iterations 
required by GP is small compared with most other search algorithms. 
It has been found that GP performs at least as well as Newton's 
Method applied 9 a log transform of the original problem, and is 
probably better. Research continues on this subject. 

IV. The Rules of Geometric Programming. There are four rules 
in Geometric Programmsng which result from the theory behind GP. 
These shorthand rules allow the user to solve properly formulated GP 
problems. They are listed below: 

3) t* = k3T TERM = 21Jn TERM = , . , = NTH TERM v -- 
4 a2 

TER+&r 
k=l 

d 
N 

4) bJk = JKTH 

Rule 1 is the value of the objective function at optimality, 
represented by @* (phi star). The K's are the coefficients if each 
of the terms in the whole problem, the Deltas are the weights for 
each term. The superscripts and subscripts show that there are N 
terms in the objective function, and 9. terms in each of the m 
constraints, The deltas in the constraints have two subscripts to 
represent the kth term in the jth constraint. We shall show in our 
examples how to solve for the weights or deltas. Once these deltas 
are known, 
in Rule 1. 

then the optimal solution is known by solving for phi star 
This means that the final solution is known prior to the 

values for the variables are determined. Again, 
required. 

no pivoting is 

Rule 2 restates the percentage rule-- 
function will, at optimality, 

each delta of the objective 
be equal to the contribution of the 

term with which it is associated. If the first term contributes 50% 
of the value of equation (11, for example, then the first delta will 
equal one half. Since the sum of the parts must equal the whole, the 
sum of the deltas of the objective function must equal one. This 
rule also provides an extra equation with which to solve for the 
deltas, and is responsible for the negative one in the definition of 
Degrees of Difficulty. 

Rule 3 Is a restatement of the definition of the deltas--each 
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delta represents the contribution of its term to the whole objective 
function. Rule 3 is used to determine the optimal values of the 
variables after the optimal solution has been derived. In our 
example, the variable X may be determined by using Rule 3 applied to 
the second term. Since all values are known except for X, one simply 
solves a single term monomial to determine X. 

Rule 4 is similar to Rule 3, except that Rule 4 holds for deltas 
in the constraints rather than in the objective function. The 
contribution of the kth term in the jth constraint is equal to its 
associated weight divided by the sum of all of the weights in the 
constraint. This is used whenever it is more difficult to solve for 
the variables using Rule 3 than it is to use Rule 4, 

V. Solving For the Weights or Deltas: Now that we have 
determine q 
appropriate weights, 

ow to solve the problem given the 
let us now examine how to solve for those 

weights. In our example, we have three terms and two variables, so 
we have a zero Degree of Difficulty problem. Furthermore, by Rule 2, 
we know that the sum of the deltas must equal one. 
first equation: 

This gives us our 

*I + $2 + T3 -1 (2) 

Notice that since the deltas are the unknowns, we will need two more 
equations in order to solve for the deltas explicitly. 

Next, we look to see in which terms the variable X appears. If 
X does not appear in the term, then the,coefficient for the delta in 
our next equation is zero. 
coefficient 

If X does appear in the term, then the 
of the delta is equal to the exponent of the variable X. 

In our example, 

and the right 
The same 

2.2 * CT1 - 3.1 * d2 = 0 (3) 

hand side is defined to be equal to zero. 
thing is done for Y as was done for X. In our example, 

1.3 VI - .5”F3 =o (41 

which completes the number of required equations with which to solve 
for the deltas. Notice that even though the problem as originally 
defined was non-linear, 
weights for each term is 

the solution to the problem of finding the 
a linear problem. Furthermore, no 

derivatives had to be taken-o pivoting was required. 
The values of the deltas in the above problem are: 

IT1 = .232036, c2 = .16467, and 63 = .60329 

From Rule 1 we find that the optimal solution equals 8.81597, and by 
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applying Rule 3 to the second and third terms, X equals 1.28256 and Y 
= .57129. All that was used to solve this problem was a little paper 
and a hand calculator. The solution was verified by substituting the 
optimal values for X and Y back into the original equation, and 
seeing if that number matched the solution given by GP. One can also 
assure that the solution is a minimum by changing the value of X or Y 
slightly in equation (1) and showing that the result is an increase 
in the value of the objective function. 

VI. An Example Comparing Lagrange Method to GP: In the 
following example, we will first solve the problem by means of the 
Lagrange Method which requires the taking of three partial 
derivatives to find the optimal value. Then we will show,how the 
same solution can be accomplished through Geometric Programming. 

The problem is to minimize the amount, and therefore the cost, 
of material required to build a cylindrical storage tank which is 
constrained to contained at least 1OOOfl cubic yards of liquid. The 
pi is obviously there to make the solution come out as nice round 
numbers. The problem statement and results are as follows: 

MIi1 t = $rR* + $2trR~ 

Saf. Tt R2, 1 1OOOrr CUBIC YARDS 

L(H,R, x 1 = F(H,R) - X (G(H,R)-~1) 

K3 = 1000 R’ - 10 H’ = 10 

COST = VR*+~~RH = $300K= $942 

In order to find the solution, the Lagrange ( L(H,R, x 1 ) was 
required to have the partial derivative taken with respect to R, H, 
and X . These partials were set equal to zero, and the resulting 
three equations and three unknowns ( R, H, X I were solved. The 
results were that the radius and the height of the cylinder (with no 
bottom --the bottom is a sunk cost) are both equal to 10 yards. The 
total cost of the operation was $942. 

In order to solve the problem by Geometric Programming, one must 
first get the problem in the proper form. All of the constraints 
must be of the form where all of the terms are less than or equal to 
one, as shown below. 
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MIN S = t ~rR2 * 62 *RH 

S,Ta 1 2 1000 T-l- R-2 H-l 
lt 

Once in this form, 
so, then set up 

ensure that the Degree of Difficulty is zero. If 
the delta matrix, solve for the deltas 

optimal solution through Rule 1, and find the values 
determine the 

using Rule 3 and/or Rule 4. 
f&r R and H 

MIIJ $ = $frR2 + 82frR~ 

S,T, 1 I 1000 Tf R‘2 H-l 
fr 

R: 25 + 62-2a3=o 

5 = l/3 $2 = 213 !!3 = 213 

t$= (31n"3(3rr)2'3(1000)2'3 = 3fflOO $942 = 

VII. For Simultaneous Equation Problems: The next example will 
illustrate how to solve for two variables in two non-linear 
equations. We will use the method created by Bakers, 
that all of the coefficients will be positive 

which ensures 

Allen4 allows for negative coefficients and iometimes 
The method created by . 

different, though equally valid solutio; point. 
finds a 

The two methods work : 
well together, 
the other has no problem at all.;? 

so that problems in which one has difficulty solving, 

The problem is stated as: 

Xl2 + x1xz3 - 9 

2 3 
3x1 x2 - x2 - 4 

which is placed in proper format by solving for the right hand side 
to be equal to one. 

3x1* x* 
q+xJ -I 2 
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The calculations are provided in Appendix A. In summary, one first 
performs the operation known as "Condensing" on the two equations, 
and seperately on the numerator and denominator if the equation is a 
ratio. To condense, one simply chooses a value for each of the two 
variables (guess a solution) and determine how much each of the 
variables contribute to each equation at these chosen values. These 
are used as weights in order to solve for the variables. These new 
values for the variables are then substituted back into the original 
equations, and new weights are determined. These weights, in turn, 
are used to solve for new values for the variables and the pattern 
keeps repeating until the change from one iteration to the next is as 

.small as desired. 
The advantage is that the original guess by the user does not 

have to be accurate at all. One can choose a value of 1000 for the 
first variable, and in one iteration, the value is of the order of 
magnitude (one) of the optimal solution. One solution to this 
problem is: 

x1 a 2.33636 

x2 = 1.75424 

VIII. A Final Example: As a final example, we would like to 
present a problem presented to US by an analyst at the Concepts 
Analysis Agency. The problem was to create an allocation scheme by 
which aircraft could be allocated to either near or far targets to 
best reduce the enemy's capabilities. The key restriction was that 
whatever scheme was used should be flexible enough to adapt to 
anyone's rational idea of how they would perform the allocation 
scheme. This was necessary since not only would analysts differ as 
to which scheme should be used, but also the commanders who were 
being modelled would also be likely to differ in their allocation 
schemes. Therefore, a truly flexible scheme was required. 

The following formulation was proposed. 
force near to friendly forces, 

Let K1 be the enemy 

away. 
and let K2 represent the forces farther 

both. 
The second number could be discounted over time or distance or 
Let Nl represent the number of aircraft allocated to near 

targets, 
targets. 

and N2 represent tSe number of aircraft allocated to far 
The sum of the aircraft must be less than or equal to the 

total number of aircraft available, N. The objective is to minimize 
the total amount of (discounted) force facing the friendly forces, 
and this is represented by decreasing the enemy force by the number 
of aircraft allocated to some power -a. We assume for a moment that 
enemy air defense threat is the same, that a is the same for both 
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near and far targets, and no aircraft need be held in reserve. 
The formulation and solution are given below: 

MIN -L-l! 
KINl .+ -cx 

KZN2 

S.T, N1 + N2 
5 N 

3 . 

LET i! = 1 +a 

N1* = N 
l+kl 

Nf =.NB 
l+B 

Notice that since there are four terms and only two variables, 
this is a one Degree of Difficulty problem. 
logarithms and derivatives need to be taken. 

As mentioned previously, 

go into the gory detail here. 
Once again, we will not 

The important point is to examine the 
sensitivity of the solution and its formulation. 
This results in the standard "weighted" 

Let alpha equal 0. 
allocation scheme where the 

portion allocated to each target is same as the proportion of each 
target to the total threat. 

If we were to let alpha equal 1, we would have a "modified" 
weighting scheme, where the portion allocated to each target is a 
function of the magnitude of each threat. Similarly for higher 
values of alpha. If, instead, we were to l&t alpha equal -1, then 
all aircraft would be allocated to whichever threat was larger. This . 
is consistent with the fact that when alpha equals -1, the original 
problem is linear. The solution to a linear problem with two 
variables is always to find the "corner" solution point* that is, to 
allocate everything to the varaible with the highest pa$off. 

Finally, if we were to let alpha equal infinity, then half of 
the aircraft would go to the near target, and half to the far target 
no matter what the values of the coefficients. These four results ' 
are summarized below. 

IF (I( = dj ti1 = N K1 , "2 = ij K2 
K1 + ~2 K1 + 9 
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I$ = IL iJ1 = 0 IF K1 > K2 

The advantage to the above allocation scheme is that it is 
flexible enough to contain all of the "standard" allocation schemes 
used--a weighted scheme, all or nothing, or half and half. 
Furthermore, by having solved for the general solution, one can 
calculate the optimal allocation given alpha without having to 
re-derive the problem each time alpha is changed. This also allows 
alpha to change value during the operation of the simulation without 
large blocks of code being required for each scheme. 

IX. Conclusions: "If the world were linear, Dantzig would be 
king." This quote is based upon the fact that Dantzig was chosen to 
compile what was known about Linear Programming into the classic book 
on the subject. Solutions to linear problems are relatively easy to 
obtain with numerous packages available. However, the world is not 
linear, and a large portion of the problems in this world do not fit 
well into linear programs. One can theoretically always turn a 
non-linear problem into a very, 
but this is awkward. 

very large piecewise linear problem, 
There exist a number of non-linear packages 

which occupy large sections of core when running, and sometimes run 
forever. 

Geometric Programming provides a nice alternative to solving 
non-linear problems, especially ones which include a managable number 
of variables (say less than twenty) and whose exponents are not all 
integers. Larger problems are, of course, solvable by Geometric 
Programming, but one should then examine the GP computer packages 
available, or consider writing a program to solve that unique 
problem. 
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APPENDIX A: SAMPLE SOLUTION TO A SIMULTANEOUS 

NON-LINEAR EQUATION PROBLEM 

The problem as given stated: 

x1 
2 + x1x23 = 9 

2 3 3x1 x2 - x2 = 4 

The condensed formulation of the problem is obtained as 

follows: 

$ Xl2 + $ x1x23 = 1 

3X12 x2 

4 f x23 
= 1 

. . 

So kondensing yields: 

*1 
2 

wll 
3 

($1 (- - 
wll) 

xlx2 %2 
(w12) =1 

2 
3x1 x2 = 1. 

(4) w21 x2J w22 
w21 (i$ 
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Taking logs and setting up the matrix form o'f the system 

gives: 

[ 

(2Wll * W& (3W12) en (Xl)- 
(2) I[ 1 

= 
u-3w22) -37 IX,) 

-Ln A1 
1 

-- 
g wl1 

)wll (1 
%2' 

w12) 

1 
1 w21 w21 -en (3(-+ 

lW22) 
w22) 

1 

Using a starting point of X 
1 = 5ot x2 = 20, and letting 

5 = ($1 +-) 
I.1 

1 -  wll -. w 
(&I l2 

IL 

(w22) 
w22 

and 

K2 
= 3(w21 w21 

4) 

results in: 

Xl2 * 

wll = x12 3 = 2500 
+ xlx2 2500 + 400000 

= 0.00621 

x1x2 
3 

w12 = 
400000 

Xl2 + xlx2 
3 = 2500 + 400000 

= 0.99379 

w21 = 
4 3 

+4x 4 = 
4 + 8000 

2 

= 0.00050 
r .  

, . .  
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3 
w22 = .x2 8000 

4 f x23 
3 

4 f 8000 

= 0.99950 

K1 
1 1 

= (g) (0.00621) o-oo621 - 1 
(0.99379) 

0.99379 

= 0.11538 

K2 
= (3)(o.04005)O-OO05 ggg5)o-gm ((j . 

= 2.98505 

Solving the system.[2.31] for in(X1) and ln(X2) yields: 

ln (Xl) = 0.26179 

J.n (X2) = 0.68014 

so 

xl = 1.29925 

x2 = 1.97415. 

The process is then repeated by calculating new weights 

and continuing as before. A summary of the iterations-is 

provided below: 

Iteration xl x2 

0 50.0000 20.0000 

1 1.2992 1.9742 

2 1.3304 1,7635 

3 1.3363 1.7543 

4 1.3363 1.7542 
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ABSTRACT 

Dr. Nazir Warsi, in recent work, showed how to solve certain 
dynamic programming problems while keeping strict bounds on the 
amount of working storage needed. We discuss extensions of Dr. 
Warsi's methods and analysis to more general dynamic programming 
networks. We describe a general algorithm for solving problems in 
this more general class. This algorithm may be applied in such a 
way as to limit working storage arrays to any dimensions greater 
than or equal to 2. In making this restriction, there are two 
costs: a number of arrays of dimension 2 may need to be stored 
simultaneously; searches for maxima can become arbitrarily 
complex with the complexity:of the network. 

We discuss the implementation of the general algorithm in a 
higher level language with particular emphasis on storage management. 
We also discuss data representations and the practicality of imple- 
menting a system for handling general networks. 

The storage and computational requirements of dynamic programm- 
ing algorithms have limited their practical uses. The storage and 
computational demands can become excessive whenever the state vec- 
tors are of dimension 3 or more, or if the number of states grow 
exponentially. The purpose of the research described in this paper 
is to implement dynamic programming solutions for certain basic 
kinds of networks in a manner that will keep the working storage 
needs to a minimum with a possible trade-off in increased computing 
time. 

The types of networks considered in this study are converging 
branch, diverging branch, feed-forward loop, and feed-back loop. 
In this note, we will present the implementation and analysis of 
alsorithms for the feed-forward loop system. For further informa- 
tion, refer to the reports of Warsi and Esogbue in the references. 
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Feedforward Loop System Diagralli 

Xm’ 

-. . . -  l .  l 
“ t  
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n Xn-l J 'j-1 xS xS-l x1 xo 

Each node in a dynamic programming network represents a deci- 
sion point. The decision is a finite valued variahle, values 
taken to be integers 1 . . pi for node i. Edges connecting nodes 
are directed indicating a flow from one node to another. The 
edges may carry one o-f a finite number of state values, taken to 
he integers from 1 . . ki for edge i, For each node, functions 
are def-ined determining the output states (on edges leaving the 
node) and a ryturn (a numeric value). The function values depend 
on itlput states and on the decisiorl value for that node. The 
solutiorl of a ne.twork consists of a choice of input state for each 
edge with external source and a choice of decision for each node. 
Further, these choices will maximize the sum of the returns for 
all nodes in the network over all possible such choices. 

The output state functions and the return functions, can he 
representud by matrices, or higher dimension analogues. 'lie will 
II S f? ri to denote the return function (array) for node i and li or 
t'i to dcnotr_l the ouI.put functions (array) for node i. Note that 
t' will only be defined for nodes with two output edges. 

The strategy for solving a network is to itera-tive\,y combine 
return. functions for nodf2s into functions r,epreseritillg the totdl 

return possible from groups of nodes. The value of such a co~~lbi~'~ud 
returrl function wi.11 depend only 011 state values of edges that 
enter the rqresented group of nodes From outside I:he yroup or that 
leave the represented group. In par-Ccular, the value wil 1 not 
dt!pend on state values or1 edges between rlodt!s within lhe yroup. 

For the feed-forward loop rletwork, a starting furlction ,is 
computed which represents the maximal return from node 1 given the 
input xl. This function is combined with re.turns from nodes back 
to node s -.l. During all of this, 
by a one-~.liInerlsio~lal drray. 

the function can he represented 
Ilpon combini IILJ with the return from 

node s, the function. depends on two arguments (xs-1 and xrl].), and 
is represented by a two-dimensional array. Returns from nodes 011 
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the parallel portions of the network are then combined until node j 
is one-dimensional array. Further iterations produces a function 
representing the group of all nodes in the network, return depending 
on xn. Maximizing over xn produces the network maximal return. 

Analysis of the work done to this point shows that the working 
storage needed is simply the representation of the current combined 
function. If k is the maximal number of states on any edge, this 
amount is proportional to k2, since a two-dimensional array was 
needed. However, even though the maximal total return from the 
network is known, and the free input xn is known, the decisions 
necessary at each node are not. Approaches to determining these 
decisions fall on a spectrum between these two extremes: store for 
each node, as its return is entered into the combined function, the 
functional dependance of the decision made on the input states to 
the group; repeat the optimization computation above retaining 
functional information about the decision in only the last node pro- 
cessed. The latter approach works since the optimization computa- 
tion is carried out for one less node at each stage. The former 
approach requires a large amount of storage, depending on the number 
of nodes in the network, among other variables. The latter approach 
requires a large amount of time, but only the workin storage needed 
for the optimization computation (proportional to k 2 >. 

One of us (Warsi, lot. cit.) has developed a variation on the 
recomputation approach that cuts down the number of recomputations 
needed considerably. In this method, optimal decisions are stored 
as functions of the group input states if all such states are on 
edges to the node being entered into the combined function. Extra 
storage is not needed in this case, as the ti (or ti') matrix can 
be used by marking appropriate entries. For example, if there is 
one input edge and one output edge, and the combined function being 
computed depends only on the state value on the input edge, then 
the marking method is as follows. For each input state, mark that 
entry in the corresponding state row of ti that is in the column of 
the optimal decision for that input state. Since the entries in 
the t matrix are no larger than k (the maximal value of any state), 
this marking can be done by adding k to the entry. Doing this, the 
recomputations can be cut down to four, regardless of the number 
of nodes in the network. Similar savings in time and space are 
achieved for the other network types by using this method of saving 
decisions with limited recomputation. 

The most interesting problems that arise in actually implement- 
ing the algorithms developed for the non-serial networks is the 
representing of the arrays in storage. We wished to represent the 
network and r and t functions in a uniform way that could be operated 
on whatever the distribution of ki and pi. Although PASCAL, the 
language we chose for implementation, does allow dynamic allocation, 
array sizes must be specified at compile time. (This will vary for 
different versions of PASCAL). We, therefore, chose (influenced by 
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our FORTRAN background) to use one large one-dimensional array to 
store all information in. One extra array is used to point to the 
beginning of the information for each node in the big array. 
Various selector and set functions can then be written to access 
the information. If the algorithms are moved to a different lan- 
guage (ADA, for example), the various arrays could then be allo- 
cated separately, using pointers to link information together. Due 
to the sequential nature of the processing, double links between 
nodes would suffice to move around as needed within the network. 

We have made some investigation of more complex networks. 
Work done by Onukwuli (see reference) had quantified some of the 
problems in the main computation that arise from attempting to keep 
the combined function of low dimension. It also appears that, in 
non-serial networks, that there are certain key points at which 
combined functions can be saved for future reference that will cut 
down on recomputation time. We hope that this will lead to reason- 
ably space efficient methods for solving very complex dynamic 
programminy networks. 

Heferences 

The following two entries are the two parts of the final report for 
Army Research Project DAAG 29-80-G-0010. , 

Esoybur, Augustine D., DYNAMIC I'RDGHAMMlNti ALtiOKITHMS AND ANALYSES 
FOR NONSERIAL NETWORKS. 

Warsi, Nazir, DYNAMIC PROGRAMMING ALGORITHMS AND ANALYSES FOR 
NONSERIAL NETWORKS. 

Onukwuli, Francis, AN INVESTIGATION OF DYNAMIC PROGRAMMING NETWORK 
ANALYSIS OF COMPLEX NONSERIAL SYSTEMS, Thesis, Atlanta 
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MATHEMATICAL ANALYSIS OF THE COUNTEEFIEE DUEL: 
TANKS VS. ANTI-TANK MUNITIONS 

Joseph V. Michalowicz 
Tactical Nuclear Warfare Branch 

Harry Diamond Laboratories, USA EBADCOM 
Adelphi, MD 2Of83 

ABSTRACT. A detailed, analytic model is developed to represent the duel 
betw6en.a ground laser designator (GLD) directing a sequence of laser-guided 
rounds against a platoon of target tanks which counterfire against the GLD. 
The model accurately portrays the complex interplay between the designator-on 
time, the rate of fire of the laser-guided rounds and the tank counterfire 
response time distributions. Also taken into account are the tank aiming 
errors and range estimating techniques, the level of GLD protection, flight 
times, designation modes and degree of coordination of the tank platoon. 

One of the innovations of this model is the utilization of gamma 
distributions to represent tank counterfire response times. This permits the 
representation of the time-to-fire for any nmuber of tank rounds within the 
designator-on time interval by convolution of the gamma density functions. 
Exact expressions which allow for all encounter outcomes are derived for 
computation of the expected number of tanks killed and probability of GLD 
kill. 

This model was used to determine the probabilistic outcomes of the 
encounters at each stage of the force-n-force analysis in the definitive U.S. 
Army study on GLD survivability. 

I. INTRODUCTION. The developent of laser-guided missiles and 
proje&il& has provided a new dimension to the battlefield environment for 
tanks. mom a remote ground or airborne forward observer (FO) position, a 
laser desipator operator illuminates a target tank with a directed laser beam 
(see fig. 1). The laser energy reflected from this spot on the target then 
enables the seeker to guide the missile/projectile to the target tank. If 
able to detect the presence of the laser designation, the tank (and its 
support units) may use various countermeasures (CM), such as taking evasive 
action, using smoke or chaff to disguise the tank's position, generating false 
target images to deceive the missile seeker, ,dazzling the FO with flashlamps, 
and/or directing counterfire against the FO, the missile launching platform, 
or the missile itself. This report presents a rigorous analysis of the Tank 
Counterfire Duel, in which laser-guided missiles are directed against a tank 
or tank platoon via a ground laser designator (GLD), and the tanks detect the 
laser radiation and counter by firing their main guns in an effort to destroy 
the GLD. 

605 



Figure 1. Laser-guided missile versus tank duel. 

606 



The analytic model which will be derived takes into account tank 
counterfire response time distributions, designator-n times, tank-to-GLD 
range, missile/projectile single-shot kill probabilities (SSKP), tank round 
SSKP against the GLD, tank fire control errors, GLD protection, ground slope 
at the GLD, missile and projectile flight times and rates of fire, tank round 
flight times, and degrees of coordination of the tank platoon. Special 
features which make this model unique include the following: 

1. Probability distributions are derived to represent tank times-to- 
fire. m particular, gamma density functions are fit to the times-to- 
first-fire and time-between-fires data. The time-to-n%fire distribution 
is then obtained by convolution of the time-to-first-fire density with n.- 
1 copies of the time-between-fires density. 

2. Any nlaaber of tank fires are allowed during the designator-n 
time interval. 

3. Flight time of the tank round is included. 
4. Various GLD positions and protection levels are considered. 
5. Analytic expressions which incorporate the time-to-fire 

distributions and allow for all encounter outcomes are formulated for 
computation of the eqected number of tanks killed and probability of GLD 
kill. This is not a simulation model! 

6. In addition to the one round versus one tank duel, the encounter 
between three laser-guided rounds versus a platoon of three tanks is 
analyzed, with attention paid to the level of coordination of the tanks. 

The data base used for the model was derived from the totality of U.S. 
Army field experiments on tank counterfire response and GLD kill. Most of 
these data cannot be detailed in this paper due to classification, but the 
form of the data will be discussed. GLU suppression, that is, degradation in 
GLD crew performance due to counterfire neartisses and obscuration, could not 
be included due to a lack of proper experimental data, even though the model 
could be adapted to handle suppression. 

Because of Congressional concern over the survivability of ground laser 
designators on the battlefield, a special task- fores, the Survivability Study 
Task Force for Ground Laser Designators (SSTF), was established to answer the 
survivability question once and for all. The SSTF performed a two-stage 
analysis of the physical survivability of the GLD. First, the model described 
in this paper was used to provide a detailed analysis of the outcomes of 
counterfire duels played under a wide variety of conditions. These duels were 
then placed in a realistic battlefield context as the fixed-piece engagements 
occurring in a force-on-force map exercise pitting one Blue company on the 
defense against a Red tank threat. The resulting battlefield engagement 
assessment' provided a thorough and credible answer to the GLD survivability 
question, which has been cited frequently in Congressional testimony. In 
addition to the duel between one laser-guided raund and one tank (l-on-l) and 
the encounter between three rounds fired in sequence and a platoon of three 
tanks (3-on-3) discussed in this paper, models for other encounter 
combinations were derived2 for use in the SSTF map exercise. 

"!Phomas J./ Gleason, Joseph V. Michalowicz, Morgan G. Smith, and Richard 
Scungio, Final Report.-- Survivability Study Task Force for Ground Laser 
Designators, Harry Diamond Laboratories, HDfrTR-1860 (December 1982). 
2Joseph V. Michalowicz, Analysis of the Laser-Guided Missile/Projectile versus 
Tank Counterfire Duel, Harry Diamond Laboratories, HDIrTR-1854 (May 1978). 

607 



III. PROBLEM VARIABLES. The essence of the encounter situation is best 
understood. fr& th&foll&ing parameters essential to the analysis. 

Desiqnator-tank range. Eor survivability reasons, the operator of 
the laserdosignator would'prefer to operate at as great a distance from the 
tanks as possible, because the greater the range the less effective are the 
tank rounds counterfired against the GLD. However, there is an upper limit on 
this range imposed by the ability to hold the laser spot on the tank, 
particularly when the tank is moving. Also terrain conditions will often 
determine when the on-coming tank can first .be designated. Consequently, a 
number of different designator-to-tank ranges are treated in this study. 

Missile/projectile launch rancre. The flight time of the missile may 
affect th& leng& of. time the.GLD ruust'designate the target, if the target is 
illuminated for the entire missile flight. This is not the case for 
projectiles where laser designation is required only for the terminal part of 
the trajectory. 

Tank response time. The time from laser alarm until the tank fires 
its first-round; then a .setiond round, then a third, etc, is one of the two 
critical time factors in the tank counterfire duel. The longer the tank 
response time, the more survivable the GLD. Time-to-first-fire and time- 
between-fires have been measured in various field tests, and probability 
distributions are fit to these data as the model is developed. 

Designator-on time. The other critical time factor is the length of 
time that'the tar$et‘taiik'is illuminated by the GLD. The tradeoff between 
this time and the tank response time is the essence of the Counterfire Duel, 
for long designator-on tixnes decrease the survivability of the GLD. The 
designator-on time may be reduced by special techniques such as offset 
designation, in which the GLD beams on a nearby object which reflects laser 
energy but does not trigger the tank's laser alarm, then switches to the tank 
in the final critical guidance phase of the weapon trajectory. 

single-shot kill probability (SSKP) for the laser-guided round 
against the tank; This .j&anetei'is.of obvious-~ortance.and va&s from one 
i%&r+ided weapon to another. 

SSKP for tank round against laser desisnator. This parameter depends 
on the type of.t&k iOtih .firia;'.t~ie.tan~-tb-6~..ranse, the hardness of the FO 
pbsition (e.g., in a foxhole, a bunker, or a forward observer vehicle (FOV)), 
and the ground slope at the GLD. The SSKP is also affected,by the fire 
control and resulting aiming errors of the tank gun, which depend on whether 
the tank comes to a stop or fires on the move and whether the tank determines 
range visually or by means of a laser rangefinder. Permanent kill of the GLD 
is accomplished by either destroying the laser designator or disabling both 
the GLD operator and observer; temporary kill indicates either permanent kill 
or disabling only the operator. 

Flight time of tank round. This parameter is determined by the type 
of round fired and the distance from the tank to the GLD. Since this time is 
nonzero, the possibility exists in the l-on-l duel that both the tank and the 
GLD will be killed. 
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Coordination of tank platoon. In the case of multiple missiles fired 
against a tank pl&o&n, the degree to which the tanks in the platoon can alert 
their companion tanks when they are being designated may be a major factor in 
the outcome of the counterfire duel. 

Time between missile fires. The time interval between successive 
laser-guided mi&ile l&n&s must be coordinated with the GLD operator and is 
dependent on the speed with which he can evaluate missile hit or miss and 
switch to the next target. It is expected that two or three missiles may be 
in flight simultaneously against a tank platoon. 

To analyze the missile versus tank duel, the following exchange ratio 
is an appropriate performance measure: 

ER= Expected number of tanks killed 
Probabiliti'of-Gti kill‘by.tank co&&fire l 

(I) 

In the one missile versus one tank duel, this exchange ratio may be simplified 
to 

ER = Probability of tank kill 
Probability of GLD kill by tank count&firo . (2) 

This performance measure provides a cowarative description of the outcome of 
the missile versus tank encounter; large values of ER are favorable to the 
missile/GLD system, small. values favorable to the tank. Note that a direct 
cost-effectiveness comparison would be difficult to formulate in this 
analysis, because the GLD bears-a much greater significance than its actual 
unit cost since it is an essential part of an expensive weapon system. 

IV. TANK RESPONSE TIME DISTRIBDTIONS. Various field tests have been 
conducted over the ye&s to me&u& t& rapidity with which a tank crew can 
recognize and fire upon a target which suddenly threatens the tank. 
Representative of the data chosen to portray these tank counterfire response 
times are the histograms in Figure 2, vhich depicts times for the tank to fire 
its first round (left-hand histogram) and times between fires (right-hand 
histogram). 

First-Round Histogram 
w De0 PaIna Mom - 1x4 3 

Std. Dew. = 8.1 a 

‘7 
Between Rounds Histogram 

TlME.TO-FIRST FIRE Irl 
-. - 

Figure 2. Typical Tank Response Time Data 
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In the past, log normal distributions were selected to fit such tank 
response time data. However, since the objective is to develop a tank 
counterfire model which is as realistic as possible, the tank must be 
permitted any number of counterfires during the designator-n period. That 
is, the number of rounds the tank can fire at the GLD will be limited only by 
the time in which the tank has to fire , and not by any arbitrary limit imposed 
to simplify the derivation of the relevant mathematical fonrmlas. We shall 
see that this flexibility is not in consonance with the use of lognormal fits 
to the histograms. 

We introduce the notation 

% = time to nth tank fire, 
At = time between tank fires. 

Suppose a suitable probability density function f(t,) has been fit to the 
time-to-first-fire histogram and a density function g(At) to the time-between- 
fires histogram. Under the assumption that the time-from-first-fire-to- 
second-fire distribution also represents that between any two successive 
fires, the time to the (k+l)st fire, for any k 2 1, may be written 

tk+, = t, + At + . . . + At 
L J 

v 
k independent choices of At 

Since addition of random variables corresponds to convolution of their 
probability density functions , the density function for tk+, is then given by 
the k-fold convolution 

f(tk+l) = f(t,) * g(At) * l l l l g(At) 
b Y 

k times 

(3) 

Each of these convolutions requires an integration, and so the problem appears 
to become computationally complicated beyond about 4 shots. The situation 
woul.d be tractable if the distribution of At were reproductive (a distribution 
is defined to be reproductive if the sum of independent random variables each 
with such a distribution is a random variable which again has such a 
distribution). The normal distribution is a well-known reproductive 
distribution; however, this distribution does not have the proper shape to fit 
typical tank response-time histograms. 

Finding a reproductive distribution to fit the time-between-fires 
histogram is crucial to the development of the present model; suitable 
candidate distributions are examined in table 1. The moment-generating 
functions are listed because the usual proof of reproductivity proceeds by 
showing that the moment-generating function for the sum of two independent 
random variables with the same type of distribution, which is the product of 
their two moment-generating functions, again corresponds to a distribution of 
that same type. In fact it turns out that the gamma, lognormal, and Rayleigh 
distributions all fit time-between-fires data reasonably well, but the 

610 



42 
2 m 
,o 
2 

f-i-- 

P s 

-. 

--- -....- ,. .-. _ ._- .----..- ,-----,- -..-., --,_-_ 

+7 6 

611 



lognormal and myleigh distributiono are not reproductive. The gamma 
distribution is not in general reproductive, but this distribution is 
reproductive in the special case of repeated addition of a random variable to 
itself. And this is exactly the case here, where various values of At are 
summed. 

Gamma distributions, fit to the tank response time data, then enable us to 
determine the density functions for tk+,, for k 2 1, with a single 
convolution. 

With the notation 

s(At) = fA ,(At) I 

to denote the density functions of such gamma distributions, we can express 
the density functions for tk+, as 

f(tk+l) = f(tl) l g(At) * . . . * g(At) 
c f 

ktimes 

= f+l(tl) l fX,kr)(kAt) 

because of the partial reproductivity of the gamma distribution. Therefore, 
we have the for&la 

f(tk+l 

for each k 2 I. 

1 = ,:,l fAl,Tll (tl)fh,ki+k+l - tl)dt 1 (4) 

The parameters X and rl of the gamma distribution fits to the respqnse time 
histograms are obtained by equating n/X to the test data mean and ri/'A to the 
test data variance. In this way the following gamma distribution fits are 
derived: 

(1) time-to-first-fire 

x1 = 0.269 

5 
= 5.262 

f(t,) = (2.783 x 1O-5) t4'?62e~(-&269t 
1 1 

) 

This fit passes the chi-square test, since a value of 

X2 = 4.33 
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is calculated with 3 degrees of freedom , which compares favorably with the 
critical value at the S-percent level (type I error) 

x,’ - 7.815 

(21 time-between-fires 

h = 0.3273 

?I = 5.204 

g(At1 = (9.123 x 10*5)At4'204exp(-0.3273At) 

This fit also passes the chf-square test , at least at the l-percent level. 

These gamma distribution fits are shown in figures 3 and 4. 

DATA WINTS - 64 
MEAN - 19.3 

ST0 OEV - a.1 
GAMMA DISTRIBUTION FIT 

Figure 3. 
TIME TO FIRST FIRE (s) 

Gamma distribution fit to first-round histogram. 
OATA POINTS - 72 

MEAN - 15.90 
STD OEV - 6.97 

GAMMA DISTRIBUTION FIT 

Figure 4. 

~. 
15 20 25 3lj 35 40 45 50 

TIME BETWEEN FIRES(s) 

Gamma distribution fit to between-rounds histogram. 
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Substitution of the gamma distribution parameters into equation (4) then 
gives the formulas for the time-to-n ?-fire probability densities: 

f(t,) = (2.783 x 10 -5 )t:*262 exp(-0.269t,) (5) 

f(tk+l) = (2.783 x 10-5)(0.00299)ke~(~O~3273tk+~) l 

I 
tk+l 4 262(tk+l' 

5. 

- t,)5,204k-1 
'r(5.mkI'.. ee(O.O583t,) dt, 

0 

for kl_l . 

Graphs of some of these time-to-nth-fire probability density functions are 
presented in figures 5 through 9. 

TIME to FIRST-FIRE. t, (6) 

Figure 5. Probability density 
for time-to-first-fire 

TIME.te2nd-FIRE, t, (8) 

Figure 6. Probability density 
for time-to-second-fire 

TIME-tMrd.FIRE. I, (3) 

(6) 

,. __. 
Figure 7, Probability 

density for time-to-third- 
fire 
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Figure 8. Probability 
density for time-to- 
fourth-fire 

Figure 4. Prob&i.li. ty 
density for time-to-fifth- 
fire 

v. TANK COUNTERFIRE MODELS. With the tank response time distributions 
derived in'the previous section, analytic models can now be developed for the 
l-on-l duel and the 3-n-3 encounter. Formulas will be given expressing the 
probability of GLD destruction and the expected number of tanks killed in each 
encounter. Any number of tank counterfires may occur during the designator-on 
time and the flight time of the tank round is explicitly considered. 
Coordination of counterfire from the tank platoon is also treated. 

Several ground rules are established in developing the model, although 
different assumptions could be readily incorporated. Line-of-sight between 
the GLD and the tank is maintained throughout the duel encounter1 this is not 
unrealistic, especially when the tank or tanks stop to fire. If the tank 
laser alarm system is operating properly, it is assumed to detect the 
existence of the laser spot as soon as the tank is illuminated (if there were 
a known lag time, it would be subtracted from the designator-on time). Once 
the laser alann sounds, the tank crew is assumed to devote full attention to 
defeating the GLD rather than pursuing its original mission. If the tank 
destroys the GLD, the laser-guided round is rendered harmless to the tank. 
Suppression is not played, so tank rounds which miss the GLDdo not disturb 
the GLD operator's illumination of the tank target and hence do not disrupt 
the operation of the laser-guided weapon system. Tanks may fire either at a 
stop or on the move, and they may adjust their aim between rounds; these 
possibilities can be handled by using the appropriate SSKP data. The 
assumption that the tanks fire at the GLD only durinq the designator-on time 
serves as the end-of-game criterion. 
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One-on-One Duel. The duel between a single laser-guided missile 
directed against' an .individual tank by a GLD, with that tank counterfiring 
against the GLD, will be treated first. The following notation will be needed 
to express the resulting probability formulas. 

T, = 

T2 = 
PD = 

%K = 
*= = n 

= 
Pi = 

= 

probability that the tank fires the nth round in 
T, seconds 
Prob (tn& T,) 
probability that the tank fires the nth round in 
Tl - Tp seconds 
Prob (tn 5 T, - T2) 

Since the tank round is unguided after fire, both the tank and the GLD could 

designator-on time = time from laser alarm 
to missile hit. 
flight time of tank-fired round 
probability that the tank detects the laser 
designation and fires at the GLD 
SSKP by laser-guided missile 
SSKP by tank round 

be destroyed if the tank fires a round at the GLD less than Tq seconds before 
missile hit. 
drawn. 

It is for this reason that the distinction between P, and Pi is 

The formulas which govern the l-on-l duel may be written as follows: 

P = kob (.tank killed by missiile) 

= PTK[ - PDPi + PD c 
n=l 

(‘i - ‘:+I) (’ - pGK)“] 

Q = Prob (GLD killed by tank) 

(D 

= pDp, c P,(l - P&-l 
n=l 

(8) 

(9) 
P 

ER = c 

Formula (7) for tank kill is derived by expressing the event that the tank is 
killed by the laser-guided missile as a sum of disjoint events, where the nth 
term in the summation corresponds to the event in which the tank has fired 
exactly n rounds before being destroyed by the missile but all miss. 
Likewise, formula kg) for GLD kill is constructed from a sum of disjoint 
events, with the n term in the summation representing the event in which the 
tank fires n rounds before missile hit and the th n round is the one that 
destroys the GLD. The exchange ratio ER is then given by the quotient of 
these two probabilities. 
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Three Missiles versus Tank Platoon. Derivation of the probability 
formulas -is .co&id&&iy m&e~&mpi&for the counterfire scenario of three 
laser-guided missiles rapid-fired under the control of one GLD against a 
platoon of three tanks. In this case the GLD switches to another tank upon 
tank kill and two or three missiles may be in the air at one time in an attack 
sequence. An important factor in the analysis of this scenario is the degree 
to which the tanks can alert their companion tanks to the presence of the 
laser designator. Two cases will be considered: an uncoordinated platoon, 
and a perfectly coordinated platoon. The following notation, which extends 
that used for the one-on-one duel, will be needed in developing the formulas 
(T denotes a time variable): 

PJT) = probability of nth tank fire in T seconds 

Pi(T) = probability of nth tank fire in T - T2 seconds 

P*(T) = probability that all tank rounds fired in T - T2 
seconds miss 

CD 
= 1 - POP*(T) + PD c 

1 n=l ( P;(T) - P&l(T))(l - PGK)II 

P(T) = probability that all 
miss 
l- PDPl (T) + PD ? 

n=l 

tank rounds fired in T seconds 

= ( P,(T) - Pn+l(T)) (1 - PGK)II 

Q(T) = probability that the 
in T seconds 

m 

tank fires a GLD -killing round 

= 

Q*(T) = 

PP c ( n-1 
D GK n=l 

P,(T) 1 - PGK) 

probability that the tank fires a GLD-killing round 
in T - T2 seconds 

= 'DPGK n=l n 2 P*(T) (1 - P&II-l 

Tg = length of time that GLD illuminates companion tanks 

T4 = time between missile arrivals 

T5 = co-anion tank reaction time delay. 
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p(i) = probability that i tanks are killed 

Q = probability that CZD is killed 

Q(i) = probability that GLD is killed and i tanks are 
killed 

It should be clear that 

p(i) _ Q(i) = probability that GLD survives and i tanks are 
killed, 

and that if there are m target tanks (e.g., m = 3 for a tank platoon), 
then 

m 
&(i)=i , 

i=O 

i=o 

m 
E = expected number of tanks killed = c iP(i) . 

i=O 

T, will now be interpreted as the time from laser alarm of the first tank 
designated to the arrival of the first missile, to be consistent with the 
usage of the one-on-one duel. It is easily shown that for any value of T 

P(T) + Q(T) = 1 

P*(T) + Q*(T) = 1 . 

The convention is adopted that P*(T) = 1 and Q*(T) = 0 when T < T2. 

Uncoordinated Tank Platoon. First, suppose the designated tanks do 
not, or arC .unable. to, aie&.obmpanion tanks in the platoon to the presence of 
the GLD. In this case, the tanks counterfire only upon being designated 
themselves, so the logical GLD strategy is to beam on a tank until it is 
killed, then switch to the next tank and designate it for T3 seconds before 
the impact of the next missile. The time, T4, between missile fires has to 
allow for this switching time. If a missile misses its intended target, the 
GLD still maintains its designation of the target tank instead of switching to 
another tank at this point, because switching would incur counterfire from 
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another tank in addition to the continued counterfire from the tank originally 
designated. The game ends tihen the last missil.e reaches its target; the GLD 
switches off and no further tank rounds are fired (however, the effect of a 
tank round already in flight is included). 

The equations governing this situation are presented in figure 10. The 
assumption is made that the time between missile arrivals is greater than the 
flight time of the tank rounds that is 

This assumption is valid in most tank counterfire cases. Modifications have 
to be made to the formulas if this inequality is reversed; such formulas are 
included in another report3. 

p(3) 3 Prob (3 tanks killed) 

= ~(l,)p(T+p*(T~)p:K 

p(2) = Prob (exactly 2 tanks killed) 

= P(T,) ([I - Q*(T3)] + p(T3) [l -. p*(T~)PTK])p:K 

+ P(T,)p*(T3 + T4)(l - ‘TK)p:K 

+ P(T, + T4)p*(T3)(’ - ‘TKIP;K 

p(l) = prob (exactly one tank killed) 

- C Q(T,) * Q*(T,)]pTK 
p + p(T,)(Q*(T+ + [Q*(T3 + T4) * Q*(T#’ - TK ) + P+(T3 + T4) (1 - PTK)2)PTK 

+ 
[ 
Q(T, +Tq) - Q*tT, + T4)] (I - ‘TK) ‘TK 

+ P(T, + T4) p - P*(Tj)pTK](’ - ‘TK)‘TK 

+ p*(T, + 2T,,) (1 - ‘TKJ2’TK 

Figure 10. Fonnulast Three missiles versus uncoordinated tank platoon. 

'Joseph'V. Michalowicz, Analysis of the Laser-Guided Maverick versus Tank 
Counterfire Duel, Harry Diamond-Laboratories, HDL-TR-1909 (June 1980). 
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p(O) s prob (no tanks ki Iled) 

= Q*tl,) 

+ 
C Q”(T, + Tit) - Q*(T,)](l - PTK) 

+ 
[ 

Q*(T, + 2T4) - Q*(T, + T4)](l - pTKj2 

+ P*(T, f 2T4) (1 - pTKj3 

Q = Prob (GLD ki 1 led) 

=I P(T,)P(T3)Q(T3)P$ 

+ P(T+(Q(T3) [ + Q(T3 + Tq) - Q(T3)] (1 - ‘TK) ‘TK 

+ P(T, + T4)Q(T3)(1 - PTK)PTK 

+ Q(T,) + [Q(T, +T4) - Q(T,)] (1 - pTK) + C QtTl + 2T4) - Q(T, + T4) 1 (’ - ‘TK)’ 

Qc3) = P(T~)PTKP(T~)PTKIQ(T~) - Q*(T~)]PTK 

Q(2) rn P[T~)P@(T~)PTK 
(  

Q*(Tj) + (1 -  PT~)[e(=3) -  e’(=3)]) + p(TI)PT~PTK[Q(T3) -  Q,*cT3)] 

+ P(TI]PTK(~ -  PTK]PTK[Q(T~ + T4) -  Q’(T3 l T+)J 

+ [l -  PTK)P(T~ + T~)P.&TK/Q(=~) -  Q’(=J)) 

$1) -  pTK 
(  

[Q(T~) -  Q*[T~)J + P[Tl)Q*['3) + p[Tl)(l -  PTK)/Q'(T~ + ‘b) -  Q’(T3)J 

+ +I)(? -  @[Q(=J + Tr) -  Q'(T3 + WJ) 

+ (I - pTK)pTK [Q(TI + ~4) - Q*(TI + Tr)J + P(TI + hjQ'(T3) 

+ P(=I + Tr)(’ - P~~)[e(T3) - Q*(T3)]) 

c (I - P~~]‘P~~[Q(TI + Z=rJ - P*(=l + =‘jj 

p(O) = Q*(Tl) + (1 - PTK)~Q'(T~ + T+) - Q*(=lJj l 

+ [ I  -  P~J~~Q(TI + m+J -  P”(=l + 2T4)j 

(, - pTK)‘[Q*(T1 + ZTc) - Q+(Tl + =4 11 

E = Expected number of tanks killed 

= 3p(i1 + 2p(2) + P(l) 

Exchange ratio = i 

Figure 10. Formulas: Three missiles versus uncoordinated tank platoon (cont’d), 

620 



Each of the fomlas in Figure 10 is derived from a a sum of disjoint 
events as for the l-on-1 duel, but it is clear that the complexity of the 
fonrmlas has greatly increased in the multiple missile/multiple tanks case. 
we choose one example 

Now P('f 
say the formula for P(l), to show how these equations 

are derived. is the probability that exactly one tank is killed; the 
disjoint events and their corresponding probabilities, which add up to give 
the fonrmla for P(l), are shown in Figure 11. 

Event - Probability 

1st missile kills 1st tank but an in-flight 
round from the 1st tank kills the GLD. 

1st missile kills 1st tank and either the GLD 
is killed by 2nd tank before 2nd missile 
arrives or before the 3rd missile if the 
2nd missile misses, or both the 2nd 
and 3rd missiles miss. 

P(T,)P~(Q*(T~) + 

(l-Pm) [Q*(T3+Tg)<*(T3)l 

+ P*(T3+Tq) (1-P,)2) 

1st missile misses but 2nd missile kills 
1 st tank and an in-flight round from 
the 1st tank kills the GLD. 

(l-PTKIPTKIQ(T,*Tq) - Q*(T,+T4)1 

1st missile misses but 2nd missile kills 
1st tank and either 2nd tank counterfire 
kills the GLD or the 3rd missile misses. 

1st and 2nd missiles miss but the 3rd 
missile kills the ist tank 

* 
p (T,+2T4)(1'PTK)2PT~ 

Figure 11. Disjoint events used to derive fomla for P (1) 
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Coordinated Tank Platoon. Cn the other hand, suppose that the tank 
platoon is c&rdinat&d &the sense that upon laser alarm the designated tank 
alerts its companion tanks and they begin counterffre as well, after a time 
delay, T5, required either to receive the information from the designated tank 
or to observe its reaction to recognition of the laser illumination (e.g., 
stopping, slewing of the turret). Since in practice T, > T5, all tanks will 
have begun counterfiring at the GLD before the arrival of the first missile. 
The CLD is assumed to use the same designation strategy as in the case of the 
uncoordinated tank platoon, since it is of no benefit to switch targets until 
the kill is observed. The accuracy, and hence the SSKP, of the companion tank 
rounds will be asslrmed to be the same as the designated tank. 

In figure 12 the equations are presented for this case; derivations are 
again based on sums of disjoint events. 
in effect for these formulas: 

The assmption that Tq 1 T2 remains 

P(3) = prob (3 tanks ki Iled) 

= P(T,)P(T, + T4 - T$P*(T, + 2T4 - Ts)P:~ 

P(~) f prob (exactly 2 tanks killed) 

= P(T,) [Q(T, + T4 - Ts) - Q*(Tl +T4 - T+]P:v(T, -* T4 - T5)ptK 

-t P(T,)P(T, + T4 - T+[Q*(T, + 2T4 - T5) - Q*(T, + f4 - T5)] p& 

+ P(T,)P(T, + T4 - T5)p*(Tl + 2T4 - T5) p2,,(1 - ‘TK) 

+ P(T,) 
[ 
W(T, + 2T4 - T5)]2p&(l - ‘TK) 

+ p(T, + T4)[P*(T, + 2:T4 - T5)12(l - ‘TK)‘+K 

p(l) = prob (exactly one tank killed) 

= Q(T,) 
E 

- Q”(T,)] [p*(T, - T;)12pTK 

+ P(T,)([P*(T, - T5)12 - [p'tT, + '4 - T$] 2)PTK 

+ p(T,)(~+(T, + T4 - T5)12 - p*(T, + 2T4 - Tg) I) 2 PT,((’ - ‘T& 

+ P(T, + T4)p*(f, + 2T4 - 

+ pa(T, + 2T4)[P*(T, + 2f4 - T5)12(l - ‘TK)~‘TK 

Figure 12. FornnAas: three missiles versus coordinated tank platoon. 
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p(o) ?a 

3 

+ 

+ 

+ 

Prob (no tanks killed) 

- P*(f,) fP*(T, - fs’] 2 

1 [I 
P*(T,) P*(T, - T# - P*(T, + T$[p*(f, + T4 - T5)]2)(’ - ‘TK) 

( 
p*(T, + T4) [P*(T, + T4 - TS)] 2 - P*(T, + 2Tq) [pI(T, + 2T4 - T#)(l - PTKJ2 

P*(T, * 2Tq) [P*(T, + 2Tq - T5)12(l - pTK13 

Q . Prob (GLD killed) 

- I - Prob (GLD nOi kllled) 

-I- 
( 

P(T,)P(T, + T4 -- T~)P(T, l 2T4 - T+p& 

+ P(t,) [p(T, + 2T4 - f5fj2PTK(I - ‘TK) 

+ P(T, + T#(T, + 2T4 - T5)]2(l - PT&PTK 

+ P(T, + 2T4)[P(T, + 2T4 - T5S]‘(l - ‘TKj2) 

p(3) . P(T~)P~P(T~ + rr - Ts)P~~Q(TL l 2r1. - TsJ - Q-(=1 + 2T* - T5JjP~ 

~12) = P(TI)P~P, (lQ(Tl + T,, - T5) - Q*(Tl + Ti, - =$)J”(Tl + =S - =5) 

+ P(Tl + Ta, - 's)[Q*(Tl + 2% - Ts) - Q-(=1 + Ts - TsjJ 

+ P(TI + T,, - Ts)(’ * +](Q(=L **fir - TsJ - Q’(*l + n* - Tsjl 
) 

+ P(TI )Pm( 1 - pmjpnt (l~‘(q l 2~r - Ts)J’ - :P(TI l 2% - =#) 

+ (’ -  P,&P(Tl l Tr)P+m 
(  

[p*(Tl +-fir’- Ts)]’ -  [P(‘l + 2Tu - Ts)J’) 

Q(l) m + [[Q(Tl) -  Q'[Tl)J[P'(Tl -  ‘5)1’ + P(=I] ([P-[Tl -  TsJJ’ -  [P’:Tl l Tb -  Wj’) 

+ ~(TI)(’ -  pm] 

( 
[P*(Tl + T+ -  T5)j2 -  [P’(TI + 2=c - TS)j’) 

+ P(Tl)(l - Pm)’ 
( 

[P’(Tl + 2Tr - ‘s)J’ - [p(“1 l m* - -) I”)] 

+ (1 - P~JP, [(Q(TI + TL,) - Q*(TI * TwJJ(P’(T1 + TQ * Ts]J’ 

+ P(Tl + TI,) 
( 

[P-(=1 + Ti, - Ts)]’ - [P’(=L l 2Tr - TsJj2 
) 

l P(Ti + =a.)[' - pm) ((P-(=1 l nu * Ts)12 - iP(T1 l mb - 
-1 JZ)] 

+ (1 _ pw)2pm 
(  

p*(Tl + ZT*)(P*(TI + 2Tr -  TsJJ’ -  P(=I l 2+-j[P(Tl + m* -  Tsi12 
> 

Q(O) - 1 - P”[TI)[P’(T~ - =5,j2 + (1 - pnr, (P'[TI)LP*[T~ - Tg)jz - p*(Ti + T+)[~($I + Tr * T5Jj2) 

+ (1 
_ pm)2 (p.[T, + TcJ[P’[T’ + Tr - =s)j2 - P=(rl + nr)lP*(T1 + tit, - Ts)]‘) 

l (1  
_ pT1o3 @.[pl + fir)[P-[T1 l m, -  %)J2 -  P(=l + ab)lP(T1 + *’ -  TS)l”) 

E 1 Expected number of tanks killed 

1 jp(3) + 2p(2) + p(l) 

Exchange ratio = 5 

Figure 12. Formulas: three missi,les versus coordinated rank Platoon*(cant’d) 
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The model has been developed thus far under the assumption that the tank 
round SSKP, PGK, remains constant for each fire. Dowever, the tanker may be 
able to adjust his aim based on the result of his first fire and thus improve 
the SSKP for succeeding fires, or he may load a different round for subsequent 
fires from the one he was originally carrying in his main gun, or he may 
estimate the range to the GLD either visually or with a laser rangefinder and 
thus increase the accuracy and lethality of the rounds fired at the expense of 
a small time delay fox ranging. All of these sophistications can be added to 
the above fomlas with little difficulty. 

VI. SAMPLE RESULTS AND CONCLUSIONS. The tank counterfire duel models 
which have b&&presented were.e%oised for many combinations of parameters 
in ordex to provide the encounter outcomes for the SSTF force-on-force 
analysis. One way to graphically display the results of a counterfire duel 
is demonstrated in Figure 13 which is based upon a sample set of input 
parameters. The graph shows the expected number of tanks killed (solid 
curves) and the probability of GLD kill (dashed curvas) in a 3-on-3 encounter 
over a range of tank-to-GLD distances , with the GLD located in either a 
foxhole, a Forward Observer Vehicle 01: a bunker. 

TANK-TO-GLD RANGE (km) 

Figure 13. Sample Counterfire Duel Results 

These same results are represented in tabular form, for a particular 
intermediate tank-to<LD range, in Table 2. 
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Table 2. Sample Tabular Counterfire Duel Results 

IZO-GLD 
range GLD p(O) pm ,(a Pt3) E Q!(O) Q(') Q(2) ($3) Q ER 

(km) Position 
1.3 F0&bi&. b':170. 0;409 6,331 d.oW 1.341 ..0.002. ‘d;ob’i~~d;ooii o:odo' 0.004 .335 
1.5 Bunker 0.203 0.405 0.308 0.084 1.273 0.058 0.043 0.007 0.000 0.108 12 
1.5 FOV 0.176 0.409 0.327 0.088 1.327 0.014 0.010 0.002 0.000 0.026 51 

The exchange ratios obtained in this sample calculation indicate that the 
foxhole position is the most survivable and effective GI@ position, while the 
bunker is the least survivable to tank counterfire. No actual conclusions 
should be drawn from this sample calculation since these results are highly 
dependent on the choice of input parameters, such as the type of tank rounds 
fired, but this same line of reasoning would be used with actual data to draw 
survivability conclusions. 

Incorporating the counterfire duel methodology into the SSTF war game 
scenario provided the data needed to determine whether or not the GLD is 
survivable on the battlefield, Due to classification, the conclusion of the 
SSTF analysis cannot be presented in this paper. However, it should be 
mentioned that the counterfire duel methodology was also very useful in 
testing the sensitivity of the SSTF conclusions to variations in the many 
input parameters required in the study -- such as type of tank rounds fired, 
motion of tank, handoff time between tanks, designation mode, slope at GLD 
position, and laser-guided weapon rate of fire Y- to determine which were 
critical. Such sensitivity analyses are often instrumental in the development 
of weapon system improvements. 

It is anticipated that the analytic model presented in this paper is 
sufficiently general to have applications to many types of duel encounters 
where response time is the critical factor. We hope that the reader will find 
the model useful in such situations; further details can be obtained from the 
author. 
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Algorithm for Calculating Unit Separation Distances 

Timothy M. Geipe 
Joseph V. Michalowicz 

Harry Diamond faboratories, USA ERADCOM 

Abstract 

Battlefield units adjacent to a targeted unit must maintain some 
separation distance to avoid collateral damage, A tabular algorithm for- 
determining such separation distances based on unit damage criteria and weapon 
delivery errors for several confidence levels is presented. The algorithm 
depends on a numerical technique for integrating a tmrdimensional weapon 
burst distribution function over some base region and an iterative technique 
to obtain separation distances given other known parametes. The use of these 
numerical techniques is discussed along with several current applications of 
the algorithm. 

1. XNTRODUCTION 

On the tactical nuclear battlefield, if the enemy (Red) is able to 
accurately determine the location of a high-priority, friendly (Blue) unit, 
he is expected to fire a nuclear round of sufficient yield and accuracy 
to destroy the target with a high degree of confidence. That unit is 
effectively lost, so the important question concerning Blue survivability 
is the "bonus damagen produced by that nuclear fire on adjacent, nontargeted 
units. 

A typical problem is the calculation of the desired minimum separation 
distance between "neighbor" units. For a given confidence level, C, this 
distance is determined as that at which some specified environment or 
environments, due to a nuclear burst at the target unit, is exceeded at the 
adjacent neighbor unit with a probability of only 1 - C. This report presents 
a handy tabular algorithm to calculate these specific environmental criteria 
for various confidence levels. 

Applications of the methodology are developed for several examples: (1) 
command post survivability, (2) weapon employment, and (3) trade-off between 
hardening and operational deployment. 

2. METHODOLOGY 

Let us suppose that the target unit is located at ground zero (GZ) and 
that the burst point (more precisely, the projection on the ground of the 
point at which detonation occurs) has a twrrdimensional normal distribution 
about GZ with density function 

P(X,Y) =+e 
- (x2+y2)/2 I3 

I 
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where the standard deviation U (of the marginal distributions) results from 
both weapowdelivexy error and target-location error* Assume that the 
adjacent unit is located at a separation distance S from GZ as shown in figure 
1. EW a given confidence level, C (e.g., C = 0.901, the distance D is 
calculated at which the probability is only 1 - C that the burst point of the 
round falls within D of the adjacent unit, from the following formula: 

p(x,y, dx dy = 1 - C l (2) 

GROUND ZERO 

+- S 
WV W) 

TAAGFT UNIT ADJACENT UNIT 

CJRClE CENTERED AT (S, 0) 

Figure 1. Geometry of Units. 
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Solving equation (2) for D as a fuuctioa of C clearly involves a process 
of both integration and Iteration. A "stack of disks" method is used to 
perform the double iritegration of the integrand, whose graph yields the 
surface shown in figure 2. 

Figure 2. Integration Surface. 
/ 

The double integral is represented by the volume of the figure formed by the 
intersection of the surface with a cylinder of radius D, centered at the point 
(S, 0, 0). This volume is calculated by slicing the figure into disks, each 
of which has a cross section which is either a circle or the intersection of 
two circles, and adding up the volttme of all of the disks. The Iterative 
process required to solve for D for a given C is a "telescoping" technique 
akin to that used for finding roots of polynomial equations. 

Fomulas have been derived' for calculating the following nuclear 
environments as a function of range: 

Initial Nuclear Radiation 

. Total dose 

. Transient Radiation Effects on Electronics 
. . Neutron Fluence 
. . Peak gamma-dose rate 

Thermal Radiation 

. Radiant Energy . Maximum Thermal Irradiauce 

'W. E. Sweeney, Jr'., Cyrus G. Moazad, and John S. Wicklund "Nuclear Weapons 
Environments for Vulnerability Assessments to Support Tactical Nuclear Warfare 
Studies (VI," Harry Diamond Laboratories Tr+77-4 (June 1977). (CONFIDENTI&) 
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Blast - 
. Peak static overpressure (ApI 
. Peak dynamic pressure 
. Overpressure impulse 
. Dynamic pressure impulse (Iq) 
l Vehicle overturn (API - Kl 

9 

Low Altitude Electromagnetic Pulse 

. vertical electric field 

. Radial electric field 

. Azimuthal magnetic field 

An example of these formulas will be given in the Applications section. Once 
the distance D has been calculated as described above, the desired 
environmental criterion, EC, can be determined by selecting the appropriate 
formula to compute the environment at range D. This environment, EC, is then 
exceeded at the adjacent target at most the fraction l-C of the time, and 
equipment-hardening decisions could then be made based on this criterion. 

3. RESULTS 

Tables 1 through 11 present-the values of D corresponding to the following 
choices of input parameters: 

Separation distance, S: 2, 3, 4, l .*, 12 kin 
Standard deviation, U: 100, 150, 200, . . . . 950, 1000 m 
Confidence level, C: 0.99, 0.95, 0.90, 0.75, 0.50 

4. APPLICATIONS 

4.1 Command Post Survivability 

A subject of considerable current interest is the specification of 
the optimal command post architecture for the integrated battlefield. Studies 
have been made of the enhancement of the su$vivability of command posts 
through dispersion and redundancy measures. In the dispersed command post 
structure, separate independent functions -- such as the air support 
operations center, the all-source intelligence center, the fire support 
elements, etc. -- are dispersed into separate areas, so that if one area 
happens to be destroyed, the other areas can continue to function. Although 
there are certainly other considerations, such as the extra communications 
needed which may limit the distance permitted between various elements, one 

2 John R. Bondanella, "Corps Cormnand Post Architecture for the 1986-1990 
Integrated Battlefield - A Vulnerability Analysis," thesis, U. S. Army Command 
and General Staff College, Ft. Leavenworth, Kansas (June 1980). 
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Table of Distances in KilomcLcrs for 
SeparaLion Distance of 7.0 km 
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significant question is the dispersion required between the elements to 
alleviate bonus damage. It is this question that the algorithm in this report 
is well-suited to address. A similar question arises in the case of the 
desirable separation between redundant command posts in an architecture in 
which survivaiblity is increased by simply multiplying the number of command 
posts; this increase in survivability is then traded off with t'ne cost of 
duplication. 

The answer to the question of optimal separation depends on the 
environmental criteria pertinent to the units under study. For example, 
suppose the command posts are designed to withstand 2600 ;ad total radiation 
dose to personnel, 3 psi peak static overpressure, and 10 v/m EMP vertical 
electric field. (The effects of thermal on personnel are not considered since 
most personnel in a command post should be in a trail.er or other protected 
structure.) By means of the environment formulas discussed in section 2, 
these criteria occur at a specific distance, D, from a weapon burst of a given 
yield. For example, the formula for peak static overpressure is given by: 

Ap (psi) = 1.61 d 

( 1 

-1.70 
,1/3 (3) 

for a weapon of yield w in KT at a scaled hei ht of burst of 60 ,'I3 m. 
B 

Other 
formulas may be found in the cited reference. Suppose the likely threats to 
the command posts are 300- and 600-kT weapons delivered with a total standard 
deviation, Q, of 500 m, and that bonus damage is to be precluded with a 
confidence C = 0.95. The environmental criteria then correspond to the 
ranges, D, shown in Table 12; and interpolation between the appropriate Tables 
1 through 11 with D as the search variable produces the separation distances, 
S, shown. 

W = 300 kT 

2600 rad 1.9 2.7 

3 psi 4.6 5.2 

lo4 v/m 3.2 4.0 

W = 60.0 kT 
D S 

(km) (km) 

2.1 2.9 

5.9 6.7 

3.6 4.2 

Table 12. Separation distance calculations 

As can be seen, overpressure is the dominant of the environments 
considered; and a separation distance of at least 6.7 b between the command 
post elements or the redundant command posts is required to preclude bonus 
damage from the assumed threat with 95% confidence. 

642 



4.2 Weapon Employment 

In this example Blue targeteers are planning an attack strategy against 
particular Red radars integral to air defense units which are typically 

located only 2 to 2.5 km apart. The Blue weapon to be used against the radars 
is a 50-kT missile which is delivered at two-thirds maximum range with a 
standard deviation, u, of 250 m. The dominant kill mechanism to the radars is 
blast and the peak static overpressure damage criterion is 2.4 psi. This 
overpressure level occurs at a distance, D, of 2.91 km from such a weapon 
burst. 

For a 50% level of confidence, interpolation in Tables 1 through 11 gives 
a separation distance, S, of 2.89 km, as that distance at which the 
probability is 50% that bonus damage at the adjacent target will exceed the 
overpressure criterion. Since the air defense units are pairwise separated by 
less than 2.89 km, there is a greater than 50% probability that firing a round 
at one of the Red radars will also produce blast damage to the radar located 
in the neighbor unit. 

4.3 Hardening/Operational Deployment Tradeoff 

This example examines the effectiveness trade-off between the 
operational separation maintained between Army units of a certain type and the 
hardening of the equipment in these units to various levels of nuclear 
blast. Suppose the likely Red threat to this type of unit is a 600 kT weapon 
delivered with a total standard deviation, 0, of 500 m. The dominant kill 
mechanism to this unit is taken to be peak static overpressure, Ap, to 
various critical pieces of equipment in the unit. 

Three levels of hardening of this equipment will be considered: 

l 1 psi (sure-safe criterion) 
S 2psi 
0 5.8 psi (man-survivability criterion) 

The distances, D, at which these levels of Ap are encountered are calculated 
from equation (3) and presented in Table 13. If it is desired to preclude 
bonus damage to adjacent units of the same type at a confidence level of 95%, 
then interpolation in Tables 1 through 11 yields the separation distances, S, 
which must be maintained between the units, as shown in Table 13. 

Blast 
Criterion 

(psi) 

1 

2 

5.8 

D 
(km) 

11.2 

7.4 

4.0 

S 
(km) 

12.0 

8.2 

4.8 

Table 13. Hardening level vs. separation distance 
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Consequently if the equipment in these units is vulnerable to blast levels 
of 1 psi, then the units must be located at least 12 kn apart to ensure that 
there is no more than a 5% probability that a round aimed at one such unit 
could not only destroy that unit but also inflict bonus damage on the neighbor 
unit. 

On the other band, if the units are hardened to the man-survivability 
level of 5.8 psi, then they can be deployed as close as 4.8 km apart and be 
protected from bonus damage (with 95% confidence). 

5. CONCLUSIONS 

In conclusion, this paper has presented an algorithm for assessing bonus 
damage which accounts for weapon-delivery errors and target-location error, 
and attaches confidence bounds to the results derived. This methodology is 
applicable to a wide spectrum of problems, examples of which have been 
provided; the reader should be able to discover other appropriate problems 
from his own experience. 
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A GENERALIZED BAYLEIGH-RITZ METHOD FOR STRUCTURAL DYNAMICS 
PROBLEMS IN CONJUNCTION WITH FINITE BLEMENTS 

Julian J. Wu 
U.S. Army Armament, Munitions, and Chemical Command 

Armament Research and Development Center 
Large Caliber Weapon Systems Laboratory 

Benet Weapons Laboratory 
Watervliet, NY 12189 

ABSTRACT. A solution formulation of generalized Rayleigh-Ritz method is 
described and applied to two initial and boundary value problems of stress 
waves and structural dynamics in conjunction with finite element discretiza- 
tion. Excellent numerical results have been obtained for wave equations 
associated with lateral and longitudinal vibrations and with strong disconti- 
nuities. 

I. INTRODUCTION. This paper describes a solution formulation for and 
its applications to initial boundary value problems of structural dynamics and 
stress waves. Excellent numerical results are stated in conjunction with 
finite element discretization. The basic concept of this approach is to 
establish a variational problem equivalent to a given initial boundary value 
problem, which is in general, non-self-adjoint, through the use of an adjoint 
field variable and the use of some large "spring" constants so that all the 
end conditions can be transformed into natural "boundary" conditions. 
Therefore, the shape functions used need not satisfy any end conditions a 
priori in solving the variational problem in the same manner as applying the 
Rayleigh-Ritz method for self-adjoint problems. This same concept was 
demonstrated In solving initial value problems in a paper delivered at the 
International Symposium on Numerical Msthods in Engineering Science series in 
1978 and later published in the Journal of Sound and Vibration [l]. In this 
present paper, the formulation is extended to initial boundary value problems 
and the numerical results obtained are also encouraging. 

In the section which follows immediately, two initial boundary value 
problems are stated. One is a longitudinal stress wave problem in a rod. 
There is a discontinuity in the initial data given. We wish to trace this 
discontinuity in the numerical solution using the present approach. The 
second problem is a beam vibration problem under a moving concentrated load. 
This is a rnsch mre difficult problem since the partial differential equation 
is of fourth order and the force is singular in nature. In the next section, 
variational problems equivalent to the given initial boundary problems are 
established. The_ finite element discretization procedures are then briefly 
recaptured. Lastly, numerical results are presented with some comments. 

II. INITIAL BOUNDARY VALUE PROBLEMS. Two initial boundary problems of 
structural dynamics will be stated in this Section. The first one is of 
longitudinal elastic stress wave in a rod with a sudden change in initial 
conditions. The second one is concerned with lateral vibrations of a 
Euler-Bernoulli beam subjected to a moving concentrated load. 
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Longitudinal Stress Wave in a Rod. The rod is fixed at one end and free 
at the other end. The discontinuity data arises from the initial linear 
displacement, corresponding to a constant stress, due to a force applied at 
the “free” end. This force suddenly disappears at time zero causing a stress 
discontinuity at the free end. The differential equation can be written as: 

%I 1 ah OGx<R 
-- = - -- ; 
ax2 a2 at2 

(1) 
OGt<T 

with 
a2 = E/p (2) 

where u = u(x,t > is the axial displacement ; x ,t are the coordinatea in axial 
direction and in time, respectively; p,E are density and Young’s modulus, 
respectively, of the rod material; 11 denotes length of the rod; and T denotes 
some finite time of interest. 

For the boundary conditions, we have _ 

and 
u(O,t) = 0 

; (1,t) = 0 
(3) 

The dynamics of the problem are due to the initial conditions. It is assumed 
that the rod is stretched to a linear displacement by a force P which vanishes 
at time t > 0 (see Figure 1). The initial velocity of the rod is assumed to 
be zero. Thus 

P 

u(x*o) = AE x ; 
and 

and 
(4) 

2 (x,0) = 0 

It is convenient to use dimensionless parameters, Let 

,.I* = u/a , x* = x/A , t* - t/T (5) 

Then, Eq. (1) in dimensionless form is 

ah* 0 rc x* < 1 
m-m- = 
ax*2 

b2 ;$ , 
0 c t* < 1 

(6) 
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where 

b2 = > (1 (7) 

The boundary conditions become 

u*(O,t*) = 0 , ;; (l,t*) = 0 

and 

u*(x,o) = mt* ; 2( x*,01 = 0 

where 
P p* =I I 
AE 

(8) 

(9) 

(10) 

is the force in dimensionless form. 

Figure 1. A Rod Fixed at One End and Subjected to a Load P, which is 
Suddenly Released at Time Zero. 
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The stated problem in dimensionless form combines Eqs. (6), (8), and (9) 
with the new dimensionless parameters related to physical counterparts by Eqs. 
(5)) (6)) and (10). TO simplify writing, we shall drop the asterisks (*) in 
Eqs. (6)) (8)) and (9), and rewrite them as 

*. OGxCl 
U” - l&u = 0 ; (6’) 

O<t<l 

u(O,t) = 0 ; u’(l,t) = 0 (8’) 

u(x,t) = px ; ll(x,O) = 0 (9’) 

where a prime (‘) indicates differentiation with respect to x and a dot (a), 
with respect to t. 

Beam Vibrations Under Moving Loads. Let us consider the differential 
equation of a uniform Euler-Bernoulli beam subjected to a mOving, concentrated 
force. 

. . O<x<R 
EXy”” + PAY = Pb(xp-x) (11) I 

OGt<T 

where 

E,P = Young’s modulus, density of the beam material 
I,A = second mOment, area of the beam’s cross-section 
R = length of the beam 
y=y(x,t) = beam deflection 
x,t = coordinates in beam’s axial direction and in time 
P a 
Z(x) 

magnitude of the concentrated force 
= Dlrac delta function 

;p=xp( t, 
= location of P 
C some finite time of interest 

Again it will be convenient to employ nondimensional parameters and 
equations. These will be introduced by way of Eq. (11). Thus, let 

Y” =y/a , x*=x/a , t* = t/T (12) 

using Eq. (12) in Eq. (ll), one has 
0 G x* fG 1 

y*“” + y2y* = Qi(xp*+) (13) 
0 c x* ‘G 1 

where 
c pAR4 

Y =:- 
T ’ 

C2 = --;- , Q s p* I $ (14) 
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Also note in Eq. (13) that the differentiations are now with respect to the 
nondimensionalized. variables x* ant t*. Prom now on, we shall use Hq. (13) 
with the asterisks dropped altogether. 

. . OCXCL 
Y ‘I’* + ky + y2y = QG(xp-x) (15) 

octc1 

III. VARIATIONAL PROBLEMS - A GENERALIZED RAYLEIGH-RITZ METHOD. For the 
stress wave problem in the previous section, consider a variational problem. 

with 
61, = 0 (16a) 

I, = I,(u,v) = /; 1; (-u'v'+b2&dxdt (16b) 

where u(x,t) and v(x,t) are said to be adjoint to each other. It is a simple 
matter to see that this problem is an indeterminate one. However, the 
functional of Eq. (16b) can be modified to a variational problem which is 
equivalent to the boundary/initial problem of Eqs. (6'), (St>, and (9'). Thus 
consider 

61 = 0 (17a) 

with 
I = I(U,V) = 1; J; (-u'v'+b2&dxdt 

f kl1; u(O,t)v(O,t)dt 

+ k2b2/; [u(x,O) - uo(x)lv(x,l)dx + b2 (1 ul(x)v(x,O)dx 
0 

(17b) 

We shall take the first variation of the function I(u,v) of Eq. (17b) in 
such a manner that 6v is completely arbitrary while 6u is set to zero 
identically. Hence, by means of integration-by-parts, one has 

(61)6~~ = ,; 1; (0b2:)Gvdxdt 

- .f; u'(l,t)bv(l,t)dt 

1 
+ I, [u(O,t) + klu(O,t)lJv(O,t)dt 

+ b2J; &x,1) + kz[u(x,O) - uo(x)l IWx,l)dx 

- b2 ,; [:(x,0) - ul(x)l&(x,O)dx = 0 (18) 
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The fact that Gv(x,t) is completely arbitrary enables us to conclude from Eq. 
(18) that 

O<xCl 
U” - b2u = 0 ; C 19a) 

octc1 

u'(l,t) - 0 

u’(O,t) f !qu(O,t) = 0 

and 
dx,l) f k2Cu(x,O) - u,(x)] = 0 

u(x,O) - Ul(X) = 0 

(19b) 

It is then observed that the initial boundary value problem defined by Eqs. 
(19a) and (19b) reduces to that of Eqs. (6’), (8’)) and (9’) if one lets kl 
and k2 go to infinity* (and with uo(x) = Px and ul(x) = 0). This fact 
suggests that the variational problem of Eqs. (17a) and (17b) can be used as a 
basis of a finite element discretization for the approximate solutions to the 
original initial boundary problem. It should be noted that all the auxiliary 
conditions in Eqs. (19a) and (19b) are the so-called natural boundary 
conditions. They are the consequence of the variational problem - just like 
the differential equation itself. For this reason, the above solution is 
referred to as a Generalized Rayleigh-Ritz Method. 

By a similar process, one can establish a variational problem for the 
vibration problem of a beam under a moving load. In this case, one has 

+ 1; [klu(O,t)dV(O,t) + k2u'(0st)6V'(0,t) 

+ kp(l,t)dv( l,t) + k4u'(l,t)~v'(1*t)]dt 

1 
+ 1, [kgu(x,O)Sv(x,l) + k&(x,0)6v(x,O)ldx = 0 

*This process is sometines referred to as the penalty function method. See, 
for example, Reference [2]. 
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Through integrations-by-parts, 

61 = 1; ,A [u"" + ;; - &-&v(x,t)dxdt 

+ ( {[klu(O,t) + u"'(O,t)lsv(O,t) + [k2u'(0,t) - u~‘(o,t>lsv’(o,t) 

+ [kju(l,t) - u"' (l,t)]6v(l,t) + [kqu'(l,t) + u"(l,t)lbv'(l,t))dt 

+ ,; I tk5(u(x,o)-o) - &,t)l6v(x,l) f (k6+l)[:(x,O)-O]sv(x,O)}dx = 0 (21) 

The original differential equation and the boundary and initial conditions are 
recovered Erom the equation above due to the arbitrariness of the variations 
s(x,t) and by properly selecting the values of ki,s, i = 1,2,...,6. 

IV. FINITE ELEMENT DLSCRETIZATION. Only essential features will be 
stated in the finite element discretizations here. The region of a unit 
square (0 < x Q 1; 0 C t G 1) is further divided into KxL rectangles by taking 
K divisions in x direction and L divisions in t direction. Local coordinates 
(<,n) in each (i,j)th element are related to (x,t) by these equations: 

5 = c(i) = Kx - i + 1 

n=n(j) =Lt-j +I 
(22) 

Within each element, the unknown function u(x,t) is replaced by the 
approximation: 

U(i,j)(4sTl) = +TtC,ll) u(i,j) 
(23) 

6V(i,j)(E*n) = zTtE,n) "V(i,j) 

where a(&,o) is the shape function vector and U(i j), "V(i j) are the 
generalized coordinates. The specific form of a([,n) emplAyed here is such 
that each one of the sixteen components is: 

k = 1,2,.....,16 
ak(5,n) = bi(S)bj(n) , (24) 

i,j = 1,2,3,4 

with 
bl(E) = 1 - 3E2 + 2c3 

b2(S) = 5 - 262 + E3 

b3(S) = 3c2 e 2t3 

bq(5) = -c2 + c3 

(25) 
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and the relations between index k and the pair (i,j) are given in Table I. 

TABLE I. RELATIONSHIP BETWEEN (i,j) AND k IN EQUATION (24) 

Using Eqs. (22) through (25) in Eq. (17) and the fact that V(i,j) is 
completely arbitrary, the matrix equations for the unknowns U(~,-J) can be 
routinely assembled and solved. Further details till be omitted here. 

V. NUMERICAL RESULTS AND DISCUSSION. Some of the numerical results are 
presented in this section. For the stress wave problem*, Table II provides 
solutions of v(x,t), h~/ax(x,r) and au/at(x,t) for x = 0, 0.1, 0.2, . ..l.O and 
for t = 0, 0.5, 1.0, 1.5, and 2.0. During this time interval, the original 
displacement has gone through a complete sign reversal as shown in Figure 2. 
This particular set of data was obtained by taking K = 10 and L = 1 with 
restart procedures, i.e., the final solution in the first time step was taken 
as the initial condition of the next step in time, and so on. Values of the 
exact solutions are given in parentheses. Excellent agreement is observed. 
The fact that the discontinuity of the solution follows along without much 
oscillation is worth mentioning. 

(i,j) 

(1,3) 
(2,3) 
(1,4) 
(2,4) 
(333) 
(4,3) 
(3,4) 

-LLL 

For the beam vibration problem with a moving force, some typical 
numerical solutions are given in Tables III and IV. The rPoving concentrated 
force is assumed to travel at a constant velocity c (although this is not at 
all a restriction for the present method) such that 

x(t) = ct 

where c is dimensionless velocity. For small c, c = 0.0001, and the 
displacement solutions become those of static deflections as shown in Table 
III. For a large c (compared with unlty), c = 10, and solutions show dynamic 
effects as indicated in Table IV. As a comparison, solutions obtained by the 
Fourier series and Laplace transform method [4] are given in parentheses. 
Good agreement exists even in cases with considerable dynamic effect. 

*For exact solution to this problem, see for example, Reference 131, 

652 



TABLE II. SOLUTIONS TO THE STRESS WAVE PROBLEH OF EQS. (6’), (8') and (9’) WITH b = 1.0, P = 1.0. 
(PART 1) 

Data at Time t = 0.0 Data at Time t = 0.50 Data at Time t = 1.00 

X u(x ,t) au/ax au/ at u(x,t) au/ ax au/ at u(x ,tl a dax au/at 

0.0 0.00000 1.00000 0.00000 -0.00000 0.99861 0.00000 0.00000 -0.11718 0.00000 
(0.00000) ( 1.00000) (0.00000) (0.00000) ( 1.00000) (0.00000) (0.00000) (0.00000) (0.00000) 

0.10 0.10000 1.00000 0.00000 0.09998 0.99740 -0.00142 -0.01236 0.18416 -1.07661 
(0.10000) (1.00000) (0.00000) (0.10000) (1.00000) (0.00000) (0.00000) (0.00000) (-1.00000) 

0.20 0.20000 1.00000 0.00000 0.19994 0.99113 -0.00618 0.00259 -0.10702 -1.09024 
(0.20000) (1.00000) (0.00000) (0.20000) (1.00000) (0.00000) (0.00000) (0.00000) (-1.00000) 

0.30 0.30000 1.00000 0.00000 0.29949 0.97359 -0.01886 -0.00026 -0.00077 -0.92271 
(0.30000) ( 1.00000) (0.00000) (0.30000) (1.00000) (0.00000) (0.00000) (0.00000) (-1.00000) 

0.40 0.40000 1.00000 0 l 00000 0.40354 1.06038 0.07965 0.00035 -0.00953 -1.03476 
(0.40000) (1.00000) (0.00000) (0.40000) ( 1.00000) (0.00000) (0.00000) (0.00000) (-1.00000) 

0.50 0.50000 1.00000 0.00000 0.49976 0.47813 -0.54638 -0.00036 -0.00287 -0.95721 
(0.50000) (1.00000) (0.00000) (0.50000) (1.00000) (0.00000) (0.00000) (0.00000) (-1.00000) 

0.60 0.60000 1.00000 0.00000 0.49785 0.02932 -0.96310 0.00042 -0.00334 -1.04064 
(0.60000) ( 1.00000) (0.00000) (0.50000) (0.00000) (-1.00000) (0.00000) (0.00000) (-1.00000) 

0.70 0.70000 1.00000 0.00000 0.50081 -0.02913 -1.06490 -0.000 39 ( 0.00046 -0.95841 
(0.70000) (1.00000) (0.00000) (0.50000) (0.00000) (-1.00000) (0.00000) (0.00000) (-1.00000) 

0.80 0.80000 1.00000 0.00000 0.49983 0.00258 -0.95849 0.00041 -0.00086 -1.04185 
(0.80000) (1.00000) (0.00000) (0.50000) (0.00000) (-1.00000) (0.00000) (0.00000) (-1.00000) 

0.90 0.90000 1.00000 0.00000 0.50019 0.00036 -1.03927 -0.00040 -0.00012 -0.95859 
(0.90000) (1.00000) (0.00000) (0.50000) (0.00000) (-1.00000) (0.00000) (0.00000) (-1.00000) 

1.00 1.00000 0.00000 0.00000 0.49982 -0.00000 -0.96235 0.00041 0.00000 -1.04164 
(1.00000) (0.00000) (0.00000) (0.50000) (0.00000) (-1.00000) (0.00000) (0.00000) (-1.00000) 

*Figures in parentheses indicate exact solutions. 



TABLE II. SOLUTIONS To THE STRESS WAVE PROBLEM OF EQS. (6'1, (8'), and (9') with b = 1.0, P = 
(FART 2j 

au/at 

0.00000 
(0.00000) 

0.00235 
(0.00000) 

-0.04972 
(0.00000) 

0.09812 
(0.00000) 

X u(x,t) au/ ax 

0.0 0.00000 -0.99528 
(0.00000) -1.00000) 

0.10 -0.9975 -1.01418 
(-0.10000) -1 .ooooo> 

0.20 -0.19988 -0.93268 
(-0.20000) -1.00000) 

0.30 -0.30222 -1.13452 
(-0.30000) -1.00000) 

0.40 -0.39324 -0.62190 
(-0.40000) -1.00000) 

0.50 -0.49607 0.19515 
(-0.50000) (0.00000) 

0.60 -0.51154 0.00219 
(-0.50000) (0.00000) 

0.70 -0.49849 -0.00219 
(-0.50000) (0.00000) 

0.80 -0.50034 -0.0 2908 
(-0.50000) (0,00000) 

0.90 -0.49935 -0.01126 
(-0.50000) (0.00000) 

1.00 -0.50051 -0.00000 
(-0.50000) (0.00000) 
,~~S.~~~~~~11. Lz-~3,Pl~.~~~=.i 

VFigures In parentheses indicate exact salutlons. 

-0.02522 
(0.00000) 

\ 
-0.40290 
(0.00000) 

-1.14247 
(-1.00000) 

-1.05659 
(-1.00000) 

-0.92639 
(-1.00000) 

-1.03406 
(-1.00000) 

-0.93441 
(-1.00000) 

Data at Time t = 1.50 T Data at Time t = 2.00 T 
4x, t) 

0.00000 
(0.00000) 

-0.10003 
(-0.10000) 

-0.19992 
(-0.20000) 

-0.30008 
(-0.30000) 

-0.39981 
(-0.40000) 

-0.50035 
(-0.50000) 

-0.59945 
(-0.60000) 

-0.69929 
(-0.70000) 

-0.80180 
(-0.80000) 

-0.90529 
(-0.90000) 

-0.98802 
(-1 .OOOO) 

au/ax 

-0.02019 
[-1.00000) 

-0.98040 
:-1.00000) 

-0.01911 
(-1.00000) 

-0.97758 
(-1.00000) 

-0.00984 
(-1.00000) 

-0.98060 
(-1.00000) 

-1.01522 
(-1.00000) 

0.84502 
(-1.00000) 

-0.84502 
(-1.00000) 

-1.19080 
(-1.00000) 

I 

au/at 

-0.00000 
(0.00000) 

0.00165 
(0.00000) 

-0.00119 
(0.00000) 

0.00610 
(0.00000) 

-0.00308 
(0.00000) 

-0.02259 
(0.00000) 

0.02001 
(0.00000) 

-0.05514 
(0.00000) 

0.07546 
(0.00000) 

-0.23643 
(0.00000) 

1.0. 



Figure 2. Exact Solution Surface u=u(x,t) for the Stress Wave Problem 
of Eqs. (6'1, (8'1, and (9') in the Region: 0 C x G 1 and 
0 C t G 4 (with P = 1.0 and b = 1.0). 
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1 -7 

X X 

0.0 0.0 

0.20 0.20 

0.40 0.40 

0.60 0.60 

0.80 0.80 

1.00 

TABLE III. 

t = 0.0 

0.000000 
(Gfven) 

t = 0.20 

0.000000 
(0.000000) 

t = 0.40 

0.000000 
(0.000000) 

0.000000 
(0.000000) 

t = 0.80 

0.000000 
(0.000000) 

-0.000000 
(0.000000) 

0.000001 0.008533 0.011999 0.010665 0.006125 -0.000097 
(Given) (0.009534) (0.012000) (0.010667) (0.006133) (0.000000) 

-0.000001 0.012001 0.019206 0.018157 0.010763 0.001174 
(Given) (0.012000) (0.019199) (0.018134) (0.010666) (0.000000) 

-0.000000 0.010668 0.018137 0.019214 0.012057 0.000691 
(Given) (0.010667) (0.018133) (0.019201) (0.012000) (0.000000) 

0.000001 0.006133 0.010664 
(Given) (0.006134) (0.010666) 

-0 l 000000 

(Given) 

0.000000 
(0.000000) 

~~~.zs~-~aI~a=i 

0.011990 
(0.012000) 

0.000000 
($.000000) 

IS=. ~~~=m~S 2.2-a z 

0.00849 1 -0.000509 
(0.008533) (0.000000) 

0.000000 
(0.000000) 

.~~~~-a-~~J~ 

0.000000 
(0.000000) 

SOLUTIONS u( x , t ) TO THE MOVING FOKCE PROBLEM OP BQ. ( 15) 
WITH Q = 1.0 AND FIXED END CONDITIONS AT x = 0. 
(For very low velocity, y = 10e4 in Eq. (14)) 

t = 0.60 t = 1.00 

Solutions in parentheses based on formulas from Reference 4. 



TAl3LE IV. SOLUTIONS u(x,t) TO THE WVING FOKCE PROBLEM OF EQ. (15) 
WITH Q = 1.0 AND PIKED END CONDITIONS AT x = 0. 

(For very low velocity, Y = 10 in Eq. (14)) 

X 

0.0 

0.20 

0.40 

0.60 

0.80 

1.00 

P a2-1 

t = 0.0 

-0.000000 
(Given) 

-0.000001 
(Given) 

-o.oooooi 
(Given) 

-0.000000 
(Given) 

-0.00000 1 
(Given) 

-0.000000 
(Given) 

t = 0.20 

-0.000000 
(0.000000) 

0.00048 2 
(0.000467) 

-0.000077 
:-0.000082) 

0.000001 
(0.000025) 

0.000003 
:-0.000012) 

-0.000000 
(0.000000) 

.-aIx.zmamasaa 

t = 0.40 

-0.000000 
(0.000000) 

0.001387 
(0.00~345) 

0.001109 
(0.001109) 

-0.000320 
:-0.000311) 

-0.000013 
(0.000002) 

0.000000 
(0.000000) 

=-~s~~~~~~ai 

t = 0.60 

-0.000000 
(0.000000) 

0.002151 
(0.002046) 

0.002717 
(0.002704) 

0.001493 
(0.001504) 

-0.000964 
,-0.000942) 

t = 0.80 

-0.000000 
(0.000000) 

0.002944 
(0.002534) 

0.004364 
(0.004375) 

0.003110 
(0.003177) 

0.001308 
(0.001257) 

-0.000000 
(0.000000) 

=av*mzm -. 

t = 1.00 

-0.000000 
(0.000000) 

0.007191 
(0.003643) 

0.004877 
(0.004463) 

0.005067 
(0.005601) 

0.005751 
(0.005464) 

-0.000000 
(0.000000) 

--~~p;p~~ 

Solutions in parentheses based on Formulas from Reference 4. 



In conclusion, this paper has demonstrated through examples of 
structural dynamics an approximate solution formulation (which is both a 
weighted method and a variational problem), the finite element implementation, 
and some favorable numerical results. Although only linear problems have been 
mentioned, an application to solutions of non-linear problems is now being 
investigated. 
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Abstract 

The hydrodynamic theory of foil bearings is reviewed. The 

relationship between fluid pressure and film thickness is discussed. 

The compressibility of gas is included in the analysis. It is shown 

that the basic equation for detcrzinatson of pressure distribution. 

becomes a third order boundary value problem in terms of film thick- 

ness. A simple numerical scheme for solution of the nonlinear boundary 

value problem is developed and some examples are considered and dis- 

cussed. 
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1. Introduction 

Theory of hydrodynamic lubrication is one of the well established 

fields of mechanical engineering [1,2]. The theory of hydrodynamic 

lubrication with deformable boundaries was considered by Korovchinskii 

[3], Christensen [4,5], Wilson [6] and Mahdariaw and Wilson [7], among 

others. 

The theory of foil bearing was first investigated by Blok and Van 

Rossum [8]. Wildman and Wright [9] have considered the effect of external 

pressure on foil bearings and have also employed a perturbation method 

for solution of the resulting equations. Further developments are carried 

out by Eshel and Elrod [lo], Ma (111, Barlow [12] and more recently by“ 

Eshel [13,14]. 

In the present investigation, the theory of gas lubrication with 

a flexible boundary is s.tudied. The equations of motion 

of a flexible tape are considered and under the assumption of small 

slope a.simple relationship between the fluid--pressure and film thick- 

ness is-established. The basic equation for the variation of film pres- 

sure is then obtained which is shown to be a nonlinear third order two 

point boundary value problem. The general expressions for the load bearing 

capacity and the friction force of the bearing are derived and discussed. 

A simplified scheme for obtaining the numerical solution of the formulated 

nonlinear boundary value problem is developed and applied to several 

examples. 

2. _ Basic Equations 

We consider a hydrodynamical bearing which is driven by a moving 

flexible tape or belt as shown in Fig. 1. As a result of the pressure 
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developed within the lubricating film the flexible tape deflects from 

the straight line position joining the two roller bearings at the 

entrance and exit of the bearing. 

We assume that the steadily moving tape assumes a fixed shape 

in space, i.e., the tape slides along a fixed cuf~e c in the x-y plane. 

Let 0 be a fixed point in the space located also on the cume of the 

moving belt. Let 0' be a point on the moving tape serving as a refer- 

ence point for measurement of the distake S of the material points 

along the tape and which coincides with the point 0 at a reference time 

tOm 
A point P a distance S away from 0' along curve c at time t will 

0 

be a distance 5 = S + v(t-to> away from 0 at tke t. The Cartesian 

coordinates x and v of the point P as well as the-tension T of the tape 

at that point will be functions of the variable 6. The equations of 

motion of the tape,assuming no resistance to bending, and inextensibility 

condition are: 

& (f iE)+f,=y”‘;; , 
at2 

a’ 2- 
as (+ + fy = Y% * 

at 

($2 -t ($2 = 1. as 

(1) 

(2) 

(3) 

Here fx and fy are the fluid forces in x and y directions exerted on the 

tape and y is the mass per unit length of the tape. 

Since bearings generally have small slopes, it can be said that 
aL a; << 1 and hence a~ = as = 1. Using this and the fact that f, 5 

and r are functions of 6, (1) and (2) can be written as 
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$*fx=Yv 2 d2;; -0 
dF2 

, 

f 
Y 

=uv2 !& 
dC2' 

Under the stated set of assumptions, we have 

fx 
3U 

= 2u ay Fh t I 

f =- 
Y P 1 

in which LI is the viscosity of the lubricant and u and 

velocity and excess (gage) pressure as governed by the 

a2u 142 
-= p dx’ 
aY2 

(4) 

(5) 

(6) 

(7) 

p represent the fluid 

Reynolds equation 

(8) 

Integrating equation (8) and using the.boundary conditions 

u=O at y=O , 

aH 
u=TF=vaty =h, 

we obtain 

1 * (Y2 u=z dx - hy) +;v. 

The continuity equation is given by 

P,Q = Ih PU dy, 
0 

(9) 

(10) 

(11) 

(12) 
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where p a and P are the densities of gas (air) at-atmospheric pressure P 
a 

and at gage pressure p, respectively. For a polytropic precess, we have 

Pa + P 'a 

P" 
=- =const. 

Pi 
(13) 

n equal to 1.4 and 1.0 correspond to the adiabatic and isothermal processes, 

respectively and n = m denotes the isochoric (incompressible) gas flow. 

Using equation (11) in (12) and noting that p is only a function of x, it 

follows that 

Q= (+vh-- h3 & 

a 2 12Lt dx)' 

Eliminating p between equation (13) and (14), we find 

Q = (1 + ,l’,(+ vh w h3 a)  

'a 12IA dx l 

The linearized forms of equations (5) and (7) lead to 

P . 

(14) 

(15) 

(16)  

Substituting equation (16) into (15), we find 
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yv2 d2h l/n cd (l-p--+ 
a dx 1251 

(17) 

For the incompressible limit, that is, ?I = r"), equation (17) reduces, to that of 

[8,91. The boundary conditions 

h=h at x= 0 , (18) 
0 

h=hl =t x=L ' 
(19) 

d2h -= 0 at x = 0,11, 
dx2 

(20) 

serve to determine the flow rate Q and the three constants of integration. 

Introducing dimensionlessvariables, 

+, q=;, 
0 

(21) 

equation (17) and boundary conditions (18) - (20) become 

t1 id% l/n (T3 d3T ----$ -+ UT)= B, 0 < q < 1%, 
dn dn3 

with 

T=l at n= 0, 

T=6 at ~31, 

A=Oat 
h2 

l-i = 0,l , 

where 

6pL3 
a=yvh:, ' 

(22) 

(23) 

(24) 

(25) 

(26) 

parameter X is the ratio of dynamic pressure to atmospheric pressure. For 

small values of A, the gas behaves as an incompressible fluid. 
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Equations (22) - (25) form a nonlinear third order two point boundary 

value problem for finding the dimensionless film thickness T. The 

expression for the film pressure is terms of the dimensionless quantities 

is given by 

yv2ho d2, 
p=- - (271 

The load bearing capacity per unit width is defined by 

P = ( pdx . 
0 

- (28) 

Employing equation (27) in OS), the expression for the load bearing capa- 

city in terms of dimensionless quantities becomes 

(29) 

From equations (29) it is observed that the bearing capacity is pro- 

portional to the square of tape velocity in contrast to the case of rigid 

boundaries where it becomes proportional directly to the velocity. Purther- = 

more P is related to, ho/a, while in the rigid case it is proportAona1 to 

e2/h 
0' 

It is Of course recognized that the terms dT/dn in equat$on c.291 depend 

on the values of parameters U,B and 1 which are functions of Y, ho, II-, p and 

etc. Therefore, the dependence of the load capacity on various parameters would 

be partially modified, accordingly, 

The friction force per unit nidth of the bearing can be calculated by 

first obtaining 

the result over 

force D becomes 

the shear stress at the upper boundary and then integrating 

the length L. The final expression for the frictional 

2T-3B/2a dn 
T2 

(30) 
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From equation (30) it is observed that the dependence of D on the 

parameters p, v, R and ho is similar to that of a bearing with rigid boundaries. 

3. Numerical Solution and Examples 

The numerical solution of the third order nonlinear two point 

boundary value problem given by equations (22) - (25) becomes rather involved 

The values of the parameter B (which depends on Q) and the slope $(O) must 

be guessed in such a way that at n = 1 the values of T = 1 and 

d2T - = 0 be reached simultaneously. 
dn2 

Such a ptocedtire requires a time consuming 

trial and error calculation. To circumvent the lengthy computation the 

following scheme for solution is adopted. Let us assume that 

g(O) = k 9 (31) 

Introducing a change of independent variable, 

r = kn I (32) 

equation (22) becomes 

(1 _)i,d2T l/n(T3 d3T 2) --J + a' T)= 8' Ocr<k 
dr 

where 

a' = k-3,, 6' = k -36, X' = $5. 

The boundary conditions (23) - (25) and equation (31) now become, 

T=l,+, A=& 
dr2 

atr=O, 

(33) 

(34) 

(35) 

T+hl), 
dr2 

at r = k , (36) 
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For fixed values of a',B' and A' (assumed values) equation (33) can be 

integrated numerically with initial values of T, dT/dr and d2T/dr2 given 

by equation (35). Integration is carried out until d2T/dr2 becomes equal to 

zero. The corresponding r for which d2T/dr2 = 0 dete,rmines the value of the 

parameter k and the value of T at that position gives the magnitude of the 

parameter 6. Q can then be obtained from 6'. This technique, can be used to 

generate a series of solutions for various values fo the parameters. The 

method is quite simple and avoids cumbersome trial and error procedure. 

Introducing the change of variable (32) into equations (27) and (29) the 

expressions for the pressure and the load bearing capacity, respectively, 

become 
y2v2hok2 2 

P =- 
&2 3s (37) 

P= 
yv2hok 

L [l - $)I. (38) 

A Runge-Kutta numerical integration scheme is employed and examples 

are considered. In the first example, the values of parameters are taken 

to be u' = 1, and 0' = 0.667 and X' = 0.0 (that correspond to an incompressible 

fluid and a flow rate of Q = B'vho/2cr' = vho/3). The numerical solution of 

equation (33) with initial conditions given by equation (35) is obtained and 

it is observed at r = k = 6.22, d2T/dr 2 becomes approximately equal to zero. 

The value of parameters a, 8 and Q as found from (34) thus become 

a = 240.6, 6 = 160.4, Q - vho/3. (39) 

The corresponding variation of h/ho with TJ is shown in figure 2. It is 

observed that the film thickness increases up to a maximum of about three times 

of the entrance film thickness and then decreases to about 0.25 ho at the exit, 
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The variation of the dimensionless pressure 

p” pL2 
Y2V sl k2 ' 

0 

(40) 

is shown in figure 3. It is observed that s reaches a peak of about 0.9 

very close to the exit. The load bearing capacity of the bearing is found 

to be 

P= 
YV2ho 

18.69 7 . (41) 

In the second example it is assumed that a' = 1.6, B' = 1.067 and 

A' = 0.0. The numerical solution yields 

k = 4.64, d = 0.26 '1 (42) 

It then follows that 

01 = 159.9, 6 3106.6, Q = vho/3 (43) 

The variations of film thickness and dimensionless film pressure with tl are 

shown in figures 4 and 5. The load bearing capacity now is found to be 

YV 2h 
P=14.72+ F (44) 

It is observed that the load bearing capacity decreases with an increase 

of u (i.e., an increase in gas viskosity). As a third example we consider 

a compressible gas film with parameter values ~1' = LO, B',= 0.5, A' = 0.1 1 

and n = 1.4. The 

T,fk) = -2.0884. 

P 

solution of the 

This results in 
CI 

#ho 
= 17.1917 

initial value problem yields k = 5.5450 and 

a load bearing capacity 

(45) 

The film thickness and pressure variations are shown in figures 2-7 

and are comparable with those obtained by a perturbation method in [9]. 
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4. Concluding Remarks 

In the present work, hydrodynamic theory of foil bearing is 

considered and the effects on gas compressibility are studied. It is 

observed that the behavior of a foil bearing is quite different from 

that of a regular rigid boundary type. For instance, the film pressure 

distribution has a sharp peak near the exit of a foil bearing in contrast 

to the relatirvely smooth peak observed about the middle of the 

conventional rigid boundary types. 'Furthermore, the dependence of the 

load bearing capacity of these flexible bearings is drastically different 

from the conventional one. 

Several important problems such as optimization of the load bearing 

capacity, two dimensional -effects, etc. are not treated here and are left 

to future investigations. 
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Fig. 1 - Sketch of the bearing. 
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Fig. 2 - Variation of film thickness with rl for 
a = 240.6, 8 = 160.4. 
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Fig. 3 - Variation of dimensionless film 
pressure with q for a = 240.6, 
B =160.4. 
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Fig. 4 - Variation of film thickness with II for 
u = 159.9, a = 106.6 . 
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Fig. 5 - Variation of dimensionless film pressure 
withqfor OL= 159.9, B = 106.6 :- 
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Figure 6 - Variation of film thickness with q for a = 170.5, 
B- 85.2 and X = .0032. 
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Figure 7 - Variation of dimensionless film pressure with II 
for c1 = 170.5, 8 = 85.2, h = .0032. 
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1nstitutfGrAngemndt-e Sysmnf~schmg 
md~atimsResear& 
F~chI&xmatik 

-ule der mdeswehr Mihchen 
Lb8012 Neub~, West Germany 

44Bsmm: Intheptamsxdes significantamunts ofresourceshavebeen 
spsltonthe hpmvmentand develmtof Cammd, &ntrol,Camnun.icatim, 
aad InteUgmce Systems (C31). The bureaucratic institutionalization of the 
oast-effecti~sapproachwl~~Planning,programninq,and~eting 
PPB) frm khas~~~~~totheisolated.asses-tofC~Ir~t~ 
inhigiilycentralizedsystsm3 thatnwimize theuse ofmoderntechnologyfor 
its om sake. Homver, C31 is but me of five interdemt principal elements 
ofdefenee systmsrquiringits asses~tintemsofhowmuch it contributes, 
tcqetherwiththeotherelemn~, totheaccaqlishmntoftheoveralldefence 
mission. Hereby, ths canplemenWityat2d the degreeof SubstitutabiUtybeW 
the physical and the concept&l elmts of defence sys&m must be explicitly. 
considered, ~ttheleastwitkraviewtothelimi~~~ianofaMilabler~~rrPs, 
Suchanasse~t~~yanlybeacamplishadthrrsughdyMmicandlyses~ch 
acunmt explicitly for the interaction of all system elenrents in canbat. Thus, 
amrs3atsiRnllation~ theprincipal twlof analysis.The incoqorationof 
themifitarydecisionmaker intosuchsimulations~tstoalsom&e the 
decisioImakingplmess objeetof m@oralxqresearch~todevelop, tian 
evolutionary nranner, decisim sqqxtsof~e.Thisis illustrat&byW 
exanrples. One shclws how cognitive maps of military mmmders may be retrieved 
by~ofintera~~~tsirrarlatians.Theother~anapproach~~ 
VdOptdCtiCa~deCiSiOnnrode~S byms of suchsimulations. Given a-certain 
technicalcapability, suchresearohrrclghtbecarriedonwithinthe frmmrk 
Of dliW exercises as propsed in the Compound Gaming Appromh. 
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1. C31: AN ELDGM'OF kELJTA.RY SYSTDlS . 
'cation and Intelligence (C31) has been defined as Cd, Control, CD 

II I.. an arrangemnt of personnel, facilities a& systems for information 

aquisition, processing and dissemination employ& by a (military) decision- 
maker in planning, directing and controlling oFrations" (see [ 11 ,p. 42). 
Thus, even though it is not a readily seprable entity such as a weapon 
systemor a &atservice sup@t system, theC31 systemmyk considered 
as one of the three fundamental physical elements of military systems campe- 
ting for resources. For the force planner the question is hckJ to distribute 
the available human and financial resources amng these elerrrents so that, 
in the prevailing threat environmnt, tiere is a high probability that the 
military missions essential to meting the national objectives can be acm 
plished. Si-m the answer also depends on the operational philosophies and 
concepts of the respective military forces, we may, in a sorwhat simplified 
mmner,conceptualize the overall force planning pmblem in the form of a system 
of interacting physical and conceptual elemnts as depict& in Fig. 1. 

THREAT ENVIRONMENT 

MCEPTUAL 
TS 

Fig. 1: Fundamental Elements of a Military Dcfcnce System 
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The C31 systm interacts with all the other force elemnts, n&t the * 

lesstwith the mncqtual elmtof tacties anddoctrine.For example, a 
military system employing the .~!~fhvzptaktik practic& in the &kmn &md 
Ebces my very likely rquire carparatively little C3. Rather than giving 
porewlessdetailedorderstotheunitenttustedwithamission,acmrding 
* .-hftZUpt~~tik rrrerely the objectives are stat&while it is left to that 
mrit'sacmMndertodetermine~tOacconp~thea$jectives.Thus,itis 
pmposed that,whendesigningamilitaxyfo~tiits C31 systan,alsctac- 
~and~ineneedtobereviLwedand~p~totwcimize~p~~ty 
obmissionacccmplis~twithintheconstraintsimposedbythea~le 

B. 

2.THEPmELEMoFPIEm4ERL hNF?LYSIS 
It appears thatreality of kday's force planning hardly wts fm 
~se~~r~~.Ela~rit~~~~~~elanentsasgi~para- 

mgtersandconsiders~of+he~~iealel~tsrroreorlessiniso~ti~. 
Fbreaqd.e, forcedesignanalyses aremstlyre&icted to %ptimizing" the 
wE!qnsmi.%ofIliiUbrydefencesystem tacitlya!mmingthe&stenceof 
~systansandC31capabili~~thatFermittheanp~tofthe~ 
-system attheirspecified (mxinnnn ) perforce level'). Tactics, dot- 
W,neandopsrational COnCepts XeUsudllynotanalysis subjects butare 

ansiderdinvariant pammzters (see Canby [41). The a priori specified 
missionsandabj~vesareass~~beefficientin termsoftheoverall 
(strategic) defencemission.Z%erefore , it is likely 'bat, as a me- 
quenceofthoseanalyses, theaperationalca@ilitia ofcurpresentmilitaxy 

.foresandthe ~atcapabiUtiesofIMnyoftoday'~sophisticated~ 

') Tvpically, in those studies the objectives are defined in terns of an 
array of taxgkts which have to be neutralized within a specified tim. 
As long as they survive, theweamnsystemare assumtdtooperate con- 
tinuously at their technical and oFrational performance specification im 
plying unknit& availability of targets, ccmunication, POL and spares 
and assmning semice Support Systems being attrited uniformly and at the 
same rates as the respective weapn systm they support (see e.g. Nkr and 
Nbker [31). 

681 



systems represent merely theoretical maxima. In reality, inadequate senrice 
support systems, less than perfect C31 systems, and not quite appropriate 
tactics must be eqected to degrade these capabilities perhaps significantly 2) . 

. 
It is true that, in the past +xo decades, significant amounts of resources 
have been spent on in-proving the C31 systems (Testes et al. estimate about 
9 billion dollars have been spmt up to 1980 in the US alme [ll,p.40), but 
these efforts have not got anywhere near a situation that would justify 
the force designers' highly optimistic assmptions regarding the C31 capa- 
bilities. On the contrary, sme experts even believe that, by having con- 
sidered C31 in isolation and maximized the use of rmlem technolqy for 
its mm sake, wa may have en&d up with systems that will not mrk in war 
(Cusbruan [51, p. 46). 

A bureaucratic institutimalization of the action-oriented cost-effective- 
ness approach within the PPB tiagmznt frmemrk may have contributed, 
perhaps significantly, to such a situation brought about by piecemeal 
thinking in defence planning and analysis (see also [6,7]). In the plan- 
ning phase of the PPB prmzess, national goals are, through a t-own ends- 
means analysis, deccarposed into elenqtaq military tasks. For each of these tasks, 
alternatives to their accomplishrrent are determined in the programing phase. 
Based on a cost-effectiveness assessment of these alternatives the responsible 
planners compile prcqram prvsals for eventual in@emntation in the budgeting 
cycle. 

However, due to the impact of rr&ern technolqy military deface systems tend to 
kcmte ever rare ccmplext i.e., their elements are increasingly interrelated. They 
also represent open system with a highly dynamic environment. Therefore, the 
devsition of overall goals into su&oals and elementary tasks will hardly 
lead to set of truly disjunctive elemnts so that the "optimum" (mst cost- 
effective) solutions determined separately for each of these tasks may, at 
best, be conaiderd only as initial solutions that need to be iteratively 
tested for their mutual and environmntal ccxqatability in the light of re- 
source constraints and enemy reactions. Hmever, since military planners usually 

2) It is for this reason that Testes et al. Eje& the view of C 
3 I SyStemS b=hg 

considered "Force !&ltipliers" capable to s~crw increase the effectiveness 
or evlen the mnntxrs of a fi.jced set of weaponsy. Because 
relatimship between the C31 system and the warfighting 
is perhaps mre of a "Force Divider" or rather a "Force 
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operate in an orqanizational environment characterized by rather rigidly 
mntalized Xerarchical bureaucracies,. the feedback necessaxy 
for an iterative testing and adaption of solutions hardly ever exists. But, 
without it, the holistic idea that, being systems analysts, the authors of 
the PPB approach undoubtedly atter@ed to implenaent in public planning, 
bewmes pe~~rted through the bureaucratic institutionalization of piece- 
ma1 thinking on the level of elerrtantary tasks (i.e., the whole is the sum 
of its parts!). It also contributes to the planner's preoccupation with the 
future because the isolated problem solving makes him forget that his solutions 
may only be mlemented in an evolutionary manner, i.e., they must be cci~r 
patible with the present militxy force and its forseeable overall evolution. 

As a conseguene, force planning in most NA!IO nations seems to have largely 
degenerated into adjusting prwam prwsals (independently arrived at by 
the services and arums branches) to the available resources. lhless political 
considerations dictate otherwise, resource constraints are usually effected 
through cuts across all of the elmtary tasks with a bias tmard the 
mxe visible weapon systm rather than support systerrs or even C31. 

There is no doubt in rry mind that, by atterrpting to be respnsive to the daily 
needsofthemilitaryplanners, the systems analysis axrmn&ty has wntri- 
buted to this situation. As early as 1968 Schlesinger has -mstulatcd that we 
must get stlay fram 23~5Y%ionaZ systems aylaZysi3 II..in the sense of analysis 
to assist in a sirple choice be- several given alternatives for acw 
plishing a single objective or task" ([8],p.387). An analysis approach is 
needed that accounts for the ccxnplementarities arr0ng the military missions 
and tasks, permits trade-offs arrrong the conceptual and physical elements of 
the military forces, and explicetly considers the opE>onent's presurr& reactions 
to theoperationalandstructura~planningoptions. 

That the approaches of what Schlesinger called %rczd-ftiovrcZ systems arxzZysis 
are still very much alive in military planning is obvious frcsn the rather wide 
use of multilinear functions for the assessment of the effectiveness or utility 
of systems. A typical example canbe found in a 1980 publication on a study 
to define the requirements for a nm mt aircraft for the German Air 
Force [7,91. There, the GAF mission was defined in terms of the n&r Pj of 
j-typa targets (j=l ,...m) that have to be neutralized within a specified time 
period in a conflict. With xi denoting the n-r of weapon systars of type i 

and %j the nwber of j-type targets that an i-type system can lx expect& to 
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neutralize within the sFifi& time, the mission was defined by m linear 
equations 

P. 
' i 

= E aij xij Vj 

where xij is the n&r of i-type weapon systems allocated to j-type tar- 
gets. Using an LP, the h3ximum 1 mission capability of the existing systerrs 
1= 1 ,.,.,k was determined fran 

m k 
Pc=C c =ijxij =Max 

j=l is1 

su&thatEq. (1) andtheconditions 

m 
c x. 

j=l lj 2 xi vi, 

were satisfied. It turned out that 

1 m 
Pm= z P. *c p. 

j=l J j=l J 

(2) 

(3) 

(4) 

l.@., the maxirrarm potent&l of the existing force was only sufficient to cover 
the targets of types j=l ,...l(l < m) leaving a deficit of 

m 
PD = E Pj 

j=l+l 
(5) 

as the mission for which a nF3w-system had to be spcified. Fran the avail- 
able alternatives i = k+'i ,...,n the one with the lowest life-cycle cost Ci 

m 
ci',xici(xi/xl,..'xk) = Min, xi = ' 

j=l+l xij (6) 

satisfying Eq. (5) was selected as the candidate alternative for the definition 
of the requirements. The creative contribution of systems analysis was n-ore 

or less restricted to the piecemeal det emination, targetbytargetand 
system by system, of the target neutralization mility a 

ij* 

Another example for the use ofmultilinear functions inweapon systems 
planningcanbe fpundin a re~tpublication~the~l~layedbythe 
Gem Navy for the assessment of the new frigate 122 (see [lo], p.200). But 
also analysis engaged in net-assesmnt uses such linear fur.etions. 
An interesting example for this is Lucas Fischer's study of 1976 on thg conven- 
tional balance of forces in Central Europe f 111. He measures the balance 
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by the quotient of two multilinear functions each expressing capabilities which 
the Warsau Pact and NATO are able to deploy as a function of tim after the 
pact started mbilization: 

p*= 11 
a x +...+aixi+...anxn 

PZY 1 +” l +BjYj+. , .8~~ (7) 

where xi denotes the Pact and yi the NATO inputs (such as soldiers and 
wsapm systems), a i and Bj the marginal capabilities of the respective 
inputs. 

~.TIF~ENEE~FORDYN~WICANALYSESTHJWGH~T SXMULATICN 
In order to illustrate the type of analysis required in military planning, 
Huber P,12] has interpret& military defence as a production process. In 
analcqytoeconcmictheoryheproposedanextend& productiohfuncUon 

P* = f(X,,.*.Xi;...Xn,Y,,...Yj~..;Y~), (8) 

inwhichP* dmmtes tkdefenceptiuct in terms ofanetcapabilityofthe 
oppnents Xa.ndY,xiandyj theirrespective inputs. Infact,EZq. (7) is 
butaspecial functionalfom~f suchan exten&dpr&uckion function. 
When each side X and Y has but one type of input (harryfeneous force structure), 
equation (7) reduces to 

(9) 

describing ttie victory canditions for Lanchester-type battles betwmn X and Y. 
Lamhester 1131 hypothesized that under certain oanditions attrition in ccm 
batbeWeen tnohomgen~~us forces is, for each side, proportionalto the 
nun-ericalstrengthof the enq.Thus,wemaywrite: 

withxandydenoting theinstantanmus nmrkrs of live units of sides X 
and Y, and a and b the *called attrition-rate coefficients. ElimJnating dt 
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fm Eq. (10) and solving for the initial umditions x = xo and y = yo, we 
obtain 

acxz - x2, = b(y; - y'). 

If-we mnsider, e.g., X the winner, if y =Oandx > 0,we readily deduce frmn 

(11) that 

or 

K 
x0 Ja 

= > 1. 

yo K 

(12) 

Witha= Jaand13= K E+(9) and Eq.(l2) are identical. 

This resultshms thatthemilitaq planner's production function is essen- 
tially a solution to a' mathematical rmdel of battle or war. Hmever, for actual 

p-9 purposes Eq. (10) is hardly a sufficiently realistic rrpdel. To this 

end, the &l must be considerably enriched (e.g.,accounting for hetereogeneous 
forces au-ted by cc&at support elemnts and under conditions of variable 
attrition-rate coefficients) in which caSe analytical solutions are rather 
wssible. The only feasible approach tc eventually specify military prcduc- 
tion functions is the exprime&t one through battle simulations. 

Attmpts to derive such-functions frcm records of historical ccnflicts and/or 
pers&lc&~atexperience are usually frustratedby the randmaess of cmbat 
circumtances and by insufficient records and reccllections. But even if we 
hadperfectremrds, theusefulness ofprcduction functionsderived frmthm 
would be rather questionable. 

This is because we can not be sure whether the historical processes represent 
-effi&mt processes in the sense that both sides qloyed their forces in 
a mutually MoptimaY' manner. The implicit efficiency assumption of em&c 
pr&xtion theory (that the ptiuction processes frmwhich the production 
fumtion and its coefficients are determined) is only justified as long as a 
qting market eliminates inefficient producers. Hmever such an a priori 
assMlptim is highly questionable in the defence field because (1) defenoe 
organizations met few of the characteristics of qtitive firm; (2) theiz 
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ultimate objective is nothing less than trying tc prevent the "mrket" from 
happening. Thus, an explicit analysis of the processes by which military inputs 
are amverted into outputs, that is an -nation and &entual adaption of 
the -rational principles and doctrines a3ntrolling the military production 
processes, is an indispensable taskwithinmilitary forceplanning.Technw 
lqicalchangen&ces this anevenmore urgentrquirerrent, even if ccMatex- 
perience is available. Christopher Hawie's essay on "Technolcqicjrl Change and 
Military Pclwer in Historical Perspective" 1141 presents ample historical evi- 
dence on lxNzh, haw the adaption of operational principles to new technology 
providedthedecisive~, andhcwaretruepecti~militaryidsolcgystcod 
in the way of innovation . 

Steven Canby's 1973 criticism of the systems analysts around Alain Enthoven 
tinly ancerns the efficiency assumption -lied in their analyses, They 
acaeptd the philosophies, concepts, and operational principles underlying 
militaq organizations as given rather than making them subject of the ana- 
l-is. mat Enwven+&n$idered t&m to be efficPent iS obvious froni his-et: 

NArqy force planners must b2 satisfid with the current force structure because 
tiy have not pmed changes when invited to do so" (see [4l,p.9). ' 

In the context of long range armarrents planningHu&r 1151 discuises an mle 
which Mtrates. the ixrpact of operational mncepts on capabilities and strut- 
turesof~appos~tsacticalairforces.Basedontheass~~on~t~cdl 
air operations are prforn& in direct and/or indirect supprt of the land battle, 
he obnsiders tactical ai]: wr. as a multistage gam where the adversaries decide, 
at each stage, how to allccatz their tactical aircraft to the basic tactical air 
missions of Offensive Counter Air @CA) and Offensive Air Supprt (QAS), so that 
their respective wilities to supprt the land battle m a IFaxinapn re- 
lathe to that of the enemy. With resw to force structure planning,both of 
the -fictitious an+as#lists are ansideredtobe astrainedbyconstantbudgets. 

31 The German Blitxlkrieg stratfqy of World War II, amUn$ng a msss tank offen- 
sivewith infantryandairsupport, is the classicalexample fortith. It had 
been anticipated by FUller and Lidell Hart, but it was dismissed by the 
traditionalists in the British Army. But in W&mar Gsmy, the hard restric- 
tions of the treaty of Versailles enforced a drastic break with the past. It 
encouraged the devdqment of newoptionswhich~ evidentti the early 
wgns of WW II. Hmver, the operational and technicLJ inwvaticm of 
t.heGenrans in the land/airwardominw.re notmtched in navalwarfare. 
In fact, their naval ccnstruction plans were quite old-fa$hion&, an indi- 
cation that the navy's ~ationalthinkingessentiallyresurrredwhere it 
hadceasedafter~ldWar1. 
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Tab. 1 shclws results of four gan-es in terms of the relative OS-capabilities 
of defender (V) versus &ticker (A) . 4) The underlying force stru&urac are 
charaoterized by heavy (H) and medium (M) tactical aircraft on which both 
sides spend half of their available budgest each. A is assured to have 30% 
mre aircraft, V to have aircraft of s-hat better performme with res- 
peat to payload and weapon effects as well as sortie capability. 

attackerA 

> nomA 0.86 0.99 

ii --- 

3 o@toc?i . 2.87 1.0 

Tab. 1: Relative OAS-capabilities of V versus A 

Thevalues inTab. 1 are ncxmlizedaroundthe casewhereboth sides pursue their 
optimum policies in term elf tission altitions (opt. OCA). Thus, all values 
must be interpreted in relition to the "balance" of that case. Whatever actual 
OAS-mpability ratio my have resulted there, the values indicate that it reduces 
to 86% if both sides allocate their aircraft to OAS only. The values also shm 
that the attacker A is practically forced to open the carpaip with an OCA opration' 
If A'leaves the OCA to V, then the OAS-potential ratio increases by a significant 
factor (2.87). This result is due to the superior OCA perfomce &aracteristics 
of V's systems which A must prevent from becoming effective. This is U in 
spite of the lclw OCA effectivenss of A's system which do not s&nificantly reduce 
the w ratio (fm 1 to 0.99) when V does not react to A's OcA. 

4, mc terrm mXm%r and .defc@m do not imply that the respective antagonist 
is limited to offensive or defensive operations. They only indicate that the 
attacker initiates the hostilities, i.e.,gets the first mve, to which the 
defender reacts. Both have perfect intelligence. 
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This example illustrates that, for given force structures on lath sides, the 
balance may vary significantly depending on the operational cmcepts chosen by 
each side. This is to say that the efficiencv of military prcduction processes 

is hot only depding on one's mm operational principles and dmtrines, it is 
equally sensitive tc those of the potential enemy. Quite similar findings were 
recently presented by Farrell 1161 who has evaluated a large nm&er of sinus 
lated land mm&at histories. He showed that, in many instances, tactics 
and doctrine have a rmch mre decisive influence on mn33at outs than weapon 
systmperformmceparamters. 

The hplicatims of these findings for the systems analysis suprting the 
planningofmilitary systems are obvious: Military system and their e&rents 
may be adequately assessed only through dynamic analyses -laying, in an experi- 

5) mrltalfashion,gamingmdels , which "act out" cmbat and provide the infor- 
mation necessary to trtiff resources (mn,systerrs), structure,mine and 
tactics explicitly accounting for the sam factors on the potential oppnent's side. 
Beingtheartof qlaying cmbatresources, Mcsanddmtrineareimplmr~nted 

-w- decisions requiring smz kind of C31 capability. Therefore, a mxe 
or loss explicit representation of C31 in am&at sintulatims is prerequisite to 
(1) a mre realistic asscssmnt of the capabilities of the &sting forces; (2) 
the evolution of tactics and Mine such that the inherent force capabilities can 
& fully exploited: and (3) the %alancedW design of militaxy systems in general 
and of C31 system in particular. 

5) The Tern "gaming" is used to characterize &sided battle &ls in which 
the opponents react to each others actions either through interaction of 
humn cmmanders or through a formliz& contingency logic or through sin@e 
decision rules. Such ganw caqrise thz entire range frommilitary ezercises 
and combat exFerirrrant,- 
arlQti4 games. 

qloying mn and equipnt to the highly abstract 
The abovediscussedairwargarreis anemrqleofananalytic 

game using simple decision rules. Itdescribac the states x~andy~of the 
wingair forces at tti step~by mostdte~tions 

x (ll+l 1 = f(x(uJ, y? a&) 

y('L+l) = f(x('L), y(u) I a&' 

where 
3 theore 

and D denote the operatimalstrategies of the adversaries. The game 
c&c&m rule is given by 

min. nwx 
7.l 

au E E A 'vE ED 
Wh@EU 
siveai~sup&&er&aYS~f defmderamlattacker reqxct&ely. 

= ID(a ,P 1/I (a B ) is the utility function with I and IA the offen- 
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4. ASIVE S~TION MR C31 REXARCH 
It seems to be generally true that the acceptance of -1s of soci~technical 
systems tends to decrease as the degree to which human factors influence the 
system dynamics increases (see,e.g., Schultz and Slevin [17:). The evidence avail- 
able frrxn military OR/SA certainly attests to that. With air co&at being in- 
fluenced to a much larger extent by physical and engineering than by hm 
processes, at least when cmpared to land cc&at, air war -1s have became 
accepted earlier and to a much higher degree than land war rrcdels 6) . 

But a similar pattern canbe r~rognizedwithinland~atmodellingiftnFe 
ackcxJledge that the acceptance of models is closely correlated to their 
state-of-the art. Of the six &at processes usually distinguished in the 
literature (see,e.g.,Low 11811, modelling of 17: tf?ition and, to a seat 

lesser degree , of mo~ernevl.t is much more advanced than modelling of ~;~YWSB~OYZ, 
7 -- 3 

9omiL, aapport , zoribat service support, and of L' I (see Huber [19]). With re- 
gard to the latter, last year's NATO-symposium on "welling and Analysis of 
Dofence ProcessesM concluded, that II.. for those processes that are well 
understood in the sense of physics and engineering, there are quite adequate 
&els available. These include c -ications, the electronic effects of ECM 
and decoys, collection system performance, and muter processing. The weakest 
link in mdelling C31 processes and systems is the human elmt. Not mch is 
knm about the higher order cognitive functions and the population of.decision 

rrakers who -1-t tactics and doctrine and respond to intelligence and Em" 
([191,p.15). 
In a historical perspective, this situation seems not surprising. Because it 
was the very ignorance of how tactical decision makers operate in a mre 
ccn@ex co&at envirmt that made the systems analysts discover the rather 
old rr;ilitaq tool of interactive gaming 7). By the incorporation of a hman 

6) The history of military OR/SA in Germany is proof of that. It start&! in 
1962 when air force and navy initiated the operations of analysis groups 
to be followed by the array only about half a decade later. Also, while 
air force and navy errphasized con&at modelling right from the start, mt 
of the initial army studies were related to logistics. 

7) In mst closed combat simulation models and in the"analytic g-s the 
cc&at environment is rather simple. A typical example is the abve 
discussed analytical air war game. There, the opposing corrmanders only 
decide on the proportion of their forces allocated to offensive Counter 
Air and to Offensive Air Support. The model assums that, in doing so, 
they have perfect information on the instantaneous states and the,histgries 
of their CkJn and the enemy's resources. Also, practically the entire C I 
system is represented by the min-max decision rule. 
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gamr to represent the tactical decision maker, the problem of inadequate de- 
cision tils was circumvented. But,by doing this, C31 bzcarre an -licit ele- 
mnt of the military systm~ mdels that did not readily lend itself to being 
traded-off versus other elm-ents. In interactive uxrbat simulations gamzrs 
and garre controllers more or less "sirmrlate" the C31 systm. 

The develqurent of formal models of C31 system3 was part of mxe or less 
isolated assessments that were mstly restricted to the tsm 1-r system levels 
defined by Alberta (Xl], that of technic~s2 qjs!xn! perfo~~~~:ce 8, and that of 
i??~GPrmtib. attributes9) . (see Fig. 2). If perfoxmd at all, assessrrents on the 
third level of in~orm~ion ualue usually assumd, in true piecmeal 
fashion, that the informationvalue increases monotonically as the in- 
formation attributes improve (mtto: me and faster is better than less 
and slwer). 

Level 2 

F- 
Syrttm 

Lcvrl 1 

/ 

Ptr tormanct 
Mtasurts 

l YimthtsS 
’ Currtncy 
l Accuracy 

l Complettntss 

. Spttd 
l Mtmory 
. Acctss 
l Compltxi ty 

Fig. 2: Task Spccifie Mtasurtment Lcvtls of C31 Systtms (Alberts 1980) 

Therehavebeen severalpro~ls onhm tomeasure the informtionvalueof 
C31 system (see,e.g..,Cushrmn IS], Alberts [201, Miller [211, Hukr and 

8) E.g., ccnmunications s@, mmry size, access time, irLkruction carrplexity, 
and I/O characteristics. 

9) Timliness, currency, amaq, canpleteness, ard ease of Use, 
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Hofmnn [221). They all aqree that such rrrzasures must scmh~ express the con- 
sguenccs as to the expected course and outmE of the operations which the 
respective C31 system are senring. In the mntext of battlefield C31, this 

muld .be best accmplished through battle simulation 10) . 

But since data beccm information only after being processed in the re- 
cipient's mind, such simulation experimmts need to be ~.:;~?eractim, i.e., 
they must include the tactical decision maker. Interactive simulation would 
also permit to make the cognitive processes of military ccmmnders object of 

exploratory research thus helping to close the &ve indicated gap of knm~ 
ledge on the human element in C31 systems. And last but not least, interactive 
simulation is a conditio sine qtta non for the evolutionary developnt 
and the test of decision support systems and the application of artificial 
intelligence in battlefield C31. 

Indezd there is empiric1 evidence that sezn-c~ to underline the desirability 
of scm decision swrt capability for the field cmmander. Fran series of 69 
interactive cm&at games involving 23 sets of players Daniel [23] arrives, amnq 
others, at the conclusions that (1) mre data dces lead to ktter quality 
decisions, though the effect is small cwnpared to the variations in results 
betin'different players; (2) prior intelligence (as opped to intelligence 
obtained throughout the simulated battles) obviously dminates decisions; (3) 
players who make the "best" decisions take considerably longer than average to 
play the gam (in fact, Daniel's slmest player took Wice as long as the 
fastest player); and (4) the “-red’ players do l.ot better with mre data then the 

"better" players do with less data. 
tirding to Mel, the question as to tiether the rather small Fmpact that data 
levels (of in-battle intelligence) had on the quality of player decisions is 
syf@omatic of player's inability to make use of the data, or mrely reflects 
the factthathighdatalevels are perhaps su~rfluous, isyettobe answered. 
But either way, we might mnclude that rrerely providing imre and mre current 
dati my, for battlefield C31, yield only disappointing returns. Rather, cum 
mnders should be given scare data "processing" capability thus providing them 
effectively mre tim for their decisions. 

This suggests that, contrary to the hitherto practiced philosophy 

10) We concur 
will also 
a process 
WLp.47) 

with Cushmn's obsemation that '.. a prwaJn of battle simulation 
foster incremntal, evolutionary growth of C systelX, through 
of systematic trial and tification, in the absence of confliti 
. 
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of designing highly centralized C'I system in the fashion of the 
classical managemnt information system, we perhaps ought to pursue 
a highly decentralized architectural approach with sm AI capability. 
Such a philosophy muld also permit pursuit of the evolutionary growth 
of C31 systems postulated by Cushman because the necessary battle sinna- 
latiom could be largely perfoti as part of routine training ever- 
cises using the processors of such a decentralized C?I system. 

I-, the so-called mtmmd & staff simulators (CSS) proposed by 
Huber [7,12,241 aS part of a canprehensive system analysis approach in 
support of force planning 11) could be gradually materialized as part of such 
a C31 evolution. The CCS would be basically designed as interactive cartputer 

gams providing~militaxy staffs, at all axrmnd levels, adynamic (m&at) en- 
vironment for theik work. "In addition..., CSS-system would also pemit to 
btterassess staff.performanee.They~uldprovide amtinuouslyupdatedin- 
formtionon cammdand wntrolqcles as *ll aS a readily available testbed 
for tlmmwld and control systms" (see 1121,p. 107). 

As of today, wL2) have through a series of theses, dewloped the basic 
software package for a battali.on/brig~level CSS to demonstrate the 
feasibility of such system in form of a portable prototype simulator to be 
developed within a research program (hopefully) supported by the &rmm 
Amy. In addition to providing a training tool, this simulatcx is mnceived 
as an ins-t for eqirical research on tactical decisibn processes with a view 
-to the developrrtnt of decision support systems in C31 (see [251,p,4). 

In order to illustrate the type of pmblem to be tackled through gaming 
exprimnts bymans of interactive cmbatsimlation, t recently 

")I e the "wund Cing Approach" mploying hierarchically ordered fami- 
l&'of interbcting cm&at II&&S of both, the formal and the physical kind, 
which permit addressing future issues and alternatives in the light of 
current capabilities and deficiencies. 

12) Together with Prof. Hans W. Hofmnn at the Institute of Applied Systems 
and Operations Research of the Gem Armd Forces University. 
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published examples shall be,briefly reviewed. 0nc is on the use of 
gaming to develop m~nitive maps as meanstO establish the way in 
which tactical cmnanders n-cdel their (subjective) decision environ- 
mnt, The other describes an approach to deriving, based on information 
obtained from interactive gaming exper*nts, a. dezisiorr moJeZ for tacti- 
cal situations in which a multitude of criteria have to be considered. 

5.1 Citive Mapping 
In the 1982 paper on "Cognitive haps of Decision-Makers in a Complex Cam" 
[26], Klein and Cooper report on a series Of rfidnual gag experiments 
in which a n&r of players acting as divisional commanders were confronted 
with two scenarios each, a defence scenario and a advance-to-contact scenario. 
The players believed to be part of a team (txnsisting of themselves and of 
one superior and two subordinate cmmnders) playing iqteractively against 
a purposeful enemy. But,without the divisional annanders knming this, 
the enemy and divisional players' teem&es were played by the game oontrol- 
lers with their actions entirely pr&temulned. Thus,the players could be 
led throwh the same sequence of pr~plamedevents in the gam, so that 
their bzhaviour could be ved under an identical sequence of objective 
circumstanms. During the course of the gam, in each tim period, the 
players had to make reports ti their suprior ccmmnders and to issue direr- 
tions and orders to their subordinate mmders. This Wication was 
ta@ and frm the,transcripts of the recOrdingsrcqnitiva maps were derived 
for each player . 
"A cqnitive map is a representation of the perceptions and beliefs of an indi- 
vidual about his cm subjective world" ([261,p.63). It depicts the zoncepta 
used by the individual and the cama reZationships betim them. In their 
experimnts, Klein and Cooper only considered two types of relationships, 
psitive and negative. A positive relationship exists when a change in the 
predecessor mncept causes a similar change in the successor. A ,',ag*tive 
relatiOnship characteristics a case where an increase (decrease) in the pre- 
decessor causes a decrease (increase) in the successor. As an example, the 
player statement that 'I.. mraleis high, as they (tiers of a friendly unit) 
are advancing with little oppsition..." is analyzed to exhibit a psitive 
relationship be-n the concepts of "high morale" and "LlnOPF032d ad~a~Ce~~, 
As an example, Fig. 3 shms the cognitivemaps thus derive fortoodifferent 
players in the advance-t*cOntact scenario. 
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PLAYER A: 

PLAYER 0: 

a = action open to friendly player 6 I 0 = friendly goats / 
R.. i action open to enemy / N., S., P. D external. factors I Us trtcndly utility 

Fig. 3: Cognitive Mops in Advance- to -Contact Scenario 
I Klein and Cooper [271 ) 

From such maps Klein and Caper noticed, armng others, a rather significant 
difference in the m&r of concepts identified by different players and in the 
dens+ies' 3, of their cognitive maps. But, for the mjority of players, the rum-&r 
of conceptswasquite similar in the twoscenarios.Thisleads themtocon- 
elude that the nuher of concepts 'I.. has apparently little to do with the 
objective situation and r~y present scm limit to the quantity of concepts that 
the decision-maker feels he EKI usefully cope with at any one tirna" [26],p,66). 

13) @Jmberofabservedlinksdividedbythemaximum number of possible -9 
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But the fact that the larger maps generally exhibit a curparatively 1~ 
density seems to indicate that larger maps contain rrore peripheral concepts 
of limited influence. M ..the central sections of different players' rqs 
are . . . appzaring in the same or slightly altered form in several playelrs' maps." 
([261 ,p.66). 

From these and other results j.t appears that cognitive mapping should be a 
valuable tool for the structuring of k~kxIZsJge Lases in tactical expert 
systems and for organizing their cZata 5n,cs~ through a series of properly designed 
ccanbatexperirfk3ks. Using interactive computer-simulation, it should also 
Beck possible to shed sm light on the largely unresolved issue of 
decision quality as a function of map size and density and on the impact of 
training and doctrine with regard the adequacy of decisions in given scenarios. 

5.2 Decision ModelUng 
The idea of using interactive carbat simulation to develop descriptive decisim 
-1s for incorporation.into closed &at'gms has been proposed by Reid&hub= 
[28,29]. But it could alsq be employ& for the develomnt of decisian aids in 
tactical c2 systm3. 

Reidelhuber interprets the tZctica1 decision problem as having to choose the 
action AD which is the (most) appropriate jn a given decision situation des- 
cribed by a data vector 

(13) 

of m criteria that may be thought of as a two dimensional profile as shm in 
Fig. 4a. 
Inorderto findAD, Reidelhuberassumss that, in a specific decision situation, 
there is a ti set o$ possible actions Ai(i=l,...,n) and a set of data vectors 

zi = iEi, , . I . ,Gij /...I xi,1 (i--l,... ,n) (14) 

each of which is refererzce profile for the corresponding Ai(see Fig. 4b). The 
decision problem thus reduces to the question as to which .Y1 is best in 
situation XD and should be selected as AD. 
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0 0 ---1 

Fig. 4 b. Rtltrcnce profiltr 

Fig. 4: Protilcr in a Decision Situatton ( Rcidelhuber 19e2 ) 

To this end, Reidelhuker proposes the decision rule 

m 
min P(Ai) = C rfj (z 
id j=l 

ij - "nj'* * Ai, (15) 

where r. . 13 
denotes the relevance factor taking into account tiat different 

criteria nwy have diffcrcnt weights in the decision considerations. 
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For the determination of the reference profiles !( and the relevance factors r.. 13 
a nu&er of p similar decision situations '(p >> n) is generated in cause of an 

interactive combat simulation to find p data vectors thus establishing a matrix 
X of primary data. 

X = 
(16) 

Fkrthemre, of the n actions Ai taken by the players, one is assigned as the 
best to each of the p situations, i.e., to each rprl in the matrix X. Then all 
data vectors with the sm action assigned are collected in disjunctive classes. 
For each action Ai, the reference profile 2, is determind as the vector of the 

rrean criteria values X of the class mefiS3ers 

qi 
Ti =$ (lE, Xl,(AII qi 

'i 
,***I 

i = 
1=, Zj(Ai),.~*,~~;xlm(Ai'~ (17) . 

with qi as the nurker of mrs assigned to class i. 

The relzvance factor rij is defined as the reverse of the scaled standard devi- 

ation s.. of the criteria values found within each class i.e. 
13 

1 r.. 
11=5*' ij 

1 m 
s ij 

ST. = 
+ I & sil Si' + s, 1 = 

17 
I 

m 1 m 2m s; 
E (s. +-! E sill A 

g=l l9 m1=1 

Sij = [. 
1 

qi-l lzl 
CG. 

4 
- xlj(Ai) )*I"* I 

(18) 

(19) 

(20) 
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with at least one s # o in each class. The idea.of this definition is that the 
relevance of a criterion for the decision maker is the smaller the IK)re strongly the 
criterion value deviates when he selects the SITE action. The transformation 
mans norrrnlizing s and shifting the zero mint, because no relevant criterion 
should have a weight that is too small or too 1arge:The value region of ST. is 

Fig. 5 S~-KMS Reidelhukr's concept for the developnt and adaption of the 
decision model to new weapon Systems, to alternative enyagement tactics, and 
to nzdified ccnrrlmd and control doctrines. It starts with the existing de- 
cision structure and ends with the test of the decision tie1 in a "closed" 
simulation (decision rt&el replaces player). In case the results are not acceptable, 
the player may interactively &fy the decision model. 

a 

9 

Take decision no 
k-i 

Oafinition otactionr 
structure ? and crlttria 

Take profilts and 
rtlcvancr factors? Simulation run I 

lnttractive 
modif ication 
of orders 

Model integration - 
Estimate ol situation 
selection of actions 

I I 
Conduct yne with 
tactical decirim rode1 

Monitor acetptanct 
ot actions ? 

- Set up classts Rotilts 
Relevance factors 

Fig. 5: Conctpt ror tht Dcvtlopmcnt of tht Tactical Decision Model 
( Rerdtlhubtr 1992 1 
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In this papz, the attmpt was mde to 11 demnstrate the necessity for the 
employment of interactive ox&at simulation in order to provide the infor- 
mation for a truly holistic assessrrent of militaq systems in general and 
C31 systa in micular; 2) illustrate hew interactive gaming could assist 
in developing and testing models of cognitive processes in C31, thus, not only 

helping to close a fundamental modelling gap, but also aiding the evolution 
of new systems with son-e AI capability. 

To this end, the gradual implmmtation of a "cmqmnd gaming approach" is 
suggest&, because in the absence of military conflicts there is hardly a 
viable alternative to assure an n.kq~~?*a contw2 of the development of 
military forces and systems in a mission oriented context and with due rglard 
to the limit4 availability of resources. InparUcularwith aviewtoa 
'%aZaneed" develvnt in the sense of a robuzt ambination of weapon systems 
mix, force structure, tactics and operational mncepts, means must be avail- 
able to study all of the fake elements in an interdependent fashion SO as 
to shm the possibilities and the limits of their mtual substitutability. 
There is smz indication that piecemeal thinking and analysis has led us to 
opt rather strongly for technology resulting in system 
very robust and rather expensive so that we my scan no 
afford force sizes that make sense operationally. 

that are perhap not 
longer be able to 

The preparation of this paper was support& by the U.S. Amy Research, Develo~t 
and Standardization Group (UK) under contract No. -70-83. 
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DECISION ALGORlTHMS IN FUZZY SITUATIONS 

H.-J. Zimmcrmann, Institute of Technology 
Templergraben 55, 5100 Aachen (FRG) 

-. 

ABSTRACT. Classical decision models and algorithms are either dichotomous in - --.-- 
character (feasable - nonfeasable, optimal - not optimal) or they are sto- 
chastic. There are, however, many decision making situations which are ill- 
structured ur vague and which cannot properly be modelled by use of classical 
tools. Fuzzy set theory has been put forward as a possible bridge between 
models and reality in above mentioned vaguely described situations. In the mean- 

time more than 4000 publications are available in the area of fuzzy set theory 
and its appl ications. Of particular interest for fuzzy set modelling seems 
to be the area of decision making. Algorithmic approaches such as fuzzy linear 
programming as well as results of axiomatic and empirical research and their 
application to civilian and military problems are represented. 

1. lN~RODLlCTlON Most of our available models and algorithms are “crisp”, i .e. - -._- “..--.-“- 
based tin tt-aditional rnatIhcmatics or dual logic which are both dichotomous in 
char;icler. This is cer.t;ainly appropriate if the problem under consideration 
is of the yes-cr-no type as frequently encountered in the physical sciences, 
in engineering or in hardware design. Here we can clearly distinguish beIwecn 
optimal and nonoptimal, feasable and nonfeasable solutions etc. 

Decision making normally involves human judgments, evaluations and percep- 
tions. Their structure is not dichotomous but rather vague, not of the yes- 
no but of the more-or-less type. If an essentially two-values modelling langu- 
age is used to model this type of problem then in-appropriate models may 
result and model-solutions do not coincide with problem solutions. 
There are different types of vagueness which have to be taken into account; 
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I. Vagueness concerning the occurrence of crisply described events. lhis is -- 
and has been the domain of probability theory. Typical statements of that type 
are: "The probability of hitting ,the tar,get is .6" or "There is a good chance 

of meeting him". 

II. Vague Phenomina --- _-...-- -- 
a.) ,In-Lr-_iJIsic V;lgucncss -.._-_.-_. -._ -_ 
This is a type of vagueness krljich is due to the vagueness of human judg- 

ments and concepts. Exi~rnples arc terms such as "tal 1 men", "acceptable 

profi is", "high vulrl~!r~;ll~ility", "long sticks" etc. 

b.) Informational Vayueness _ ..__. --._--._"-- .-...-. -. _-_.- 
we are accustomed to Lhe view tllat a lack of information causes vague- 

IIC!SS (for instance in stoctlasti c statements). There is, however, also a 

type of vagueness which is due to an abundance of information. A "crrdit- 

worThy" person could, for instance, be fully doscriljed by using a large 

number of "descriptors" . Since the tiuinarl capacity for information proccs- 

sing and storage is very lirniled, not all the necessary descriptors will 

be in Ltie mind of a per';on wtlen usirlg tllc term cr~~tliL~ror~tlIinr!~s. Iluman * 

I~cirqs can sti 11 ccJlllillur~jc.;lte using ttlesc tcrlns wl~ict-I are generally cal led 

“suLj~-ti ve cateyories” . OuI: MIerI cJc,irq so the set 0,1’ “crctlitkarthy !ricn" 

is no longer a set in tllcclassical sense but rather a category with 

vague boundcries. DecoirlpClSirIg such term s normally liiat;es the subcategories 

better and sharper defined because fewer descriptors are needed to des- 

cribe them sufficiently and rnen can he aware of a larger fraction of these 

descriptors at 'the time wtien using the terms. The next three pictures 

despic-t the hierarchies of "Subjective ca!xyorics’! dnd their subcategories. 
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Figure 1: Evaluation hierarchy (SC q Subjective Category) 
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Figure 2: Empirically determined hierarchy of subjective categories explicating 
the concept of credi tworth iness 
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Figure 3: Measure of Effectiveness (here readiness to fight) 



III. Vague relationship 
Statements relating phenomina to each other can also be vague. Examples of 
this type of statements are “not much larger than”, “approximately equal 
to.. .‘I etc. 

Intrinsic and informational vaguenesses are best characterized by the following 
citations: 

In 1923 B. Russell noted already: 
“All traditional logic habitually assumes that precise symbols are being em- 
p loycd. It is thcrcforc not applicable to this terrestrial life but only 
to an imagined celestial existence." 

Principle of Incompatibility: (Zadeh 1965): “As the complexity of a system 
increases our ability to make precise and yet significant statements about 
its behaviour diminishes unLi 1 a threshold is reached beyond which preci- 
sion and significance (or relevance) become almost mutually exclusive 
characteristics.” 

2. What are Fuzzy Sets 

The not ion of E fIiZZy set and the axiomatic system of fuzzy set theory was put 

forward by L. Zadch in 1965. Here just some of his basic definitions: 

Fuzzy Set: 

If X = (xl is a collection of objects denoted generically by x then a Fuzzy 

Set A in X is a set of ordered pairs 

A = t k u,(x)) 1 X E xl . 
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VA(X) is called a membership function or grade of membership of x in 
A which maps X to the membership space M. The range of the membership func- 

tion is a subset of the nonnegative real numbers whose supremum is finite. 

Equality: 

Intersection: 

( “and” ) 

Union: 

(“or”) 

Example: 

Two fuzzy sets A and B are equal iff 

+,tx) = p,tx) for all xEX - 

l-he membership function of A n I3 is given by 

I+,&) = Min (IJ,,(x), Qx)) 

The membership function of A LJB is defined as 

t&Btx) = Max h-$+x) I ,@x)) 

Let X = (10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 1101 
be possible speeds (mph) at which cars can cruise over long 
distances. The fuzzy set A of “comfortable speeds for long 
distances” may be defined by certain individual as 

A = I(30, 0.7), (40, 0.75), (50, O-8), (60, 0.8), (70, 1.0) 
(80, 0.8), (90, 0.3)) 

Support: The support of a fuzzy set A is a set S(A) such that x E X(A) iff 

I+) ' 0. 

Normality: It has already been mentioned that the membership function is not 
limited to values between 0 and 1. If SUPX~A(X) = 1 the fuzzy set 
A is called normal. A non-empty furry set A can always be normalized 
by dividing uA(x) by Supxu, (x). 
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Algebraic Product: The membership function%B of the algebraic product of 

two fuzzy sets A and B is defined as: 

Algebraic Sum: The membership function of the algebraic sum of A and B is 
also defined by its membership function: 

Relation: A fuzzy relation, R, in the product space X x Y = C(x,y)lI x E X, 

Y EY is a fuzzy set in X x Y, whose membership function uR asso- 
ziates with each ordered pair (x,y) a grade of membership uR(x,y) 
in R. An n-ary Relation in a product space X = X1 x X2 x . . . x X" 

is then characterized by a corresponding n-variate membership func- 
tion. / 

The notion of a “decision” has always had very many different semantic inter- 
pretations. Two distinct approaches are of particular importance: In cognitive 
(descriptive) decision theory a decision is an information processing process 

which can either lead to an evaluation (measure of effectivness) to a ranking 
of different alternatives or to an “optimal solution”. Probably better known 
is the definition of a decision which is used in normative decis,ion theory 
(logic of dcci sions) _ Ilerr? a decision is the <ict of selecting n specific solu- 
tion (action) which is feasable (element of the solution space) and optimal 
(F-i. maximising an objective function). 

The latter notion lead Bellman and Zadeh in 1970 to define a decision in a 
fuzzy environment as follows: 

In a fuzzy decision situation the constraints as well as the objective func- 
tion(s) can be fuzzy sets, characterized by their membershipfunctions and the 
“decision” is the (fuzzy) set of all activities which are members of the fuzzy 

constraints sets and the fuzzy sets characterizing the objective function(s) 
i .e. the “decision” ,is the intersection of all fuzzy sets involved (objective 
functions and constraints). 
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Examole 1: 

The board of directorsis trying to find the “optimal” dividend to be payed 

to ,the shareholders. For financial reasons it ought to be attractive and for 

reasons of wage negotiations it should be modest. The fuzzy set of the objec- 

tive func.tion “attractive dividends” could for instance be defined by: 

r 1 for x > 5.8 

l+)(x) = 1 (-464x3 + 7961x2 - 14530x + 7033) for 1 
100.000 

5 x 5 5.8 

I 
L 0 for x 2 1 

and the ,fuzzy se.t (constraint) “modest dividends” by 

for x 5 1.2 

lJ,(x) = - 31805x* + 62206x + 65503) for 1.2 5 x 5 6 

for x ~6. 

The fuzzy set “decision” is then uD = Min (cl,(x), uC(x)) 

1 2 3 4 5 6 7 

Figure 4: A fuzzy decision 
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So far tl~e "decision" is sI.ill il fuzzy set. A rmscml~lc way of picking 

a dividend would now be to select the solution rvrhich lias the highest degree 

of membership in the decision set. In our example this "optimal decision" 

would be the dividend x0 = 3.5% with a degree of membership in the decision 

set of pD(xo) = .338. 

A second example which could also be regarded as a decision is the following: 

Example 2: -- 

An instructor at a university has to decide how to grade written test papers. 

Let us assume that the problem to be solved in the test was a linear programming 

problem and that the student was free to solve it either graphically or using 

the simplex method. The student has done both. The student's performance is 

expressed - for thegraphical solution as well as for the algebraic solution - 

as the achieved degree of membership in the fuzzy sets 'good graphical so- 

lution' (G) and 'good simplex solution' (S), respectively. Let us assume that 

he reaches 
‘/ 

“G = 0.9 and “5 = 0.7. 

If tile yrbde io be awarded !.jy tile instruc-lor corresponds to the degree of 

IIIC’tlh(‘l. ‘<II i 1, (Jr 111(.! rt!/?y ‘,C.‘t ‘r]iJ~Jd ~LJ 1 Ii 1. i (JII~ elf 1 i rl('ilr [Jr’o~~illll~ll i rig proi) 1 (~:n18 ' 

it b:ould be quite conceivable that this grade uLP could be determined by 

uLP = Mad I+ us) = Max (0.9, 0.7) = 0.9. 
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_...-_._,_--._. -- -. _..-. 
As a special structure of an optimization problem we shall choose Linear Pro- 
gramming. Let us consider the following cases: 

A company wanted to decide on the size and structure of its truck fleet. Four 

differently sized trucks (x, through x4) were considered. The objective was to 

minimize cost and the constraints were to supply all customers (who have a 

strong seasonally fluctuating demand). That meant: certain quantities had to 

be moved (quantity-constraint) and'a minmum number of customers per day had 

to be contacted (routing constraint). For other reasons, it was required that 

at least 6 of the smallest trucks be included in the fleet. The management wan- 

,ted to use quantitative analysis and agreed to the following suggested linear 
progrilraning-tipproach : 

Minimize 
41.400x, t 44.300~2 + 48.100x4 + 49.100x4 

subject to constraints 

0.84x, + 1.44x2 t 2.16x3 t 2.40x4 > 170 

16x, t 16x2 t 16x3 t 16x4 2 1.300 
. 

x.> 6. 
3 - 

‘I-IIC solutiorl was x, = 6, x2 = 17.85, x3 = 0, x4 = 58,64. Min Cost = 3.67O.U50. 
Since the management felt that is was forced into giving precise constraints 
(because of the model) in spite of the fact that it would rather have given 
some int:r\als, the following "fuzzy" approach was used: 

Starting from the problem: 

Minimize z = cx 
subject to constraints Ax < b 

x > 0, 

the adopted "fuzzy" version was 

cx < z 
Ax ? b 

x 70. 
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llcrc c is the vector of coefficients of the objective function, b is Lhc 

vector of constraints (in our case the amount to be shipped, the nuiilller of 

customers to be contacted and the minimum number of small trucks required), 

and A is the coefficient matrix. The symbol "$" denotes the fuzzied version 

of "<"-and reads "essentially smaller than or equal to". 

We now define a fqnction f: Rm+' -LO,11 such that 

0 if Ax 2 b and cx LZ is strongly violated 

f(Ax) = 

1 if Ax c b and cx < Z is satisfied. - 

Using the simplest version of the function iAx,cx) we assume it to be linear 

and the intersection of the (fuzzy),constraints and the (fuzzy) objective 

furlction. 

Thus 

f 

with 

(nx,cx) = f(Dx) = Min fi(UX)i)' x 20 

1 ' for (BX)i ibi 

f,(Bx)$ = 
1 - BXi * bi 
--,_. 

d i------ 
- for bi < BXi < bi + di 

0 for (BX)i > bi + di 

where di are subjectively chosen constants of admissible violations of tile 

constraints, 

fi(13x)i is the membership function of the i-th row of the linear system Bxi, 

Min fi(BX)i) 

is the "fuzzy" decision 

and 

Max Min fi(BX)i) 

the decision with the highest degree of membership. 
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Substitutdng. 

componentwiSe and simplifying it by ,dropping the “1” (which does not change the 

problem!) L,% arrive at the following problem: 

Ma>- Nin (bi - (B'x)~) 
x>C: i 

or 

program: 

Maximize x 

strain 

Max U,(x) 
x>o 

As is well k-,3wn, th s problem is equivalent to solving the following 1 

s ALbi - 

x>o 

inear 

(x) 

(~x)i, i = O,l,..,m 

The optima 1 :Qlution to (x) is also the optimal solution to (xx). 

(xx) 

When this ap;,roach wss applied to our problem the following assumptions were 

made: 

1) Total cor;t should not rise above 4.200.000 (budget limit). 

2) The "unfuzzy" constraints are minimum requirements and management would feel 4 

much better if there was some "leeway". 

3) The linear approximation of the membership functions are acceptable. 

4) There are no interdepencies between the constraints. 

5) Weighting of the constraints is taken care of by defining the constants di. 
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The results are shown in the following table: 

Unfuzzy 

Objective Function 
1st constraint 170 

2nd constraint 1.300 

3rd constraint 6 

Fuzzy 

p=o !.I=1 

4.200.000 3.700.000 

170 180 

1.300 1.400 
6 12 

Our non-fuzzy equivalent problem in the form of (xx) is then: 

M,IX itIIi/(! x 

suh,j~ct tn constraints 

A < 7.4 - - 0.083x1 - 0.089x2 

- 0.096x3 - 0.098x4 

A .' - rn I- o.on/lx, + 0.144x 
2. 

+ 0.216x3 + 0.24x4 

A<- 14 + 0.16x, + 0.16x2 

+ 0.16x3 + 0.16x4 

A < - 2 + 0.167 

x1 sX~SX~SX~ 1 0. 

Solution: 

Unfuzzy Fuzzy 

x1= 6 x1 = 17.41 

x2 = 17.85 x4 = 66.54 

x4 = 58.65 

2 = 3.918.850 2 = 3.988.257 

Constraints: 

1. 171.5 

2. 1.320 

3. 6 

174.2 

1.342.4 

17..4 
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As can be seen from the solution, “leeway” has been provided with respect to 

all constraints and at additional cost of 1.7 percent. 

The main advantage, compared to the unfuzzy problem formulation, is the fact 

that the decision maker is not forced into a precise formulation because of 

mathematical reasons even though he might only be able or willing to describe 
his problem in fuzzy terms. Linear membership functions are obviously only a 
very rough approximation. Membership functions which monotonically increase 
or decrease, respectively, in the interval of Cbi,bi+dil can also be handled 
quite easily. 

The above fuzzy 1-P approach can also be used to .tacklc multi-criteria-problems 
very efficiently. 

In the following we shall restrict our considerations to linear programming 
problems with vectorvalued objective functions. For instance we shall use the 
following example: 

Example 3 

s.th. -x1 t 3x* < 21 

x, + 3x2 c 27 

4X, t 3X2 545 

3x, t x2 5 30 

x, I 9 1 0. 
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Figure 5: A Vector Maximum Problem 

Figure t; shows the solution space of this problem. The "complete solution" 

is the edge x1 - x 2 3 - x - x4. x' ' 

tion z, = -x1 + 2x2. x4 

IS optimal with respect to objective Func- 

is optimal with respect to objective function 

,z2 = 2x, + x2. The "optimal" values are z, (x1) = 14 and 22 (x4) 

respectively. For x' = (7,O) 22 

= 21, 

= 7 and x4 7 (9,3) yields 2, = -3. 

Sollltion x5 = (3.4, 0.2) is the solution which yields z, =: -3, z2 ,= 7 the 

lowest "justifyable" values of the objective functions in the sense that a 
7 

further decrease of the value of one objective functions could not be "balanced" - 

or even counteracted by an increase of the value of the other objective function. 

We shall now apply our FLP approach to the \ectormaximum problem and make the 

following assumptions: 

The membership functions u, (x) and u2 (x) of the fuzzy sets characterizing 

the objective functions rise linearly from 0 to 1 at the highest achievable 

values of z, = 14 and z 2 = 21, respectively. Thus 
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0 for 2, 1. -3 

’ 
I-+ (x) = 

I 

z,(x) + 3 
for -3 < 2, 5 14 17 

1 for 14 < z, 

r 
0 for 22 5 7 

l+(x) = 

’ z,(x) z 7 

1 
14 

for 7 < 22 5 21 

L 1 for 21 c: t2 

We arrive at the following problem 

Max A 

s.th. A 5 -0.05882x1 + 0.117 x2 t 0.1764 

A 5 to.1429'Xl C 0.0714X2 t 0.5 

21 2 -x1 t &3X2 

27 2 x1 + 3x2 

45 1 4x1 t 3x2 
30 2 3x1 t x2 

x,0 
T x 

depicted in Figure 6. 

IO 

/ Xl 

\ 
X2 

Figure 6: The Vector Maximum Problem 
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Non1 inesr mcmbcrship functions -I-.- 

Hersh and Caramazzy have shown that membership functions of the following 
type exist: (also compatible with economic laws of decreasing rate of in- 
crease of utility): 

f (yl 

f (c)-,1 

f (b) 

f (a)=0 :+ 1.’ -- I, /.... .--Y. 

. 

-- --- 

a b C 

Such z non1 inear inMJl=rship functi 
Puliction. For each objective funct 
Ily~)P~*t~Cll i-C rn2mbcrship function pH 

ing 
on can be described by a hyperbolic 
ion zj , j = 1 , . . . ,k, the correspond 
is defined as follows. 

A,4 
-(z, (r:)- ’ J 3 +r,, 

- II 3 IJ 1 
’ 3 2’ A,” 

--lzj lx)- ’ J)‘,. 
+ f2 2 3 

where aj is a parameter. 
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The followin!] figures illustrate 1.l~ hyperbolic Imkcrship functions of 

the objective functions z, and z2 of the given example. 

LJh (x) = 1 c 
(z,(x) - lSl$ -e-(z,w - 14); 

“2 
--+--.- - -- .--c__- 

2 --)2(x) - 14,g-Y +c(z,(x) - 14g 
4 
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The problem now reads: 

Max x 

such that 

0 
AZ, z .+z 

1 r: 

(Xj 1x1 I2 ‘)a. 
3 - 

-~zjM+l. 
3 

h 
e 

-- 
2 

5 
1 
- 

Z”+Z” 
0 

z’p+z . 
2' 

j = l,...,k 

Axsb 

x 2 0 

h ‘L 0, 

This is a nonlinear programm ing problem with one linea'r objective funct i 
k nonlinear and m+n+l linear restrictions. We shall now show that there 
exists an equivalen-t linear optimization problem. 

It can be shown (Leberling 1980) that for 

XrHl = t~lrlll -'(z&l) 

ilr~ cquivalcnI; formulation is 

Max 

such that 
7zj(x) - 'n+l $aj(~J t z;), j = l,...,k. 

Ax < b 

x > 0. 

for our probl 

formulation: 

on, 

em: (For aj = 3/ ' (ZO- 
2 j 

z;)) we obtain the following problem 
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MAX A 

such that 

1-p 
(-x,~2x,-5,5)j$ 

- c 
-(-x,i-2x2-5,5)& 

5 1 -- 
(,-x 1 i 2x 2 

e 
y-5, S)& 

+ e 

- 2x 2-5,5).,4 (.-x,i 

A-- .I @ 

(2x;iYyl 4)A 
- e 

-m,ix2-14)& 

2 
1 

-(2x,+x2-14)& 
5 -_ 

2 

-x 1 -i 3x 2 I 21 

x 1 -I” 3x2 I 27 

4x 1 -I- 3>: 2 d 45 

* 3x, -I x2 6 30 
x1 2 0 

>: 2 :- 0 

1, 2 0. 

The equivalent problem formulation is 

Max x3 

such that -6x, t 12x2 - 17x3 133 

12x, t 6x2 - 14x3 184 

-x t 3x 
1 2 I21 

x1 f 3X2 5 27 

4x, t 3x2 5 45 

3x, t x2 I30 

x1 10 

x2 1 0. 
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The optimal solution is 

(x1 
opt; x opt; 

2 
x opt 

3 IT = (5.03; 7.32; l.45)T. 

The maximum degree of membership of satisfaction 

Aopt = ; tanh (x30Pt) + ; = 0.95 

is achieved at the solution (xloPt; x20Pt)T = (5 03. 7 32)T 
. 5 - . 

This solution OS the wanted compromise solution of the given LVOP. 

Figure 9': The Nonlinear Case 
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4. Fuzzy Evaluation 

Examples of evaluation problems are the determination of creditworthiness 

and "readiness to fight”, which were mentioned at the beginning. Evaluation 
and optimization problems certainly have one feature in common: Fuzzy sets 

re.presenting subjective categories, objectives or constraints have to be 
aggregated. 

Comparing the dividend example with the grading problem it seems appropri- 
ate to reconsider the original definition of a decision as the “intersection 
of all fuzzy sets involved”. The grading example would suggest rather to use 
the union as a model and the two evaluation models do not give us any hint 
in which way the aggregation ought to be accomplished. 
The two definitions of decisions -. as the intersection or the union of fuzzy 
sets - imply essentially the following: 

The interpretations of a decision as the intersection of fuzzy sets implies 
no positive compensation (trade-off) between the degrees of membership of 
the fuzzy sets in question, if either the minimum or the product is used as 

an operator. Each of them yields degrees of membership of the resulting 
fuzzy set (decision) which are on or below the lowest degree of membership 
of all intersecting fuzzy sets (see Example 1). 

The interpretation of a decision as the union of fuzzy sets, using the max- 
operator, leads to the maximum degree of membership achieved by any of the 
fuzzy sets representing objectives or constraints. This amounts to a full 
compensation of lower degrees of membership by the maximum degree of mem- 

bership (see Example 2). 

Observing managerial or military decisions one finds that there are hardly 
any decisions with no compensation (trade-offs) between either different 
degrees of goal achievement or the degree to which restrictions are limi- 
ting the scope of decisions. The compensation, however, rarely ever seems 
to be “complete” such as would be assumed using the max-operator. 
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It may be argued that compensatory tendencies in human aggregation are 

responsible for the failure of some classical operators (min, product, 

max) in empirical investigations. 

It is crucial,for the appropriate modelling of decisions of whatever form 

to know: 

1. How to model properly subjective categories by fuzzy sets (i.e. how- 

to determine mcmbersh ip functions). 

2. liow to aggregate fuzzy sets appropriately in order to arrive at a de- 

cision, a judgment, a ranking or an evaluation. 

Two ways of proceeding are conceivable: 

a) The axiomatic approach (as in utility theory), establishing an axiomatic 

system which is at least plausible and derive the resulting mathematical 

models for sggregators and membership functions. 

b) Empirical investigations into the ways people think of subjective cate- 

gories (i.e. determining appropriate membership functions) and aggregate 
themto arrive at conclusions (i.e. determining models for aggregatos). 

?Jiw dutiiors hdvc usL’d t/b@ firsL approach [ 2 ] . we 'shall report on some 

results of doing research of the latter type. 

5. Cmpirical Results 
s--.---Y- 

5.1 Aqgregators (Connectives) .2x .-I.----- 
In earlier studies c6,91 it was shown, that neither minimum nor product 

CJ[JeratOr model properly the human "logical and". During these investiga- 

tions it appeared, however, that in managerial decisions the “logical G 

and" (without trade-offs") is not used at all. 
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Our hypothesis was that human beings use many non-verbal connectives in 

their thinking and reasoning. One type of these connectives may be 

called "merging connectives” which may be represented by the "compensa- 

tory and”. Being forced to verbalize them men possibly map the set of 

"merging connectives" into the set of the corresponding language connec- 

tives ("and", "or"). Hence, when talking, they use the verbal connec- 

tives which they feel closest to their "real" non-verbal connective. 

Thus a new word "compensatory and" had to be coined and possible mathe- 

matical models for it-tested. A number of models, such as the minimum, 

the maximum, the geometric mean, the arithmetric mean etc., were tested. 

In addition a special model, the so-called y-operator was tested. 

The following figures indicate some of the results . . 

canputad 

II (Xl 

Figure 10: Min-operator: Observed versus computed grades of membersh iP 

cl .1 .2 .3 .I .5 .6 .7 .8 .9 1 
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cl .l .2 .3 .4 .5 .G .7 .R .9 1 

Figurei2:Arithmeticmean: Observed versus computed grades of membership 

. 

Figure 13:y-operator: Observed versus computed grades of membership 

The r-operator performed best. The idea behind it i;. the following: 
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1 f severa 1 operators are necessary in order to describe a variety of phenomena, 

the question arises, how many operators are needed, as each important situation 
in practise would then call for an adequate model. Moreover, one would be 
forced to assume that man has a decision rule enabling him to choose the right 
connective for e7fch situation. The pursuit of this train of thought and especi- 
ally its application implies a lot of difficulties. We feel that one way to 
bypass these difficulties is to generalize the classical concept of connectives 
by introducing a Parameter y whichmay be interpreted as "grade of compensation". 

Each point of the continuum between "and" and "or" represents a different ope- 

rator. One way to formalize this idea is to find an algebraic representation 
foraweighted combination of the non-compensatory “and” and the fully cornpensa- 
tory “or” .* The more there is a tendency for compensation the more the “or” be- 
comes effective and vice versa. As “extremal” operators we prefer the product 

and the algebraic sum. Of course, other "extremes" are conceivable, for instan- 
ce minimum and maximum. But in our opinion these models are handicapped as they 
do not reflect the interaction of membership values. Thus we define: 

(4 

Ttlc li‘li.?riltJcrstlip Of dn bbjcCt iri the set /\eB equals the product of tl~e ~c;iyt'l;ed 

merr'bership values for the intersection and the union. 
If tt'c inter:nction and the union are algebraically rc:pr@:cntod by tl~e product 

and the algebraic sum, respectively, then the operator becomes: 

i = 1,2 ,..., m, m = number of sets to be connected. 

It can be shown that the r-operator is pointwise injective, continuous, 

monotonous, commutative and in accordance with the truth tables of dual logic. 
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Using this operator a model with very high predictive power could,for instance, 

be derived for the credit worthiness decision. The r's were determined from 

observations and then the following hierarchy resulted: 

Figure 14: Empirically detorrnined values of 7 for the creditworthiness hierarchy 

5.2 Membership Functions __---__.-.- .., _ -, - ._ - 

When determining membership functions empirically one first has to decide on 

wtlich scale level the resul-ting furlction has to be. This depends on the into-r:- 

ded use of membership functions.If they are to be used, for instance, in the 

framwork of fuzzy linear programming then they have to be on an absolute seal 

level. It is well known, however, that the human being is no reliable measure- 

ment device on this level. In [6 ] it was shown how to generate "quasi-cardinal" 

degrees of membership from human answers. These degrees of membership didnot 
constitute, however, "membership functions"(membership as #a function of a vari- -.--.--w 
able which is to be optimized) as one needs them for mathematical programming. 
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For this purpose another approach was used: 

Given that for a subjective category under consideration (for instance "young 

men") there exists a judgmental scale (years),and an evaluational scale 
(degree of being young) then the membership function of the fuzzy set can be 

viewed as the “distance” of these two scales. If the distance function is 
called d(x) then the membership function (Type II) is 

Lo) = ’ 
1 + d(x) 

Different models for the distance function are possible. The one that performed 

best so far is - not surprisingly - the.logistic function d(x) = e-a(x+b). 

The following pictures indicate some of the results of empirically testing 
the membership function 

u(x) = ’ 
, + e-a(x+bj ' 

The lines represent the mathematical model after the parameters a and b have 
been determined for proper calibration. The dots represent the observations. 

P(X) 
. 0’ 

.9’ 

. d‘ 

.7’ 

.6’ 

.5’ 

.4' 

.3’ 

.2‘ 

, I’ 

. . 

/\ 
* 

. 

.5-i 

.L 

.3 

.2 
.* 

-01 4, , . . . . , ;.-~ .__,_ .” 
IO a0 30 40 50 60 70 80 90 100 10. 20 30 40 XI 60 70 80 90 I00 

Figure 15: Fuzzy Set "Young Men" 
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ARTILLERY CONTROL ENVIRONMENT: 
AN EXPERIMENTAL TOOL 

Jill H. Smith and Jock 0. Crynovicki 
Experimental Design and Analysis Branch/ACE Team 

Systems Engineering and Concepts Analysis Division 
Ballistic Research Laboratory 

Armament Research and Development Center/USAAMCCOM 
Aberdeen Proving Ground, MD 21005 

ABSTRACT. The Army is fielding a new digital 
communications system, the TACFIRE system, shown for the 
brigade-area in Figure 1. In order to Investigate the 
command, control, and communications issues associated with 
the new devices, the Artillery Control Environment (ACE) was 
developed. ACE is a real-time, multiplayer, Interactive 
simulatTon system run on a commercial computer that 
interfaces with the tactical equipment through a bit box 
(microprocessor). This paper will discuss the preparations, 
experimental design, data collection and analysis methods 
for the first experiment with military players interfaced 
with the Artillery Control Environment software to be 
conducted 8 May - 10 June 831 

I. INTRODUCTION. In May 1982, the HELBAT (Human 
Engineering Laboratory Battalion Artillery Test) Executive 
Committee agreed that the Ballistic Research Laboratory 
Artillery Control Environment (ACE) and HELBAT activities 
should be combined to develop a Command Post Exercise 
Research Facility (CPXRF). The CPXRF can be used to 
demonstrate the use of commercial automatic data processing 
(ADPI technology for the RDTLE (research, development, 
testing, and evaluation) of .tactical ADP fire support 
control systems and also, for training personnel to operate 
these systems: the HEL/BRL CPXRF, however, will primarily be 
used for research and exploratory development work. 
Further, an ACE/CPXRF Subcommittee was formed to provide 
joint DARCOM-TRADOC guidance In the development of ACE 
technology and use of the CPXRF. The ACE software is a key 
tool in the CPXRF. The software features the ability to 
automatically load live players with messages produced by 
target acquisition and fire direction simulators while 
record-ing all the message traffic that flows between the 
live and simulated players. 

An overview of the CPX Research Facility and ACE 
program is given in the 1982 Sept-Ott Issue of the Field 
Artillery Journal in an article "HELBAT/ACE Fire Support 
Control Research Facility" by Mr. Barry Reichard. The 
layout of the facility is shown in Figure 2. 
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II. PURPOSE. 
the Tirst test in 
with the Artillery 

The experiment detailed in this plan is 
which military players wil5 be interfaced 
Control Environment (ACE) software. The 

purpose of this experiment is to demonstrate the feasibility 
of using the automated techniques of the CPX Research 
Facility for fire support control experiments. 

To demonstrate this capability, it was decided that a 
study of the effects of message intensity and degraded 
communication on a Fire Support Team Headquarter's (FIST Ha> 
ability to perform fire support coordination would be 
appropriate. Message intensity is defined to be a function 
of message type, message rate, and message content. 

III. TEST CONCEPT. 

A. Objectives 

1) To determine the effect of message intensity on the 
FIST HQ*s ability to perform fire support coordination. 

2) To determine the effect of degraded communication 
on the FIST HQ's ability to perform fire support 
coordination. 

3) To determine if message intensity and degraded 
communication have a combined effect on fire support 
coordination. 

B. Measures of Performance 

A measure of performance (MOP) is a response that is 
used to quantify the effects of the factors to be evaluated. 
Because all of our objectives investigate the effect on fire 
support coordination, the measures of performance will be 
the same for all three objectives. The following measures 
of performance will be computed on each two hour cell of the 
test: 

11 Number of messages serviced (i.e. for which a. 
response has been generated)/total number of messages 
received by the FIST DMD (digital message device) 

2) Time required to service a message (i.e. from the. 
time the message is received by FIST DMD to the time the 
response is first transmitted) 

3) Time from first transmission of service message 
until acknowledgement (ACK) is received for that message 
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4) Frequency count by try number of messages 
acknowledged 

5) Frequency count by try number of messages never 
acknowledged 

6) Number of fire missions completed/number of fire 
missions initiated 

71 Number of fire missions completed/number of fire 
missions expected (i.e. number of fire missions in the data 
base) 

C. Scope 

The fire support team will be a four-man team consisting 
of : 

1) the fire support team chief 

2) the fire support sergeant 

3) two radio telephone operator/drivers. 

The FIST chief will be available to the FIST HQ for 
initial supervision only. As per typical operating 
procedures, the FIST chief may be absent for extended 
periods of time (hypothetically accompanying the company 
c.ommander). 

The FIST HP will be task-loaded by software 
interactively simulating three platoon-level forward 
observers. The software FOSCE (Forward Observer SCEnarioI 
Will use tactical scenarios developed by Mr. Arthur Long of 
the US Army Field Artillery Board. This scenario or input 
database is detailed in the Section D, "Input Data Base" 
under RESOURCE REQUIREMENTS. 

The FIST HQ will have direct access to fire support from 
a company-level mortar platoon fire direction center (FDC) 
and a generic field artillery fire direction center. All 
FDC operations will be simulated interactively by software. 
The FIST HQ will determine the proper action (based on the 
FIST chief's guidance and training) for each fire request; 
either to deny the request, service the request with mortars 
or forward the request. Fire support will be unlimited, 
that is, not constrained by ammunition resupply. 

All members of the FIST Headquarters will be trained in 
the operation of the FIST DMD to give the FIST chief 
flexibility in managing his team. 
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D. Limitations 

1) The FIST DMD will,be operated in the review mode 
only. 

2) After receiving a fire request, the fire mission 
will be forwarded in the automatic mission mode. 

3) No FIST HQ initiated missions will be included. 

4) No tactical chores will be performed, e.g., guard 
duty, close station march order, emplacement, etc. 

5) All communication will be digital, no voice 
communication. 

E. Test Configuration 

Figure 3 shows the nodes that will be played in the 
first military player test. The FIST HQ equipped with the 
FIST DMD in the mock-up vehicle interacting through ETHER, 
the intracomputer communications network, with three forward 
observer scenario programs, the mortar fire-direction 
simulator and battalion fire-direction simulator. Figure 4 
shows how these players communicate together and the net 

- assignments. 

IV. RESOURCE REQUIREMENTS. 

A. Software 

ACE software permits real-time fire support command and 
control functions to be exercised in a controlled laboratory 
environment. The software is written in the C programming 
language and is designed to run under the 4.lbsd (Berkeley) 
UNIX operating system. The major components of the ACE 
software are described below. 

1. ETHER 

ETHER is a single program which functions as an intra- 
computer communications network. Computer ports are assigned 
to communication nets. ETHER accepts a message from a port 
and transmits it to all other ports on the assigned net. 
Message collisions are prevented by separately buffering 
each message within ETHER. 

Each net is assigned a probability of message loss 
which ranges from zero to one. If the probability of message 
loss is zero, the net is an ideal net and all messages are 
sent to each port on the net. If the probability of message 
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loss is greater than zero, a uniform random number generator 
is used to decide whether or not a message is lost. Lost 
messages are not transmitted to any port on the net. 

ETHER maintains a log file of each message which it 
receives. In addition to the raw message, the log contains 
the times (Julian day, hour, minute, second) for the start 
of the message, the end of the preamble and the end of the 
message. 

2. Ace Display (ADIS) 

ADIS utilizes a CRT (cathode ray tube) terminal to 
display in real time the messages being transmitted through 
ETHER. The terminal screen is divided into eight columns 
which are labeled for the players (see Figure 5). Each 
message is displayed as two lines in both the senders and 
receivers columns. The message first appears in the senders 
column. The first line contains the message type and target 
number if it has been assigned. The second character in the 
second line is a nCn, indicating “sender” and the time sent 
is given, The message will then appear in the “receivers” 
column. The first line is the same as in the nsenderVsn 
the second character in the second line gives the address 0; 
the “sender” and the time received is displayed. When the 
acknowledgement is sent by the “receiverw an n*n is 
displayed as the first character in the second line of the 
mreceivern and- when the acknowledgement is received by the 
“sender” an “in is displayed as the first character in the 
second line of the “sender”. If the message is degraded by 
ETHER “MSG LOST” appears in the receivers column. Below the 
columns, the last message sent is interpreted. At the 
bottom of the screen, the time from the start of that run is 
displayed. 

3. Forward Observer Scenario (FOSCE) 

Forward observer scenario program reads a database of 
forward observer (FO) messages and transmits the messages as 
if they were being generated by a real FO. Each message is 
time tagged so that FOSCE will know when to send it. In 
addition, FOSCE will retransmit a message if it does not 
receive an acknowledgement and will wait for message-to- 
observer (MT01 and SHOT messages before transmitting 
subsequent adjust (SA) messages. 

4. Fire Direction Simulator (FDS) 

The fire direction simulator consists of four programs 
which perform a limited number of TACFIRE/BCS functions. FDS 
accepts fire request messages, prioritizes them, assigns 
target numbers and generates MT0 and SHOT messages. The 
number of simultaneous missions which the FDS will process 

‘may be specified. If the number of missions exceeds the 
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maximum, the FDS will process missions based on mission 
priority. 

5. Mortar Fire Direction Simulator (MFDS) 

The mortar FDS simulates communication with the 81 mm 
company mortars. It is a special version of the FDS program 
which will only accept one fire mission at a time. 

6. Bit Box Program (BBP) 

The bit box interface program accepts messages from 
ETHER and transmits them to a computer port which is 
connected to a bit box. The program also reads messages from 
the computer port and transmits them to ETHER. 

B. Hardware 

1. Two Bit Boxes 

Bit boxes are microprocessor based devices which enable 
TACFIRE hardware to communicate with commercial computers. 
Bit boxes accept TACFIRE messages from wire line or radio, 
perform error correction and convert the messages to RS232 
ASCII characters which commercial computers can accept, They 
will also accept a message from the computer, add the error 
correction bits, time disperse the message and transmit it 
over wire line or radio in TACFIRE format (FSK). 

2. FIST DMD 

The FIST digital message device that will be used in 
the experiment is one of four experimental design models 
(EDM) that are in existence. It is a prototype model, and 
not a production model. 

3. VAX 11/750 computer 

The VAX 11/750 computer will be dedicated to running 
the experiment and will have no other processes running 
during the test. The operating system is the 4. lbsd 
(Berkley) UNIX. 

c. Training 

Test participants will be trained in the operation of 
the FIST DMD by an instructor from the Gunnery Department of 
the US Army Field Artillery School at the Human Engineering 
Laboratory. The Human Engineering Laboratory will provide 
training equipment for the students. The test participants 
are trained Fire Support Teams. 
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D. Input Data Base 

The tactical scenario data base contains all fire 
support control messages for a limited scenario of a 
mechanized infantry battalion of an armored division. The 
SCORES, Europe III, Sequence 2A was used to generate targets 
expected to be fired by a battalion in sustained combat 
operation. The battalion is constrained by ammunition 
resupply under normal operations, however, it was decided 
that ammunition resupply should not be a limiting condition 
in this test. The entire scenario is played in retrograde 
mode. 

The data base consists of 36 two hour cells of 
messages, 12 two hour cells of low intensity, 12 two hour 
cells of medium intensity and 12 two hour cells of high 
intensity. Intensity is defined by the number of initiating 
messages per two hour cell in Figure 6 and the message 
stream that follows each initiating message is given in 
Figure 7. It can be seen that intensity is a function of 
the number of initiating messages and their subsequent 
messages. The 36 two hour cells of data are arranged such 
that all permutations of the three intensities (L-M-H> 
appear twice. Ninety percent of the fire missions will have 
normal priority and the other ten percent urgent priority. 

v. DATA COLLECTION. L 

A. Experimental Design 

1. Factors. 

The two factors that will be tested in this experiment 
are message intensity and communications reliability. Three 
levels of message intensity will be tested with each of 
three levels of communication reliability giving nine test 
combinations. Degradation of messages is total. That i,s , 
15% degradation indicates 15% of the messages are lost in 
their entirety. The levels of each factor will be defined 
as follows: 

Message Intensity 

L = low 

M = medium 

H = high 

Communications Reliability 

0 = 0% degradation 
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1 = 15% degradation 

2 = 30% degradation 

2. Assumptions. 

For measures of performance 1,2,3,6 and 7 it is assumed 
that these measures are independent and normally distributed 
random variables and that all observations of a given MOP 
have the same variance. Only the assumption of independent 
random variables is made for the remaining measures of 
performance. 

3. Design Matrix. 

Since the testing of all nine treatment combinations 
require a minimum of 18 hours of testing and realistically 
could not be completed in one day, a randomized incomplete 
block design was constructed as shown in Figure 8 so that 
the day-to-day variability would not influence our results. 
The nine treatment combinations were divided into blocks of 
three and the three blocks were run over a three day period 
in a random order. The experiment will be repeated for each 
of the four FISTS so that an unbiased estimate of error can 
be obtained. In addition, a comparison of the performance 
of the four FIST HQs can be msde since each team is tested 
under all possible treatment combinations twice. 

The assignment of the treatment combinations into 
blocks was based on a confounding scheme. This scheme 
assures that the effects of message intensity (I) and 
communication degradation (C) and the interaction of these 
two factors (I x C) on a FIST HQ's ability to perform fire- 
support coordination can be measured. Because time 
constraints permit only two replications, part of the 
precision of the estimate of the interaction was sacrificed 
(i.e. blocks within replicate 1 are confounded with the 
linear component of the I x C interaction and blocks within 
replicate 2 are confounded with the quadratic component of 
the Ix c interaction). Randomization of treatment 
combinations within blocks and blocks within days has been 
performed, hence, the test will be run in the order shown in 
the design matrix, Figure 8. 

B. Questionaires 

Questionaires will be administered at the end of the 
FIST DMD training and at the end of the test. The 
questionaires were developed by Mr. Leonard Cunningham and 
Major Grim of the Field Artillery Board for the FIST DMD 
Force Development Testing and Experimentation (FDTE). 
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VI. DATA ANALYSIS, 

A. Statistical Analysis 

The data analysis will be based on a incomplete block 
design. Analysis of variance or a two-way. classification 
table analysis, frequently called a contingency table 
analysis, will be the methods of analyses performed. The 
null hypotheses to be tested are: 

1) There is not a statistically significant difference 
between the message intensity levels as measured by the 
stated measures of performance. 

2) There is not a statistically significant difference 
between the degradation levels as measured by the stated 
measures of performance. 

3) There is not a statistically significant interaction 
effect between message intensity and communication 
degradation. 

An analysis of variance (ANOVA) will be used to test 
the above hypotheses for MOPS 1,2,3,6 and 7. However, since 
this analysis is sensitive to departures from the assumption 
of equal variances, a check will be made to assure that this 
assumption is valid. An appropriate transformation will be 
performed on those MOPS that depart from this assumption to 
assure the validity of the analysis. The analysis of 
variance table for this design is presented in Figure 9. 
The error term will be obtained by pooling the FIST, 
replicate, and day interactions after a check has been made 
to assure that these effects are not significant. 

A contingency table analysis will be developed for MOPS 
4 and 5. The chi square statistic will be used to test the 
above hypotheses. 

B. Subjective Analysis 

Questionaires will be summarized to provide feedback on 
the experiment, the CPX Research Facility, training and 
equipment. 
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MOVING FINITE ELEMENT RESEARCH FOR 
SHOCK HYDRODYNAMICS, CONTINUUM MECHANICS AN0 COMBUSTION 

Robert J. Gelinas 
Said K. Doss 

Neil N. Carlson 
Science Applications, Inc. 

1811 Santa Rita Road, Suite 104 
Pleasanton, California 94566 

+ ABSTRACT. The overall objective of this research is to investi 
numerical properties and structure of the moving finite element (MFE B 

ate the 
method 

in order to reduce it to practice for the numerical solution of important PDE 
systems. This research focusses upon mathematical and computational proper- 
ties of transient MFE solutions in 1-D and 2-D of (i) the full viscous, com- 
pressible Navier-Stokes equations for shocks and possibly for combustion pro- 
cesses in gases, and (ii) the continuum equations for impacts of initially 
solid bodies, where constitutive models include elastic, plastic, and visco 
plastic effects. In this work, primary attention is devoted to the distinc- 
tion and exacting resolution of actual physical dissipation effects (over 
highly disparate scales) vis a vis numerical dissipation effects which fre- 
quently obscure the actual physical dissipation processes in PDE solutions of 
fluid dynamics equations. Test cases which demonstrate these distinctions 
are presented, and those factors which are major detertninates of grid node 
optimality in the MFE method and in certain other adaptive solution methods 
for PDE's are discussed. 

INTRODUCTION. The moving finite element (MFE) method is a promising new 
approach for solving numerically the partial differential equations (POE'S) 
of hydrodynamics, continuum mechanics, combustion, and other transport equa- 
tion systems. In the MFE method, grid coordinates themselves are dependent 
variables which are calculated continuously at each time step in order to 
minimize PDE residuals. This feature has successfully suppressed numerical 
dissipation to very low levels which has resulted in the accurate resolution 
in 1-D shocks of physical transport and dissipation effects which are con- 
tained in the full Navier-Stokes equations. It has been shown in recent work 
that: (i) the MFE method does extend logically and practically to 2-D and 
(ii) extensive research in several new areas must be carried out in order to 
realize the full potential of the MFE method. 

This paper reviews progress in 1-D and 2-D MFE research and indicates 
areas where applied mathematics research will continue to advance progress in 
MFE developnents. 

1. Steady State Shock Structure Calculations. Until recently, neither 
computer hardware nor numerical solution methods for partial differential 
equations (PDE's) could realistically be expected to resolve the highly dis- 
parate physical scales of physical dissipation processes in shocked fluids. 
However, the MFE method has recently shown promise in 1-O of resolving shock 
structures according to the actual physical dissipation processes and thermal 
conduction which occur in nature. The resolution of such highly disparate 
scales is especially important in transient systems where shocks, contact 
surfaces, and other fluid structures may interact. An essential benchmark 
is a verification that the MFE method does, in fact, reproduce those shock 
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structures for which analytic solutions are known. Once such example is the 
steady state solution of the full Navier-Stokes equations for a freely propa- 
gating shock in an ideal gas. Recall that the Navier4tokes equations are 
derived as the first approximation of kinetic theory which is outlined for 
1-D systems in Equations (l)-(9) below. From kinetic theory,1 

2. 
at + (pv' = 0 

+p+& (pv2) = - & ( p(O) + p(l) + p(2) t l *. > 

3, a 
at ax (Ev) = - & (pv) - & { q(O) t q(l) t q(2) t . ..} 

(1) 

(2) 

(3) 

A zero-th approximation of the kinetic theory for gases uses the consti- 
tutive relations for an inviscid, non-conducting fluid; i.e., 

p = p(O) = 9 = (y m l)(E r $v*) 

9 = q(o’ = 0 

(4) 

(5’ 

These relationships yield the well-known Euler equations. 

A first approximation of the kinetic theory for gases gives the Navier- 
Stokes equations according to: 

P=P 
(0' + p(l) = (y - l)(E - $v2) + $$ 

.9=9 (0) t q(l) aT = -KJy , 

(6) 

(7) 

and a second approximation of kinetic theory gives the Burnett equations, 

P 
= p(o) t p(l) + p(2) 

9 
= q(o) + q(l) + q(2) , etc. 

The analytic solutions of the steady state Navier-Stokes equations are 
readily obtained and can be found in Reference 2. Using these analytic 
results, we can consider comparisons between the MFE solution, the exact 
analytic solution, and an anomolous numerical diffusion solution for the 
shock test problem which has been considered previously by Sod.3 Using the 
notation m z pv, the initial conditions are: 

m(x,O) = 0 0 < x < 1.0 
pb,O) = 1 0 x 7 0.500 E(x,O) x = 2.5 

p( x,0) = p(x,O) = linear 0.500 f x E(x,O’ linear 2 0.501 = 

P (x,0' = 0.125 0.501 x 1.0 
E(x,O) = 0.25 

5 I 
, 

(10) 
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V 3 VELOCITY RELATIVE TO SHOCK 
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and Dfrfchlet boundary conditions are used at x = 0 and x = 1.0. 

Figure 1 presents comparative results for the shape of the shock front in 
normalized units during free, steady state propagation at t = 0.15. It is 
seen that the MFE solution of the Navfer-Stokes equations (solid dots), which 
used only 19 grid nodes, compare very well with the analytic solution (solid 
line). As a nlanerfcal experiment, one can ask: How sensitive are the solu- 
tions of the this problem to some anomolous or artiffcial dissipation pro- 
cess? To address this question, we replaced the correct physical viscous 
dissipation terms in the Navier-Stokes equations by a linear dissipation 
operator (essentially a linear Q model, which is frequently used in order to 
stabilize some other PDE solution methods, with the hope that the physical 
solutions of the true Navfer-Stokes equations would not be altered too 
greatly by the more more convenient linear dissipation model). This numerical 
experiment was also performed with the linear dissipation term appearing in 
the.densfty equation, as well in the momentum equation, as a sensitivity test 
of the possible effects of uncontrolled numerical diffusion which is intrfn- 
sic in any PDE method when the grid mesh locations are not optimal. It was 
found that using the same value of v = 0.0001 in the uncontrolled, or anomo- 
lous, dissipaton model as was used in the true Navier-Stokes calculations, 
the computed shock shape and width from the anomolous dissipation model were 
greatly in error. We then asked: Can the value of v in the anomolous dissf- 
pation model be selected somehow arbitrarily so as to achieve agreement 
between the Navfer-Stokes solutions and the linear dissipation model solu- 
tions? It was found that the width of the shock calculated by the anomolous 
d,fssfpation model could be made to approximate the width of the shock in the 
Navfer-Stokes solutions by increasing the value of v by a factor of five in 
this specific case. But it was not possible to reproduce the correct Navier- 
Stokes shock shape, as can be seen from the open circles in Figure 1, by any 
of our attempted adjustments of v in the anomolous dissipatfon model. 

It is, of course,' recognfred that, in many practical examples, it may 
not be necessary to know the correct shock structure. We therefore extended 
this initial investigation of steady state shock effects in order to deter- 
mine if; when, and how shock structure effects may become important in prac- 
tical applications. A ffrst extension continued the present MFE calculations 
of this test example through many shock reflections. These results have been 
reported in Reference 4. It was found that the MFE solutions of the Navier- 
Stokes equations can accurately resolve the repeated mutual interactions and 
reflections of shocks, contact surfaces and rarefactions and that this prob- 
lem can be solved all the way to its final equilibrium state. It is clearly 
evident in these transient results that the accurate resolution of the actual 
physical dissipation processes over highly disparate scales in the Navier- 
Stokes equations is essential for-practical applications in which shocks are 
not simply in a state of free propagation. That is, the strength of inter- 
actions between fluid structures and thus the time required to reach equili- 
brium are sensitive to both the magnitude and operational descriptions of 
these physical dissipation processes. For example, model thermal conductiv- 
ities which are larger than their appropriate physical magnitudes would have 
the effect of broadening contact discontfnufties too much, too soon; and 
ensuing interactions between shocks and such broadened contact dfscontinui- 
ties would drive the system to equilibrium too soon. Conversely, model 
thermal conductivitfes which are too small maintain contact discontinuity 
gradients at values which are larger than their appropriate physical magni- 
tudes until late times, and the corresponding evolution toward equilibrium 
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would then be slower than the appropriate physical evolution. These features 
can be seen in the results for both this moderate shock example and for the 
well-known problem of anomalous wall-heating which is considered next. 

2. The Anomolous Wall-Heating Problem. Anomolously high temperatures 
frequently occur in computations of shock reflections from an infinitely 
reflecting wall in slab geometry or from the reflection of an imploding shock 
at the origin in cylindrical or spherical geometries. The MFE results which 
follow indicate the anomolous aspects are eliminated when the physical dissi- 
pation processes in the Navier-Stokes equations are accurately resolved in 
the transient raflectfon process. We consider the following test problem in 
1-D slab geometry: 

Initial Conditions: 

ph, 0) = 1 0. x x c 2. 
pb, 0) = dx, 0) = 0 0.7 x 7 2.0 
v(x, 0) = -1 x 7 2.0 
v(x, 0) 

&X0 7 
= linear 0 7 x 7 

v(x, 0) = o.- 
Ax, 

= 0 X 

Y = 5/3 

Boundary Conditions: 

Reflection at x = 0. 
Dirichlet at initial values at x = 2.0 

Rankfne-Hugonfot Solutions for Infinite Shock (-t 3 EL): 

S = l/3 
p+=4.0 * 
E+=o.5 : 

P’ = 1.0 
, E’ = 0. 

v+=o. - 
p+ = 1.33 f 

v- = -1. 
P' = 0. 

The time evolution of this shock was solved by the MFE method in two 
ways: First the full Navfer-Stokes equations were solved with alternative 
val.ues of v = 4~13 and K. These solutions are denoted by N-S in the accom- 
panying figures. In one set of N-S solutions, v = K = 0.01, which is unreal- 
istically large but which pennits comparisons to other fixed node POE solu- 
tions that may use on the order of 100 to several hundred grid nodes. In 
another set of N-S solutions, v = K = 0.001, which approximates physically 
realistic values for actual dissipation processes in gases. Second, the 
variable E denotes internal energy per unit mass in the accompanying figures, 
and anomolous diffusion (denoted by A in the accompanying figures) was simu- 
lated by including a diffusion term, vrpxx, in Equation (1). This 
effectively simulates some form of uncontrolled nwnerical diffusion which 
is present intrinsically in many alternative POE methods. (Such anomolous 
diffusion can find its way into alternative POE methods by nlrmerous and 
various means). 

At t = O+, the shock incident on the origin is in the incipient state 
of outward reflection. At t = 0.05, Figures 2 and 3 show that the calcula- 
tions of the reflected shock with uncontrolled diffusion (or simulated nlaner- 
fcal diffusion) tend fmnedfately to overheat in E: and to correspondingly 
undershoot in p relative to the Navier-Stokes solutions. Although these 
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Figure 2. MFE solutions of the Navier-Stokes equations and 
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transient solutions are not near their steady state values at this early 
time, ft will be seen that the ensuing evolution toward equilibrium is quite 
sensitive to both the magnitudes and the nature of the dissipation processes 
in the computations. 

Figure 4 shows that at t = 0.15, the lip of the shock in the Navier- 
Stokes solution is approaching the steady- state value of P = 4.0, and the 
anomolous dissipation solution lags by a significant margin. The fluid 
buildup at the front of the shock is evident here because the fluid near the 
origin has stagnated while additional fluid continues to stream in toward the 
origin from the region to the right of the shock. Figure 5 shows that the 
anomolous dissipation results continue to lag behind the Navfer-Stokes solu- 
tions to a significant degree at t = 0.300. At t = 2.0, the Navfer-Stokes 
solutions have approached steady state Rankfne-Hugoniot conditions (not shown 
in Figure 61, and the anomolous dissipation solution has >till not reached 
the Rankfne-Hugonfot values in the vicinity of the origin. The anomolous 
wall heating effects due to uncontrolled dissipation in the density equation 
have thus persisted to very long times vis i vfs the accurate solutions of 
the Navfer-Stokes equations. Non-physical dissipation operators in fluid 
calculations can be shown to have-similar effects. 

Figures 7 and 8 present the results of another test of sensitivity of 
the Navier-Stokes solutions to non-optimal grid locations. In this test 
problem, a physically realistic value of v = 0.0001 is used in MFE solutions 
of the Navfer-Stokes equations. We have, however, deliberately constrained 
the MFE grid nodes in this test case so that they do not migrate to their 
truly optimal locations, as in the results considered previously. Figure 7 
shows several significant features: (i) the shock gradients associated with 

cv= 0.0001 are extremely large; the accurate resolution of these gradients 
would require several thousand nodes if a fixed node PDE solution method were 
to be used, (ii) the Rankine-Hugoniot solutions are approached much more 
rapidly for the physically realistic values of v than for the larger values 
of which are typically used either tacitly or explicitly in many other PDE 
solution methods, and (iii) the slight constraint on node movements and thus 
on nodal positions do not show up immediately, but once the perturbation 
becomes significant (as seen in Figure 8) , its effects can grow rapidly. In 
summary, these results demonstrate that reflected shock solutions can be very 
sensitive to non-physical dissipation effects and to slight deviations from 
optical grid node positioning, even in adaptive gridding methods. All of the 
results in this section were obtained with approximately 30 MFE nodes. As 
many as 61 MFE nodes were used to verify that the MFE solutions were in fact 
converged solutions. In the absence of the stringent tests of convergence 
which were applied here, it can be extremely difficult to discern physical 
oscillations and dissipation effects from non-physical and/or purely nlrmeri- 
cal oscillations and dissipation effects. 

3. Burger's Equation in 2-D. The PDE's for this skewed Burger's model 
problem are given by: 

Ut = ‘UUx - vuy + VI uxx + uyy ’ 

vt = ‘UVx ” vvy + v( vxx + vyy ’ 

(11) 

where u is the x-component of velocity and v is the y-component, and v is 
an effective diffusion coefficient. Shocks are generated with gradient 
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magnitudes on the order of l/v. Initial conditions which produce a doubly 
skewed wavefront profile are shown schematically in Figures 9 and 10. (The 
counterposed initial velocity fields are designed to create an evolving shock 
profile which is skewed in both the x- and y-components of velocity.) Bound- 
ary conditions are given by: 

40 ,yl = u(l,y) = 0 0. cy < 1. 
vx(O, Y) 

dx, 1) 
= vx(1, y) = 0. 0.7y; 
= 0.2 sin 7rx 0. s 

u(x, 0) = -.2 sin 71~ 0. 7 
v(x, 1) = -1. + 0.2 cos 71x 03xX: 
v(x, 0) = 1. + 0.2 cos 7fx 0.7xX; - - 

T 1. 
x71. 
x71. 

Fl. 
Tl . 

The MFE nodes are fixed by zero-Dirichlet conditions along the top and 
bottom horizontal edges of the domain. The nodes are free to move vertically 
by symmetric boundary conditions along the left and right edges of the 
domain. 

This problem can be solved readily by perhaps many PDE solution methods 
whenever v assumes sufficiently large values. For example, a value of v = 
0.02 produces shock gradients on the order of 102. 

The MFE method requires only an 8 x 8 grid to give reasonably accurate 
solutions to this problem, and Figures 11 and 12 show accurate MFE solutions 
on a 12 x 12 grid. Here Figure 11 presents an isometrjc view of the evolving 
profile of the y-component of velocity at t = 3.0, well after the shock has 
formed and after the wavefront has undergone significant shearing. The x- 
component of velocity is sufficiently sheared that a hidden line plot, which 
is not yet available, is required for easy interpretation by the naked eye. 
The MFE grid nodes have migrated extensively from their initial positions as 
can be seen in Figure 12 which represents the grid mesh projected onto the 
x-y plane at t = 3.0. Figures 13 and 14 present contour plots for selected 
constant values of u and v, respectively, at t = 3.0. It is evident from the 
magnitudes of shock gradients and from the regions of significant curvature 
which span nearly the entire domain that an alternative PDE method with a 
fixed grid may require on the order of 104, or more, grid nodes in order to 
achieve comparable degrees of accuracy in this problem. 

This same basic problem can now be made to correspond to a much more 
demanding physical problem by letting v = 0.002. Figure 15 shows an isometric 
view of the MFE solution on a 16 x 16 grid for this case. 
are now generated with magnitudes of several times 103. 

Shock gradients 
Before discussing 

these MFE results in detail, some general observations should be discussed: 
It is extremely unlikely that any existing PDE method using either a fixed 
grid or a less than optimal adaptive grid can accurately solve this test pro- 
blem with fewer than 105-106 grid nodes. 
assume very large values (102-103). 

Grid aspect ratios frequently 
It should also be noted here that 

nLanerous inviscid solvers which are under development do not apply at all to 
this type of advection-diffusion problem because the Laplacian is an essen- 
tial mathematical operator whose effects must be rigorously resolved in 
advection-diffusion PDE's. Because inviscid solvers do not generally solve 
PDE's which contain Laplacians, they generate shocks with gradient shapes and 
magnitudes that are governed exclusively by the grid spacing and/or by the 
purely numerical dissipative processes in the inviscid method, per se. Con- 
sequently, inviscid solvers have almost no chance of resolving those physical . 
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Figure 9. Plot of initial values of u in the Z-D Burger-like example on 
a 12 X 12 grid mesh. 

FigurelO. Plot of initial values of v in the 2-D Burger-like example on 
a 12 x 12 grid mesh. 
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Figurell. Isometric view of v at t = 3.0 in the 2-D Burger-like 
example on a 12 x 12 MFE grid. 
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Figure12. MFE grid projections on the x-y plane at t = 3.0 in 
the 2-O Burger-like exmple on a 12 x 12 grid. 
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Fiqure 13. Contour plots of selected values of u at t = 3.0 in the Z-D 
Burger-like example on a 12 x 12 grid. 

Flgure14. Contour plots of selected values of v at t - 3.0 In the 
2-D Burger-like example on a 12 x 12 grid. 
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Y 

Figure 15. Isometric view of Burger's test example at t = 1.8 with 
V = 0.002 on a 16 x 16 MFE mesh. Shock gradients have 
magnitudes of approximately 108 in this solution for u. 

dissipation effects which are usually expressed by Laplacian operators and are 
present with fundamental physical significance in transport theory, hydrody- 
namics, plasma physics, continuum mechanics, and many other disciplines in the 
physical sciences. This critical discussion is not intended to denigrate the 

.extensive research efforts on inviscid PDE solvers and/or fixed node POE 
methods where they legitimately apply; but it does suggest that efforts to 
accommodate Laplacian operators in otherwise inviscid solution methods and 
efforts to investigate more optimal adaptive grid methods for use in many 
existing PDE methods which are applied to advectiondiffusion problems should 
now assume greatly increased significance. In the meantime, the MFE method is 
providing various clues to some of the significant new areas where mathematics 
research can profitably be intensified, as will be indicated below. 
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Early MFE results in 2-D are apparently continuing the trend which 
appeared in previous 1-D results. There, we saw that MFE solutions of both 
the Navier-Stokes and physically dissipative continuum mechanics equations in 
1-D exhibited extremely high levels of simultaneous resolution of extremely 
disparate microscale and macroscale physical processes. While current 2-D 
MFE results exhibit similar promising features, numerous mathematical prob- 
lems still require resolution in order to attain fully the desired levels of 
success in truly large-scale problems in 2-D. Clues to these problem areas 
can be seen in Figure 15.* For example, the irregularity of the grid tri- 
angles in the face of the shock could eventually prove to be troublesome, 
Similarly, the small oscillation at the base of the shock in this run is 
unsatisfactory, even though it can be eliminated in any nlPnber of ways. 
Extensive testing and analysis has indicated that the causal mechanisms 
underlying such mesh irregularities and oscillations in 2-D can be associated 
with: (i) time step and error control policies in the basic ODE integrator 
of Gear which is presently used, (ii) convergence properties of the linear 
solver, and (iii) limitations in the first-generation regularization func- 
tions. Each of these areas are worthy of continued intensive investigation. 

4. Conclusions and Future Work. 

l The MFE method can now be considered for large-scale applications in 2-D. 
Applications of the 2-D MFE method to airblast effects and structural 
impacts in continuum mechanics are in their early developmental phases. 

0 It is apparent that extensive new research is needed in nlanerous areas of 
applied mathematics in order for the MFE and other related adaptive grid 
PDE methods to reach their ultimate potential. Some of the key topical 
areas for additional research are: 

- ODE integrators for PDE applications. 

- Linear systems solvers for non-symmetric matrices which are not diagon- 
ally dominant. (Even the most advanced linear solvers for symmetric, 

_ 

diagonally dominant matrices converge too slowly for use in difficult 
advection-diffusion problems.) We have one new concept for such highly 
skewed matrix systems under development which is showing signif 
promise. 

cant 

- Boundary conditions for arbitrary domains. 

- Alternative MFE basis functions. 

- Alternative co-ordinate systems. (The MFE does not suffer from s 
larities at the origin in cylindrical and spherical co-ordinates.) 

- Alternative regularization schemes. (These powerful schemes are 
now starting to be used in POE solution methods.) 

ngu- 

only 

The present research has made sufficient early advances in most of these 
areas to indicate the vast potential which lies ahead as new advances are 
made. 

*It 1s apparent that these suggested mathematical problems will have to be 
resolved not only for the MFE method but also for most other advanced PDE 
methods which may seek to solve the difficult advection-diffusion equations 
which frequently arise in physical problems. 
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ABSTRACT. The formalism for a complete treatment of elastic 
wave scattering from cylindrical cavities and solid inclusions has 
been worked out for both perpendicular and oblique indice. Special 
cases, e.g., fluid cylinders enclosed in fluid or solid media, have 
already been numerically analyzed. Poles of scattering amplitudes 
in the complex frequency plane have been found, and were physically 
interpreted in terms of helical surface waves on the cylinders 
propagating in both the interior and the exterior medium. Disper- 
sion, attenuation and refraction of these surface waves have been 
obtained. 

I. INTRODUCTION. We consider the problem of scattering of 
obliquely incident elastic or acoustic waves from the surface of 
an infinite circular cylinder. There are four cases of interest: 

(i) inside solid, outside solid 
(ii) inside solid, outside fluid 

(iii) inside fluid, outside solid 
(iv) inside fluid, outside fluid 

A complete analytical solution for case (i) was first obtained by 
White [l], whose work was later corrected by Lewis and Kraft 123. 
The second case was discussed by Flax, Varadan and Varadan [3], 
and the appearance of resonance effects in the numerically calcu- 
lated scattering cross section was noted. Case (iii) was treated 
by Solomon et al 14 ]for normal incidence. The present authors 
discuss in a recent paper 151 the refraction effects which take 
place upon the generation of surface waves in case (iv). 

In the present paper we develop a general formalism that 
covers the four cases mentioned. This includes both formulas for 
the scattering amplitudes of the resonances and an analysis of 
their Watson poles in the complex frequency plane and their physical 
interpretation. We introduce a compact notation and a transforma- 
tion gauge which simplify the solution considerably, making it 
suitable for computer coding. 
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As in White [l] we call 1 the inside region and 2 the 
outside region. We also use arabic subscripts (1,2) for longi- 
tudinal or compressional waves (p-waves) and roman subscripts 
(1,II) for transverse or shear waves (s-waves). Therefore, in 
general we call $2 the angle of the incident wave propagation 
vector (which we assume to be in the x-z plane, as in Fig. 1) 
with the x-axis; we callit, however, 
that the incident wave is an s-wave. 

@II when we want to specify 

Il. ELASTIC WAVE SCATTERING. The equation of motion for the 
particle displacement 3 in an elastic medium is 

(A + 2~1)?-9 G - p&($x$) = pa2Qat2 (1) 

where X and P are the Lame) constants of the medium and P is its 
density. The partisle displacement i? is obtained from a scalar 
(9 ) and a vector (V) potential: 

-f 
U = $$ + &v’ 

where Ilr contributes to p-waves and V to s-waves. 
(2) 

Inserting Eq. (2) into Eq. (I) leads to two wave equations 
for the potentials $ and V: 

where 
cP 

= ((A + 2P)/p11'2 is the speed of p-waves and Cs = (p/p) l/2 

is the speed of 's-waves in the medium. 

We define 
Pi = kisin+i (3) 

qi = kiCOS9i (4) 
where i=1,2,1,11 and ki =.Ur/ci is the wavenumber. The angular 
frequency of the wave, which we assume to be monochromatic, is w . 
Sncll's law requires 

sin $1 
= 

sin $2 
3, = =-%I , sin$I 

7 c2 cI 51 
leading to 
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P1 = P2 = PI = PI, = P (5) 

A. P-WAVE INCIDENCE. The incident p-wave can be expressed 
as 

$i = (l/p,J)e 
il2*? ipz iq2rc0se 

=Ne e 

. 
= Ne'pzn~O eni"Jn(q2r)cosne 

e” = 1 (n=O), 2 (n>O), 

where we have used the Jacobi-Anger formula 161. 

We now introduce the following compact notation: 

N = l/P22 

C n 
= Ne 

n 
ineiPz cos(n9) 

‘n 
= NC 

n 
ineiPz sin (ne) J 

cn/ = aC,/ ae 

(6) 

(7) 

(8) 

(9) 

Jn = J, (qr) = Bessel function, q=qi and 
i=1,2,1,11 according to case 

“In = IIn (qr) = Bankcl function of first kind 

We implicitly assumenYO = any time an index n occurs. 

In this notation, Eq. (6)becomes 

Jli = Jncn. 

In the case of scattered p-waves an expansion of Jncn can be 
used, but with coefficients R ,T to be determined through a 
matching at the boundary (see"Se"c. D). Also in region 2, where 
the scattered (reflected) waves are outgoing, H, must replace 
J,, i.e., 

#t= T, J, cn for transmitted p-waves, (10) 

+r = Rn Hn =n for reflected p-waves. 
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B. INCIDENT S-WAVES. The geometry in the case of 
incident s-waves as illustrated in Fig. 2, which shows that 3 
has the components: 

v,=v(~osx sine + sin X sin4 cos e) 

% = v (cos x co& - sinX sin9 sine) 

v, = -V sinX cos9 

where 

V = $-J exp(it,,*?) = J,,c, 
2 

since W3 = 0 we can add to a and ?Q, Now 

$V=iq IIcosBVr-iqIIsinb V f ipV2 

Therefore choosing 

Q = -(sinXsin$V)/(iqII) 

(11) 

(12) 

(13) 

(14) 

and adding %J to G, it follows: 

'r = VcosX sin 8 

% = vcosx cos 8 (15) 
I?, = -Vsin X/cos$ . 

Equation 15 shows that any randomly polarized incident s-wave 
can be decomposed as a linear combination of a X = 0 wave (called 
SH or horizontally polarized) and a X = r/2 wave called SV or 
vertically polarized) with coefficients cosX and sinX , 
respectively. 

For SH-waves we have 

V,=Vsine = -ni J,s,/qII 

% = vc0se =-i JAcn/qII 

vz = 0 

and for SV-waves 

vr = ve = 0 

v, = -v$zos 9 =- J, C,/COS~ 
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C. SCATTERED S-WAVES. The vector potential $ can be 
expressed as + 

v = i;@ + i;oxi + x2 (18) 

where Q,O and x are solutions of the Helmholts equation 

(v2 + k;)@ = 0, i = I,11 (19) 
In equation (l&), $(ax/az) has been eliminated, since ifx?f = 0 

for dny function f. Also, instead of kix we have simply written 
x- Now 

v, =g+;g 

v/;$-g 

vz = z + x. 

Writing 

a = (i/qi )A,.,J,.,S,, 

0 = (i/qi )A,,J,s,., 

X = cnJnsn 

and using recuxrence relations for Bessel functions we get for the 
components of V: 

Vr = -AniJn+,sn 

% = AniJn+,cn 

vZ 
= BnJnsn , 

where A and B are coefficients to be determined through the 
matchinfl of th8 inside and outside region at the cylinder surface. 

In the case of SV-waves we put 

(20) 

(21) 

(22) 

a = (i/qi )A,J,,c,, 

0 = (-i/qi )AnJnSn 
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and arrive at Eq. 22 with sn and cn interchanged. To treat 
both cases simultaneously we use Eq. 22 with the understanding 
that for SV-waves sn and cn must be interchanged. Also, whenever 

a difference of sign occurs we write + or i with the lower sign 
applying to the case of incident SV-waves. 

D. THE MATCHING. At the surface of the cylinder r=a, we 
impose the following six boundary conditions: 

t rzui u. - u. 
J 3 j 

t 
Pl'rj - ~2'Fj = ~ z " : j  

(23) 

with j = r, 8, z; i.e., we require the continuity for the three 
components of the displacement c and stress tensor %j of the 

incident, transmitted and reflected waves. This gives a system 
of six equations_ in the six unknowr8Rn, Tn, A,, Bn, Fn, Gn for 
the three cases of 

(i) incident p-wave 
(ii) incident SH-wave 

(iii) incident SV-wave 

The system, in the more general case (solid inside and outside) 
is given in Table 1. In the first six columns are the coefficients 
of the six unknowns. In the last three columns are the inhomo- 
geneous terms in the three cases. If inside (or outside) we have 
a fluid, then )J = 0, Eq. 2 and 3 expressing continuity of u8 and 

U z do not apply, and An = En = 0 (Fn = G, = 0 for fluid outside). 

This system of equations may be solved in a straightforward 
manner, e.g. by using Cramer's rule. In the following, we shall 
present numerical results for its solutions in some particular 
cases. 

III. RIGID INCLUSION IN ELASTIC MEDIUM. We first specialize 
the above solution to the case of normal incidence of p or s waves 
on a rigid cylindrical inclusion. The determinant of the system 
of Table 1 which, after the case of Cramer's rule, also becomes 
the common denominator of the coefficients Rn through Gn, reduces 
in this special case to 

det = I 
Dll D12 

I D31 D32 I 
(24) 

where a is the cylinder radius, and 
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D1l = kp Hn-1 (k2a) -nHn (k2a) 

D12 =nH n (kIIa) 

D31 = n(n+l) Hn(k2a)-nk2a Hr.-l(k2a) (25) 

D32 = kIIa Hnwl(kIIa)+ [ %(kIIa) 2-n(n+l)] Hn(kIIa). 

The poles of the scattering amplitude are given by the zeros of 
Eq. (24) in the complex frequency plane. These were obtained by 
us numerically, and are shown in Fig. 3 for the case of the 
elastic medium being aluminum, plotted in the complex plane of 
the variable k2a . These zeros are seen to have negative imaginary 
parts. Zeros with given value of n (as indicated) are joint by 
dashed lines. However, as was shown in connection with sound 
scattering from a sphere 171, physical interpretations are obtained 
if one considers the zeros to be grouped in "layers", connected by 
solid lines in Fig. 3 and labeled by the integer2 as indicated. 
It was shown in [7] that the residues of the scattering amplitude, 
summed over the poles along each solid line in Fig. 3, synthesize 
a surface wave which for the case of a cylindrical inclusion, 
propagates over the cylinder surface on a circular path for normal 
incidence, 
dispersion 

or as a helical path for oblique incidence [5]. The 
curves of these waves are now being obtained using 

standard methods [81. In addition to these "bulk type" (p or s) 
surface waves, a "Rayleigh type" surface wave is also found from 
our pole calculations, similar to the case of a spherical cavity 
as discussed by Norwood and Miklowitz [9]. In addition, corre- 
sponding poles and surface waves were obtained for an empty cavity 
in aluminum. 

IV. FLUID-FILLED CAVITY IN ELASTIC MEDIUM. For the case of 
normal incidence of p or s waves on a fluld-filled cylindrical 
cavity, the corresponding determinant from Table 1 is 

I Dll D12 D13 I 
det = D21 D22 D23 

D31 D32 ' 
where, in addition to Eq. 25, 

D13 = n Jn(kla)-kla Jn-l(kla), 

D21 = I: n(n+l)-$(kIIa) 2 1 H,(k2a)-k2a H,,l(k2a), 

D22 =nk IIa Hn-l (kIIa)-n(n+l)Hn(kIIa) 

D 23 = +(P,/P,) (k~~a)2 Jn (k~~a) - 

(26) 

(27) 

The poles, obtained from the zeros of Eq. (26) for a water-filled 
cavity in A& , were found to be numerically close to those for p,s 
and Rayleigh-type surface waves of the above-mentioned empty cavity. 
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In addition, pole layers were found that lay very close to the 
real axis of the complex k2a plane; these correspond to internal 
surface waves that propagate in the filler fluid. They appear 
in the form of resonances in the scattering amplitude when the 
latter is plotted vs. frequency, as seen in Fig. 4. This figure 
shows, for backscattering, the modulus of the pep scattering 
amplitude Rn for n = 0 through 5. The resonances interfere 
destructively with the background amplitude Rn (0 1.: for snempty 

cavity, and if the latter background is subtracted, the resulting 
pure resonances of the internal surface waves appear in Fig. 5. 

The resonance frequencies, which on the k2a scale we 
designate by xnR , can be read off this figure, and provide us 
with the real parts of the complex-frequency poles. The 
imaginary parts are negligible to first order, indicating a 
minimal attenuation of these internal surface waves. Note that 
the same resonance frequencies are obtained for pep and s-s 
scattering as well as for ps s and s+p scattering ("mode con- 
version") since physically, they all originate from the eigen- 
frequencies of the internal fluid. 

The phase and group velocities of the internal fluid can now 
be obtained from xnll as follows [4,5]: 

‘%h 
= (c2/n)xna. , 

cgp = c2 I: a(k2a)'anlk a = x l 

2 nR 

(28) 

(29) 

In Fig. 6, we show the corresponding phase velocity dispersion 
curves of the internal sufrace waves as obtained from Eq. 8. 

These dispersion curves help in determining the refraction 
angles that appear during the generation of a surface wave by an 
externally incident plane wave, as outlined in Reference [51. 
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FIGURE CAPTIONS 

Fig. 1. 

Fig. 2. 

Fig. 3. 

Fig. 4. 

Fig. 5. 

Fig. 6. 

Geometry of p-wave incidence on a cylindrical obstacle 
in an elastic medium. 
Geometry of s-wave incidence on a cylindrical obstacle 
in an elastic medium. 
Poles of the scattering amplitude for a rigid cylindrical 
inclusion in aluminum, plotted in the complex frequency 
plane. 
Modulus of p+p backscattering amplitude vs. frequency 
for normal incidence on a water-filled cavity in aluminum. 
As in Fig. 4, after subtraction of an empty-cavity back- 
ground amplitude. 
Dispersion curves of internal surface waves in a water- 
filled cylindrical cavity in aluminum. 
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STABILITY OF PLANE NEAR-EQUIDIFFUSIONAL FLAMES 
WITHOUT INVOKING THE CONSTANT-DENSITY APPROXIMATION 

T. Jackson and A. Kapila 
Rensselaer Polytechnic Institute 

Troy, New York 12181 

INTRODUCTION. Near-equidiffusional flames (NEFs) are character- 
ized by near-unity Lewis numbers, near-adiabatic flame temperatures 
and near-uniform enthalpies. These flames are special three-dimensional 
solutions of the combustion equations and provide a convenient framework 
for the theoretical study of a number of flame phenomena. An extensive 
discussion of NEFs appears in Chapters 2 and 8 of Buckmaster and Ludford 
(19821, where a set of reduced equations governing these flames has also 
been derived. This paper is concerned with a study of the linearized 
stability problem associated with the plane NEFs. 

GOVERNING EQUATIONS. From the full combustion equations involving 
Arrhenius kinetics, a set of reduced equations appropriate to the NEFs 
can be derived in the limit of large activation energy (E: -t 0) , under 
the characterizing assumptions 

L-l =l+sR/C1 , H=T+aY=l+a+sh , 

where a is the heat of reaction, L the Lewis number, T the tempera- 
ture, Y the mass fraction of the reactant and H the enthalpy. All 
quantities are suitably nondimensionalized. Additional quantities 
appearing below are the density p , the velocity v and the pressure 
p (measuring deviations from the ambient pressure of unity on the 

O(M2) scale, M being a representative Mach number of the flame). 
Lengths are measured on the scale of the preheat zone and a frame of 
reference at rest in the laboratory is chosen. Then, to Leading order 
in E I the governing equations become 

!?& + pv-v = 0 ) p E 
Dt G+QP- - $ V(V.v) + 0*x, (1) 

- - V2T = 0 in the unburnt region, DT 
' Dt (2) 

T=l+u in the burnt region, 

- - V2h = (g/&V2T , 
Dh 

' Dt pT = 1 , (3a,b) 

where 

2 z J- + v.Q 
Dt at - 
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and for simplicity, Psandtl number is set at unity. These equations 
are supplemented by appropriate boundary conditions and jump conditions 
across the interface separating the burnt and unburnt regions. 

The solution of the NEF problem in full generality is difficult, 
since nonlinear partial differential equations on either side of a 
possibly moving interface are involved. Most of the progress has been 
made on the basis of the constant-density approximation (CDA) which 
ignores density changes suffered by the gas in passing through the flame, 
by taking p = 1 and omitting (3b). The basic system then reduces to 
the linear equations (2) and (3a), in which v .is taken to be a pre- 
scribed solution of equations (1). Although the approximation is drastic, 
it does reproduce qualitatively several features of real flames. 

THE STABILITY PROBLEM. Under the CDA, the linearized stability 
problem associated with a plane flame leads to a system of ordinary 
differential equations with constant coefficients, which can be solved 
readily to yield the relationship between the growth rate w and the 
transverse wave number k . This relationship leads to the dotted-line 
portion of the stability diagram of Fig. 1. (Details can be seen in 
Buckmaster and Ludford (19821, but the original work is due to 
Sivashinsky.) The neutral stability curves in the Rk-plane produce a 
stable region in the middle, flanked on either side by regions of 
instability. Bifurcation to cellular structure occurs as the left 
stability boundary is crossed, while passage across the right stability 
boundary yields a pulsatile flame. 

The CDA problem can be derived rigorously from the full NEF problem 
as the leading-approximation in the limit a-+0. The purpose of this 
paper is to analyze the stability of a plane flame without involving 
the c( + 0 limit. After considerable manipulation, the stability 
problem can be reduced to the equations 

T” - T’ - (k2 + 1 Lex)T - (m - k21aex=0 I 

)-,‘I - h’ - (k2 + 1 +Waex)h + (III - k2)R(1 + x)eX + 

R 
+a (T' + w 

1 + cleX T +amex) = 0 , 

,111 - 1 - sex ,,, 
1 + cleX 

- (k2 + ' )m' - 
1 + cleX 

cleX ( lLJ 
1 + sex 1 + cleX 

- $ k2)m + 

1 + 
1 + clex 

( 2waeX 
(1 + aex12 

++k')T'+ 
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f (1 +@a+-)2 tl. k2 
3 - 

2a2e2x 
(1 + craxj2 

)T - 
k2 

1 + cyex 
P+ 

P’ - $(k2 + l+aex)T’ - 

- (1 + eex)m" + (1 - : aex)m' + tw - 2 
3 OLe 

x + k2(1 + uex))m + 

+ ( .2 
1 + sex 

+k2(ti +$aex)) =0 , 

subject to the boundary conditions 

T=h=p=O , m=-w at y-=--m , 

and, at x=0, 

T=O , T' -;h=O , h'+ $ T' -Ah=0 , 

m+&- k(X + k) 
1 +a x{k(l + a) - w) 

IP - $ cr(m + 5)) = 0 , 

Ld m+- 
1+a 

+ k(X2 - k2) 
h2{k(l + a) - w} 

Ip - $ a(m + $1) - y - 

am' 

X2(1+a) + A2(lYa)2 - A2(;Ya)3 - 
k2, =: o 

X2(1 + a) - 

Here, 

;{l+4k2+L}1'2 , 
l+cr 

and primes denote differentiation with resppect to x . 'The reduction 
of an infinite domain to a semi-infinite domain (xc 0) is achieved 
by being able to solve the problem analytically in the burnt region 
(xz 0) . The variable T, h, m and p denote, respectively, 
the purturbations in temperature, enthalpy, mass flux and pressure. 
Solutions of the form 

QCxr YI t) = (7(x) e 
iky+wt 
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have been sought, thereby limiting the perturbations to only two 
spatial dimensions, for simplicity. Three-dimensional extension 
can be made at minor additional. expense. 

Unlike the CDA problem, the non-CDA equations have to be treated 
numerically, and this was done by appending a root finder based on Muller's 
procedure to the boundary-value solver COLSYS. Numerical results for 
a=1 are shown in Fig. 1 by the continuous curves through the actually 
computed points (denoted by asterisks). The right stability boundary does 
not appear to differ much from the corresponding CDA curve. The left sta- 
bility boundary, on the other hand, deviates substantially from its CDA 
counterpart for small k , veering sharply to the right to narrow the sta- 
bility region for long waves. Unfortunately, the non-CDA results are 
not yet available for the approximate range 5 < R < 10.5 , as the numerics 
breaks down in that region. The corresponding problem is currently under 
investigation. For large k , an asymptotic analysis shows that the non-CDA 
results axe the same as the CDA results, to leading order. This fact was 
confirmed by the numerics. 

To summarize, the effect of accounting fox variation in density appears 
to be most pronounced for long waves, whose region of stability is substan- 
tially reduced. 
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WRINKLED-FLAME CALCULATIONS REVISITED* 

Helen V. McConnaughey** 
Mathematics Research Center 

University of Wisconsin-Madison 
610 Walnut Street 

Madison, WI 53705 

and 

Geoffrey S. S. Ludford 
Center for Applied Mathematics 

Cornell University 
Ithaca, NY 14853 

ABSTRACT. The numerical integration of a nonlinear singular integral 
equation governing wrinkled plane flames is reconsidered, and the discussion 
extended to its counterpart for freely expanding cylindrical flames. Straight- 
forward discretization is shown to give unsatisfactory results and a sug- 
gestion is made of how to avoid these by subtracting out the principal part 
of the solution near its singularity. 

I. INTRODUCTION. The nonlinear singular integra.1 equation 

IT 
y2(x) f [cot(z;x -) + cot(y)-2cot$]y(z)dz = 0, x E [O,fr), (1) 

0 

represents a plane flame front which is distorted due to thermal expansion 
of the gas passing through it. The resulting profile of the flame takes 
the form of stationary cells which are regularly shaped and spaced. 

The variable x in equation (1) is the space coordinate; the function 
y(x), which is odd and 2m-periodic, is proportional to the slope of the 
flame profile and is singular at x = 71 according to: 

* 
This research was sponsored in part by the U. S. Army under Contract No. 

DAAG29-80-C-0041 and Contract No. DAAG29-81-K-0127 and is based in part 
upon work supported by the National Science Foundation under Grant No. 
MCS-7927062, Mod. 2. 
** 

Permanent address: Department of Mathematics and Statistics, Mississippi 
State University, Mississippi State, MS 39762. 
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Y- 2 sgn(x-77) lnlx-7rl as x+a. (2) 

This res.ult has been shown by McConnaughey, Ludford and Sivashinsky [1] 
in an earlier paper where equation (1) is also motivated. 

Equation (1) was solved numerically in reference [1] with relation 
(2) replaced by y = -2ln(n - x) for x less than but near IT. The wrinkled 
flame front which was calculated is shown in Figure 1. 

The present report considers the more general representation of (2): 

Y = 2 sgn(x-a) lnlr - xl + k (3) 

for x near R, where k is an unknown constant. It is noted that in theory, 
the value of k should not significantly affect the solution of (1); however, 
the numerical solution of a discretization of (1) subject to (3) can be 
sensitive to k. Application of a straightforward numerical approach to (1) 
and (3) for determining y(x) and k is shown to yield unacceptable results. 
A more promising approach is then suggested. 

An equation similar to (1) describing hydrodynamic instability of 
freely expanding cylindrical flames is also discussed. 

II. NUMERICAL SOLUTIONS. For the computation whose results are 
reported in reference LlJ, and for many of the calculations of the present 
study, the solution of equation (1) is approximated at discrete points 
xi = (i- l)h, with h = xN+,/N and i = 2, 3, . . . . N-l, by the solution of 

the discretized form of (1) labeled below as (4b). To obtain this dis- 
cretization: 

i> The upper limit of integration is replaced by xl,,+, = 3.13; 

ii) the trapezoidal rule is used to approximate the ordinary 
integrals; 

iii) the principal-value integrals are treated by expanding 
y(z) in a Taylor series about the singular points then 
integrating using the trapezoidal rule or the midpoint 
rule; and 

iv) the derivatives in the Taylor series are approximated by 
finite differences. 

Because y(x) is an odd function, identity (4a) must hold. Finally, re- 
lation (3) is imposed at the last two mesh points. The system to be 
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Figure 1. Shape of flame profile calculated by McConnaughey, Ludford, and Sivashinsky [l]. 



solved istherefore 

yl 
= y(0) = 0; 

Y-j2 
i-2 N 

= y*(Xi) = - h{( C + C 
j=2 

j,i+2)CYj cot(~ll + 

j;2 YjCCO&p) - 2 cot 21 + yyl I: cottXN+l 2 'i) f cot( 2 XN+l+Xi) _ 
= 

(44 

2 COtp]] + (Yi-l-Yi+l)(2+$cOt$)+ 2~29 i = 29 ma.9 N-1; (4b) 

Yi = - 2 ln(a- xi) + k, i = N, Ntl. (4c) 

The unknown constant k in expression (4~) cannot be determined. 
analytically. If xN and xN+, could be taken sufficiently close to IT, 

the value of k would be of little importance. The solution of (4) would 
vary with k only in the neighborhood of the cusp and the actual flame 
profile would not be substantially affected. This is difficult to 
accomplish in practice, however, because of the weakness of the logarithmic 
singularity. 

For our numerical calculations, the value of k in (4~) does appreciably 
affect the solution of (4). Furthermore, a multitude of values for k are 
seen to admit a solution. When N = 32, for example, k-values between -50 
and 3 give rise to a solution of (4) and many values outside of this range 
are expected to do likewise. However, the solutions corresponding to values 
of k less than -4.3 are not physically acceptable. (This critical number 
varies with N.) 

A "reasonable" value for k may be selected by solving an appropriately 
modified version of system (4) which includes k as an unknown to be calcu- 
lated. The extra equation needed can be obtained by imposing the dis- 
cretized form of (1), in addition to relation (4c), at xN. This adds the 
equation 

2 
YN =- hIINi2y.cot(v) t ; y.[cot(l) -2cot&l _ 

j=2 J j=2 J 

yNcl[$ Cot(XN+l 2+XN) t 2 - h cot ?j+ + yN-,(2c;cot;) + 2y2- (4d) 
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The numerical solution of (4a-d) for sever-a! va,lues of N produces 
the results illustrated in Figure 2. It appears that as N increases, 
k may gradually tend toward some fixed value, but that limit (if it 
exists) remains undetermined due to the large N's required to approach 
it, Also, the magnitude of k becomes comparable to the value of y at 
x 

N 
and x Rtl thereby canceling the imposed asymptotic behavior (4~) since 

k is negative. The numerical solution thus seems to approach the zero 
solution inasmuch as is possible as N increases. This trend is also 
demonstrated by a flattening of the profile and a decrease in the height 
of the cusp. 

Other approximations of (1) were also considered in the present 
study and yielded similar results. For example, system (4a -d) was modi- 
fied to include the contribution of zE [x~+~,T) to the integral in (1). 

The solution did not change significantly. Also, the problem was solved 
when relation (4~) was imposed at the last mesh point only and a dis- 
cretized form of (1) was imposed on yi for i = 2, 3, . . . . N+l. In that 

case, the value of k obtained for each N was somewhat higher than that 
yielded by (4a-d), nevertheless the computed profile 'was similar (see 
Figure 3). In all cases investigated, the numerical solution exhibits 
the same behavior as N increases. This behavior is contrary to what is 
known about the solution from analytical considerations (relation (2)). 
Thus, these numerical results are not acceptable. 

III. ALTERNATE APPROACH. A better way to solve equation (1) may 
be to introduce and solve for the smooth bounded function Y(x) given by 

Y(x) = y(x) + 2 ln(r-x) - k, XE [O,TI:]. 

Then Y(x) and k satisfy the equations 

Y(0) = 2 lna- k; Y(n) = 0; 
71 

[Y(x) - 2 ln(sr- x)+ k12 + 1 [cot(y) + cot(Y) - 2 cot $-l[Y (2) - 

0 

2 ln(a- z)+k]dz=O,O < x c a; 

IT 

k2 + [2 cot ( 
I 

y)- 2 cot+ - z+n][Y(z)- 2 ln(a -z)+k]dz - 

0 

(5) 

l l m 

4k Inn + Y(z)dz+A+4 (A 
I 

- f+&)lnsds = 0, 

b 
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Figure 2a. Values of k calculated for different N's. For k = 27, k lies between 

.l and .2 as compared to the zero value assumed in reference [I]. 



0 N= 21 

A N = 49 
+_ 0 

l N=83 

0 

0 A 

0 

0 
A 

0 
l 

0 A 

0 A l 
0 A 

0 A l 
0 A 

A 
l 

0 l 
0 AA 

o”;*$.“:” l mm 
l erQ&Aa I -X 
0 3.13 

Figure 2b. Flame profile calculated for three values of N. 
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A PROFlLE FOR ‘(4~) APPLIED 

To ‘N+I ONLY; K = 2.19. 

0 PROFILE FOR (4~) APPLIED 
TO XN AND XN+,; Kf0.33. 
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Figure 3. Flame profile calculated for N = 25 from the solution of 
system (4a-d) and from solution of the similar system in 
which (4~) is imposed at x,,,+~ only. The value of k obtained 
in the first case is .33 and is 2.19 in the second case. 
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where b > 1 and 
b 

A= 4[ln2 r-ln2b+ 
f 

( & + &)lnsds]. 

0 

The solution of this system is presently under numerical investigation. 
For x near 71, equation (5) is rewritten as 

[Y(x)+k12 + 4[lnx+ln(2a-x)-2lna-Y(x)] ln(m-x) + 

IT 
I I(x,z>[Y(z) - 2ln(r - z)+k]dz-2k[lnx+ln(zn-x)] + 

0 

II 

f 
(2- 2n-c-x)Y(z)dz+A+ 4 

T/h-X> 

z-x 
0 

I 
(A- $+&)lnsds=O, 

b 

where I = cot( y) - & +cot(y) + 2n-t-x - 2 cot $. In this form, 

large terns in (5) which are potentially troublesome have been subtracted 
then added in such a way as to remove possible difficulties. It is 
assumed that Y(x)+0 faster than l/ln(a- x) as X+TI. 

IV. CYLINDRICAL FLAMES. The equation analogous to (1) for the slope 
of a perturbed, freely expanding cylindrical flame is 

IT 0 
y2(e) f [cot@+ +cot( I 9, - 2 cot$ly(dd o+ c (6) 

where e is a suitably scaled polar angle and c is a physical parameter for 
which a typical value is near 16. 
is equivalent to that given in (2). 

The singular behavior of y(e) at e = n 

the same as equation (1). 
Note that for c = 0, equation (6) is 

The numerical approach that was applied to (1) has also been applied to 
(6). However, only for small values of c has a solution been found. For 
realistic values of c, no meaningful results have yet been obtained. 
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V. CONCLUSION. The value of the constant k which makes the 
asymptotic statement 

Y - 2 sgn(x-m) lnlx-ITI + k as x+m 

consistent with equation (1) or equation (6) is seen to have importance 
in numerical calculations of the solution of those equations. Attempts 
to find k by a simple and straightforward modification of the numerical 
approach in reference [l] (where k is assumed to be zero) are shown to 
fail. Another approach, which changes equation (1) to a problem whose 
solution has no singularities, is suggested but not pursued here. 
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NEAR CHAPMAN-JOUGET DETONATIONS* 

D.S. Stewart 
Department of Theoretical and Applied Mechanics 

University of Illinois, Urbana-Champaign, IL 61801 

G.S.S. Ludford 
Department of Theoretical and Applied Mechanics 

Cornell University, Ithaca, NY 14853 

ABSTRACT. The moving boundary problem that arises from 
a certain model of one-dimensional detonation waves is 
considered. Burgers equations for a function f have to be 
solved on the two sides of a discontinuity, at which f and 
the jump in its derivative (corresponding to the exothermic 
reaction) are prescribed. The steady solution, a summary of 
its linear stability characteristics, and some preliminary 
numerical results are presented. 

I. INTRODUCTION. We consider a simple model of plane 
detonation waves in which all the reaction is supposed to 
occur at a single location and at a-prescribed (ignition) 
temperature. For combustion waves that travel at finite 
Mach numbers, the model implies very fast kinetics. A 
complete presentation of the flame-sheet theory on which the 

P 
resent discussion rests can be Bound in Stewart and Ludford 
1). 

Substantial simplification of the mathematical problem 
occurs when the heat released by the combustion is small, as 
was seen last year when we presented the corresponding (but 
fundamentally different) results for near Chapman-Jouget 
deflagrations (2). Small heat release leads to a gasdynamic 
state close to the constant state ahead of the wave. Thus, 
the temperature and pressure are, respectively, 

1 + & - 1)f + O(B) I 1 + &f + O(8) I 

and the velocity of the detonation wave is 

-1 -6%. 

(1) 

(2) 

*Work supported by the U. S. Army Research Office. 
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Here Y is the ratio of specific heats, B is the (dimension- 
less) heat released, c measures the closeness of the wave 
velocity to the undisturbed sound speed (-l), and f represents 
the variation of the gasdynamics state from the undistrubed 
state. Following (2) we will use n for distance in a frame 
moving with the wave and T for time. 

The function f(rl,T) satisfies 

fT+ 2 = (k(T) - f)f,, = f frln , (3) 

f(O,T)=f,, f,(O+,T) - f,,(O-,T) = -y,/Y = -(Y+l)02/2Yr (4) 

f(-",T) = 0 , f(+=,T) < cp , (5) 

where 

k = 2c/(Y+l) (6) 

will also be called the velocity of the wave. Here II =0 is 
the location of the flame sheet (where the temperature is 
constant), f, is a reactivity parameter fixing the flame 
temperature, and Y, is the mass fraction of the deficient 
reactant. If c(T) were known, only four boundary conditions 
would be required to determine f . However, there are five 
because the condition (4a) counts twice; so that c is 
determined along with f . 

II. STEADY SOLUTIONS AND THEIR STABILITY. From the Rankine- 
Hugoniot jump conditions it can be shown that there is a minimum 
steady detonation velocity, the corresponding wave being know as 
a Chapman-Jouget detonation, here given by k=a. 
klc and f G [f,,2k) 

for every 

P , there is a steady solution r 
2kf*e4-/ (2k - f, + f,d-) 

for r150, (7) 

c 

i 
r 

c f-(f+-f*)+f+(f*- f-)d+1A (f+-f,)+(f,-f-)e +1 
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where 

f, =k&G 8 5-5 (y+l)kn/Y I C+ =(y+l) (f+-f-)0/2Y 9 (8) 

The solutions corresponding to f, = f- and f, + 2k have 
special significance in detonation theory. For f, = f the 
weak detonation is obtained, the velocity k being uni&ly 
determined by the reactivity parameter f, . As f, + 2k , the 
ZND detonation is obtained, i.e. a shock with velocity k 
folLowed by a deflagration adjusting f from 2k to f, . 

The linear stability of a steady solution can be examined by 
taking the infinitesimal perturbations of f and c (or k) 
proportional to exp(XT) . Stability, which is determined by the 
sign of Re(X) , is found to depend on the value of f, . (When 
this mode analysis fails to find instability, solution of the 
corresponding initial-value problem by Laplace transformation 
confirms that there is indeed stability, though for Chapman- 
Jouget detonations it is neutral.) The steady detonation is 
found to be 

Fig. 1. The f, , c-plane for y = 1.4 , Y =l 
region where the steady solution exists 

showing the 
an 

S = stable , U = unstable 
8 its Stability. 

stable. 
; the CJ-solutions are marginally 



stable for f- 5 f, < k + J k2 - a20 I (9) 

unstable for k+/m<f,< 2k. (10) 

Figure 1 shows the region of the f* , k-plane where the steady 
solution exists and its stability. 

Note that 

f* =k+/n (11) 

is not a conventional stability boundary: the single (real) 
eigenvalue by which instability is characterized tends to +a, as 
the boundary is approached. 

III. NUMERICAL RESULTS. We now discuss the numerical 
solution of the problem (3-5) under various initial conditions. 
A description of the implicit numerical scheme used can be found 
in (11; a spatial step of 0.1, a time step of 0.05, and 
boundaries at n=*lO were used for most of the calculations 
shown. 

A numerical test of the theoretical stability boundary (11) 
leads to Figure 2. The initial data correspond to the steady 
solution for y = 1.4 , Y, = 1 (used in all the computations 
shown), and c = 2 ; the disturbance corresponds to the 
discretization error. The c (T) profile was computed along with 
f (11 rT) for various values of f, , so as to determine the 
numerical stability boundary. (The criterion for numerical 
stability was that f and c should tend to their steady-state 
values in the computation time allotted.) 

In Figure 2 the theoretical region of stability is hatched. 
Figure 2a shows the values of c at T = 2.5 for different 
values of f, ; the computed stability limit seems to occur at f, 
= 3.25 , while the theoretical value (11) is f* = 3.20. 
Typically the disturbance of c (due to discretization error) has 
a maximum that grows as f, is increased towards the stability 
limit; for larger values of f, , the disturbance does not die 
out, i.e. no steady state is achieved. Details of the c,T- 
profiles in the hatched region of Figure 2b are shown in Figure 
3. 
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0 12345 

T 

Fig. 2. Numerical test of the stability of the steady solutions. 
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Fig. 3. Blow-up of Figure 2(b). 
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Figure 4 shows the response of the stable detonation 
f* = 1 I c = 1.2 to a larger disturbance in the burnt mixture 
(r) > 0) . The dotted line is the steady solution and, since f 
is proportional to the pressure, the initial data shown 
correspond to a rarefactive disturbance. 

Figure 5 shows the response of the unstable detonation 
f, = 1.8 , c = CCJ = 1.09545 to a similar rarefaction. Figure 
6 shows the corresponding response for the detonation f* = 1.5 , 
c = cCJ I which is neutrally stable but close to the theoretical 
stability limit. The numerical scheme failed at T = 0.1992 
but a rudimentary oscillation in c is obtained, with a smal; 
but nontrivial change in f . 

Figure 7 shows the same detonation as in Figure 6, but 
subjected to a stronger rarefaction. (These results were 
obtained by an explicit scheme, with spatial step 0.2 and time 
step 0.025.) Almost three cycles of an apparently periodic 
oscillation were observed before the scheme failed (at X). 

IV. CONCLUDING FfEMARKS. The numerical calculations 
correlate reasonably well with the theoretical stability results. 
Certainly the large-region of stability is confirmed, and 
inaccuracy in locating its boundary could well be due to the 
discretization error. 

Of greatest interest is that our results suggest the 
possibility of relaxation oscillations for our model. Such 
oscillations have been observed in numerical simulations of 
detonations using a system of first-order convective-reactive 
equations (3), and have been dubbed "galloping detonations." 

We are currently trying to improve our numerical scheme to 
overcome the difficulties that are encountered when c is large. 
This should make the evidence for relaxation oscillations more 
convincing. 
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Fig. 4. Response of a stable detonation to a rarefaction applied 
in the burnt region. The curve m is the undisturbed 
steady profile. 

808 



I I I I I I I I I I I 1 
-5 0 5 IC 

77 

C 

C CJ--m----- -___ -I-___- -____ ---__ 

I.0 I I I I I I I I I I I I 

0 0.5 
T 

I.0 
Fig. 5. Response of an unstable detonation to a rarefaction in 
the burnt region. The curve V is the undisturbed steady 
profile. 

339 



IO 

8 

C 

6 

, 
1-r 

5 
77 

0 0.05 0.1 0.15 0.2 

T 

Fig. 6. Response of a neutrally stable CJ-detonation to a 
rarefaction in the burnt region. Breakdown at T = 0.1992 is not 
shown by f-profile. 
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ARE DETONATIONS STEADY?* 

A.A. Oyediran and G.S.S. Ludford 
Department of Theoretical and Applied Mechanics 

Cornell University, Ithaca, New York 14853 

ABSTRACT. A generic problem in the transition from 
deflagration to detonation is the overtaking of a steady 
deflagration wave by a steady shock wave. Such a collision 
produces a detonation wave (as well as a contact discontinuity, a 
back shock, and sometimes a rarefaction wave). Work reported at 
the 27th Conference of Army Mathematicians showed that, for small 
heat release in the deflagration, the detonation wave cannot be 
steady. Here we remove the restriction to small heat release and 
show that the detonation wave can never be steady. 

I. INTRODUCTION. In a paper presented at the 27th 
Conference of Army Mathematicians, Ludford and Stewart (1) 
considered the shock-induced transition from deflagration to 
detonation illustrated in Figures 1 and 2, In particular, they 
showed that, for small heat release, the resulting detonation 
wave cannot be steady. The object of this paper is to remove the 
restriction to small heat release: the detonation wave that 
results from a steady shock overtaking a steady deflagration wave 
can never be steady, according to the ignition-temperature theory 
of deflagrations and detonations developed in (2) and (3j. 

II. RESULTS FROM THE THEORY. The reactivity of the fresh 
mixture ahead of both deflagration and detonation is 
characterized by an ignition temperature T, . Stewart & Ludford 
(2) then show that a structure exists for the steady deflagration 
only if the ignition temperature lies in a certain interval 

u 
T,(B) 5 T* < $8, =l+B; 

*Work supported by the U.S. Army Research Office 
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Figure 1. Outcome of a sufficiently strong steady shock 
overtaking a steady deflagration -. 

lines- and - - 
The 

represent-a detonation and 
contact discontiniuity, respectively. 

X 

Figure 2. Modification of Figure 1 for weaker shock strengths. 
The detonation is now Chapman-Jouget with a centered 
rarefaction lying immediately behind. 
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here f3 is the heat released by the reaction and the temperature 
of the fresh mixture has been used to non-dimensionalize. The 
right limit is the so-called adiabatic flame temperature, when no 
heat is used to increase the kinetic energy; the left limit, 
which will not be used in our discussion, must be obtained by 
numerical integration. 

Given the Mach number M of a detonation, it is well known 
(4) that the reaction rate must lie within certain limits. Ebr 
the ignition-temperature theory, Lu & Ludford (3) show that this 
leads to the requirement 

(2) 

where 
V 
T,=l+B+ 9 M’(l-v2) with v= l+yM2 -2B (v+l)M2 

(y+W2 
(3) 

but ^T* must be obtained by numerical integration (we shall not 
need it). Here y is the specific-heat ratio and we find 

(1 + yM2)/(y + 1)M2 < v < 1 . (4) 

III. APPLICATION TO THE PRESEI!IT PROBLEM. The Mach number 
of the detonation in either figure is determined by the strength 
of the shock wave. It cannot be smaller'than the Chapman-Jouget 
value, i.e, / 

MCJ zM<" with 2 
MCJ = l+(y+l)B [l+(y+l)B)2-1 . +J 

When the shock is sufficiently strong, as in Figure 1, the Mach 
number is greater than M 
Figure 2. We shall now sAa~'t~~~~'"w~~~e~~r~~~~l~a~~'~u~b~~,~~he 
intervals (1) and (2) do not overlap; specifically 

?,(B,M) > G,(S) for all M E WCJr4 I (6) 

which is clearly ensured if the following inequalities hold: 

TV, (6 ,MCJ 1 > s* (B P 1 ' 5r*w , (7) 

dTV,/dM c 0 for all M E (MCJrm) . (8) 
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Proof of the inequalities (7) follows directly from the 
definition (3); thus, 

$, (8 rMCJ) = 1 + y8 + (y-l){ 1 + (y+1)B)2-l - B}/(y+l) 

v 
> 1+ YB = T,(B,=) > 1 + 8 = q*(B) l 

The definition also gives 

d$,/dM = (y-l)M(l - v2 - 2vM2dv/dM2) 

= -(y-l)M(l-v)((l+yM2)+(1-yM2)v)/2( (y+l)M2v-(l+yM2)) , 

where we have used the quadratic equation satisfied by v rather 
than its solution (3b). The bounds (4) on v 
inequality (8). 

now give the 
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THERMAL AND TRANSFORMATION STRESSES IN 
HOLLOW TUBES DURING THE QUENCHING PROCESS 

J. D. Vasilakis 
U.S. Army Armament, Munitions, and Chemical Command 

Armament Research and Development Center 
Large Caliber Weapon Systems Laboratory 

Benet Weapons Laboratory 
Watervliet, NY 12189 

ABSTRACT. During the heat treatment of components, the transient thermal 
stresses can be very high. This is especially true if a severe quench is 
required such as the quenching of steel gun tubes for the development of a 
martensitic grain structure. In addition to the large transient thermal 
stresses, severe transformation stresses also exist due to the structural 
volume change involved. If these stresses are high enough, inelastic response 
of the material must be considered and residual stresses will exist in the 
structure when the process is complete. In this paper, both thermal and 
transformation stresses are computed for various quenching procedures using a 
hollow tube for the geometric lrrodel. The relative swerity of the thermal and 
transformation stresses and the conditions under which they occur are 
discussed. A general purpose finite element code, ADINA, is used for the 
computation. 

I. INTRODUCTION. Rapid quenching of bllow steel tubes from initially 
high temperatures is usually undertaken to produce desired structural 
properties ia the tubular components. This technique has been utilized in the 
fabrication of large caliber, long gun tubes. The initial high temperature of 
843'C (1550'F) giving the steel gun tube an austentic grain structure is 
cooled to less than 100°C (212'F) in just a few minutes using various water 
spray methods. The desired end result is a martensitic structure in the 
material. 

Due to the transient temperatures created by the water spray, the large 
thermal gradients in the tube wall give use to thermal stresses which change 
rapidly in time. In addition to these stresses, as the material grain 
structure transforms into martensite, a volume expansion of the structure 
occurs. This expansion associated with the martensite transformation gives 
rise to additional transient stresses, called transformation stresses. If the 
stresses that occur during this procedure are below the yield stress of the 
material, as the temperature equilibrates to room temperature and as the 
transformation is completed, the quenched tube is stress free, i.e., no 
residual stresses exist. However, if the stresses are such that some 
inelastic deformation occurs in the tube, then there will exist residual 
stresses in the tube after it is quenched. The latter is the more likely 
case. 

This paper investigates the transient temperatures and stresses that 
a steel gun tube experiences in such a quenching operation. The material 
properties and system parameters used in the computations are chosen using the 
rotary forge quench facility at Watervliet Arsenal as a model. Specifically, 
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a memorandum [l] describing the results of an experimental quench test was 
used to generate the approximate convection heat transfer coefficients for the 
study. Most of the interest is centered on the breech (or rearward) end of 
the tube and the muzzle (or forward) end of the tube, with emphasis on the 
muzzle end. This is because quench cracks are more frequent at that location. 
In addition to considering the two locations along the tube, the effect of 
altering the quench cycle is also considered. Nozzles spray water on the 
outer diameter of the tube as it is slowly rotated. Sprays on the breech and 
muzzle end can be separately controlled. The quench on the bore or inside 
diameter of the tube is accomplished by flushing the bore with water. It is 
of interest to bow the effect of this flush when it occurs concurrent with 
the water spray on the outside diameter, or when it begins slightly before or 
after the OD quench. 

To compute the temperatures and stresses mentioned in the above 
paragraph, a general purpose finite element computer program, ADINA [2], is 
used. The problem was treated as an sxisymmetric plane strain in two 
dimensions. Separate analyses or runs are undertaken for the breech and 
muzzle sections using their respective geometries. Any tapering of the gun 
tube is ignored as are end effects. Although the geometry is simple, the 
problem is complicated due to the highly transient nature of the problem and 
the consideration of temperature dependent material properties and yield 
strength. The properties used in the report for the computations are stated 
in the Appendix. 

II. PROBLEM STATEMENT. Thermal and transformation stresses are computed 
for long hollow cylinders subjected to different quench cycles. Two 
geometries, representing the breech and muzzle sections of a gun tube, are 
modeled. .Effects of altering the quench cycle of the bore are considered. 

III. FINITE ELEMENT PROGRAM. The finite element geometry for the 
problem is shown in Figure 1 along with a simplified drawing of a gun tube. 
Eight node quadrilateral elements ware used for the model. Sixteen elements 
are used at the muzzle and twenty at the breech. Some preliminary work was 
done with other mdels (4 node quadrilaterals and 10 element, 8 node models) 
and it was decided that the current model gave sufficient accuracy and 
smoothness of results. 

The finite element program actually consists of two parts, one for 
computing temperatures, ADINAT, and one for computing stresses, ADINA. Each 
program can stand alone, but when one wishes to compute thermal stresses using 
the same geometry, ADINAT produces a file which includes the temperatures at 
the nodes for each time step if the problem is a transient one. This ADINAT 
output file can then be used as input to ADINA for the stress computation. 

In the program, the thenno-physical properties were considered as 
functions of temperature and the values are recorded in the Appendix. The 
convection losses during the heat transfer portion of the computation are 
considered to be due to the temperature difference between the tube wall and 
ambient, which is taken to be 18.3*C (65'F). For the computation of stresses, 
one has a choice of several material behavior models in ADINA. The one chosen 
for this work was Model 10 [3], which is applicable to the thermo-elastic- 
plastic solution of interest. The yield criterion assumed is the distortion 



energy criterion and the yield stress is assmed to be a function of 
temperature. No creep or hardening is assumed although the mdel allows both 
to be incorporated. 

To compute thermal stresses, the problem for the transient temperatures 
is just salved using ADINAT as indicated above. The special file created by 
ADINAT is then used as input to ADINA to compute the thermal stresses. 
However, in many cases in solving the temperature problem, short time 
increments are used during periods of large transients and longer time 
increments when the temperature gradients are not as severe. While ADINAT 
allows one to change time increments, ADINA does not. This difficulty was 
overcome by manipulating the file used for stress computation so that with the 
restart capability, ADINA muld see only one time increment during any one 
computation interval. The temperature file could also be manipulated to 
decrease the temperature difference between time steps tith the time increment 
appropriately changed. Finally, the restart facility in ADINA [4] was altered 
so that a restart could be undertaken from any previous time instead of just 
the last completed step. Simple linear interpolation is used in any file 
manipulation. 

The computation of transformation stresses and combined thermal and 
transformation stresses can be treated like thermal stresses with additional 
effort. The effect of the transformation, at least the aspect of it giving 
rise to stresses, is to create a volume change in the material. In this case 
the volume change is an increase and it occurs when the temperature at a point 
in the material becomes equal to the martensite start (MS) temperature and is 
completed when it reaches the martensite finish (MF) temperature. The volume 
change due to the martensite transformation is an expansion of about 3 to 4 
percent. If the transformation is assumed to be isotropic, this represents a 
lineal expansion of 1 to l-1/3 percent. The form of the term giving rise to 
thermal stresses is [3] 

a[T-TREF]E (1) 

where: a coefficient of linear expansion 
T temperature 
T~F a reference temperature for zero strains 
E Modulus of Elasticity 

Equation (1) can also be used to compute the stresses due to the 
transformation if a is rPodified. 

Suppose ;ii is the edified coefficient for the transformation stress 
computation. Then a is zero until Ms is reached. When-the transformation is 
just complete, the temperature is MF and a change in length per unit length, 
strain E = AL/R, is one-third the volume change or .0133. Between Ms and Mf, 
the transformation is assumed to progress linearly. Once MF is reached, the 
expansion is assumed to be permanent. Thus, at Ms = 325°C (617OF) [5], ?i = 0 
and at Mp = 260°C (500'F) (51, z;T = .0133. Thus assuming T~EF = 0 in this 
ca38,Z = 2.666 x 10-5. Finally, as the temperature cools below MF, Z must be 
adjusted so that ET remains constant and equal to .0133, i.e., the linear 
strain remains constant. If there was no inelastic deformation, when the 
transformation was complete, the transformation stresses should vanish as the 
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e_ffect of the transformation muld be that of a uniform expansion. A plot of 
a vs. temperature is shown in Figure 2. 

To show the desired response, a problem was run for transformation 
stresses alone, with a replacing the coefficient of thermal expansion. 
Plastic response was suppressed by using an artifically high yield strength. 
The resulting stresses after the transformation was completed approached zero 
as they should have (due to the final uniform expansion). Because only a 
piecewise linear approximation to Z is allowed (16 points), stresses did not 
completely vanish, but if the 16 points are grouped immediately following the 
transformation, the results at that time are Improved, i.e., nearer zero 
strees. At later times (and cooler temperatures) where the approximation was 
now cruder, the results mrsened. This indicated that the assumptions made In 
computing Z were correct. 

In a similar manner, a coefficient, a*, can be constructed so that the 
combined thermal and transformation stresses could be computed. This was done 
by solving for a* from 

a*(T-TREF)E = aTE + a(T-TREF)E 

The quantities have been previously defined. Thus, the required coefficients 
are found from 

a*(T) - a(T) + a(T) -:-- 
T-TREF 

This is shown in Figure 2 and in the Appendix. Computations were made with 
each of the three coefficients. Plastic response was again suppressed. Table 
1 shows some of the results. Summing the results of the separate computations 
for thermal stress (a) and transformation stress (E) should give the results 
for the combined solution. (a*). While this is done elastically, similar 
behavior should be expected in an elastic-plastic solution as computed as a* 
for a new "thermal load" increment muld not be affected by the type of 
solution. 

TABLE 1. RESULTS USING COEFFICIENTS FOR COMBINED 
THERMAL AND TRANSFORMATION STRESS 

Time 
(set) 

87.75 

107.75 

Node 
Location 

191 
791 

16,l 

191 8,472 74,911 82,132 83,383 1.5 
791 -31,339 65,996 33,538 34,657 3.3 

16,l 62,566 -504,735 -442,237 -442,169 .Ol 

Thermal 
Stress 

I (1) 

15,444 
-39,681 

85,102 

Transformation Combined 
Stress Stress 

(2) (3) (1) + (2) % Diff 

2,133 17,184 17,577 2.3 
1,879 -38,165 -37,802 1.0 
1,600 86,436 86,702 .3 

NOTE: Plastic behavior is suppressed. 
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IV. RESULTS. Figure 3 is typical of the type of information that can 
result from a study of this type. It shows the response of the breech end of 
the tube versus temperature on a Time-Temperature-Transformation Diagram. The 
word typical is used above because the location of the bainite start curve is 
not known for the actual material modeled. The bainite start curve shown is 
for a steel having the composition shown in Table 2. Current gun steel 
composites contain alloying elements, such as vanadium, which push the bainite 
curve to the right. The transient cooling curves superimposed on the figure 
represent the cooling of the breech end of a 105 mm M68 tube. The quenching 
of the outer diameter was delayed 30 seconds relative to the bore quench. The 
convective heat transfer coefficients were found by assuming the OD 
temperature of the breech reached - 200'F in eight minutes. Assuming the bore 
quench to be less efficient and since no experimental temperatures ware 
available as on the outside diameter, the convective heat transfer coefficient 
was taken to be one-half that of the OD. Figure 4 shows the temperature 
distribution throughout the wall at various times for the same geometry and 
quench. At the first time (2.5 seconda) one can see the bore beginning to 
cool and with no change on the outer diameter. The second curve shown at 32.5 
seconds occurs just after the OD quench begins, and the subsequent temperature 
distributions show that the OD is cooled more rapidly than the bore. As the 
quench approaches the end of its cycle, the temperature distribution 
throughout the wall does not vary much. The temperature distributions vary 
even less in the muzzle section, e.g., Figure 8. 

TABLE 2. COMPOSITION OF STEEL FOR RAINITE CURVE SHOWN 

I I I 
C .31 Ni 5.07 
h .76 Cr 1.22 
Si .30 MO .48 
P .009 Al .031 
S .023 

Figure 5 shows the variation of stress with time for a material element 
on the bore surface and on the outer surface. The highly transient nature and 
the severity of the stresses can easily be seen. Most points can be easily 
explained. Point 1 indicated the beginning of the quenching of the outer 
diameter at 30 seconds into the quench cycle. Only thermal stresses exist 
until point 2 is reached at about 210 seconds when the outer diameter begins 
to transform into martensite. At point 3, plastic deformation begins on the 
outer surface. At point 4, the bore begins its transformation. The bore 
develops plastic deformation at about 290 seconds and the bore transformation 
ends at point 6. The stresses beyond 350 seconds on the residual stresses 
that exist at those material elements after room temperature is reached. 
Figures 6 and 7 show the stress distribution throughout the wall for two 
different times. Figure 6 is included to show that the stress can vary quite 
strongly. The time is that when the bore first develops inelastic behavior. 
Figure 7 is the residual stresses that would exist after the temperature 
equilibrates. 

321 



The remainder of the results were generated for the muzzle section as 
this was an area of interest due to quench cracking under certain conditions. 
Four different quenches were considered: 

1. No quench delay - the bore quench and OD quench are initiated 
simultaneously (Figures 8 through 11). 

2. 30 second prebore quench - the bore quench is initiated 30 seconds 
before the OD quench (Figures 12 through 15). 

3. 30 second postbore quench - the OD quench is initiated 30 seconds 
before the bore quench (Figures 16 through 19). 

4. No bore quench - the bore is not quenched in this case (Figures 20 
through 23). 

Figures 8, 12, 16, and 20 show the temperature distribution throughout the 
wall for various times throughout the respective quench cycles. Except for 
the initial few curves, there does not appear to be great differences between 
the quenches. The first two or three temperature curves will indicate the 
type of quenching undertaken, i.e., whether the bore is quench first or not at 
all, etc. One can easily see however, that as time into the quench cycle 
progresses, the temperature distributions become rather flat. This indicates 
that the temperature equilibrates rapidly due to the high conductivity of the 
steel. This is especially true when the bore is quenched as in any of the 
above conditions. For the case when the bore is not quenched, there is an 
interesting occurrence for the parameters chosen. While the stresses on the 
outer surface became plastic on all the above runs, the bore saw plastic 
deformation only for the case of no bore quench. This will be discussed in 
more detail later. 

The transient temperatures versus time are shown for each case for the 
bore area, the midsection or core, and the outer diameter in Figures 9, 13, 
17, and 21. This type of curve was discussed previously. The intent of the 
quench is to cool the material rapidly enough to pass before the 'knee' of the 
bainite curve in order to form martensite structure. As mentioned previously, 
the bainite start curve shown is not that for the current material used, but 
for one with a different alloy content [S]. 

The following curves (Figures 10, 14, 18, 22) show the variation of 
stress with time for each of the quench cycles. The highly transient behavior 
of the problem becomes very visible. For example, in the 30 second prebore 
quench case (Figure 14) at 30 seconds into the quench cycle, the OD quench 
begins and the circumferential stress on the OD becomes tensile. At time 121 
seconds, the martensitic transformation begins on the outer diameter. This 

material area cries to expand but it constrained by the as yet untransformed 
material, hence it is put into compression. At about 125 seconds, the 
material on the OD had yielded. The bore transformation then begins at about 
133-134 seconds causing an abrupt change in stress at that point. Finally, 
the transformation of the OD material is completed followed by the 
transformation of the bore material. The material on the OD is subjected to 
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plastic deformation (in tension) just before completion of the transformation. 
The bore material saw no plastic deformation at any time. Again, most of 
these figures are similar with the exception of Figure 22 for the case of zero 
bore quench. Here one can see that the stresses at the bore are larger and 
compressive much of the time. 

The final set of figures, Figures 11, 15, 19, and 23, show the resulting 
residual stresses for each quench cycle. Again, these sJ.1 have a similar 
shape with the exception of Figure 23 for the case where the bore was not 
quenched. As mentioned in the above paragraph, the bore developed plastic 
deformation only for this case. Two companies have provided steels with 
similar chemistry (or alloy content) for production runs of gun tubes. Tubes 
forged from one of the steels bad a much higher frequency of quench cracking 
until the mOre severe no bore quench cycle was used. While no direct effort 
has been made to verify this at this time , the development of quench cracking 
may have been prevented by the different stress-time be‘havior and resulting 
residual stresses in this case where the bore area seems to be under 
compression for longer times. 

v. FuTlTRe WRK. Concurrent efforts in the quench crack problem have 
been undertaken and will be providing mre accurate experimental data for 
input to this analysis. This refers to a better estimate of the volume change 
in the temperature, as well as the way that the volume changes in time. An 
up-todate bainite curve is being determined but preliminary indications are 
that it will not be in any area of the TTT diagram that vnould cause problems 
if the quenching rates are held the same. It is hoped that mre accurate heat 
transfer coefficients can also be determined. Incorporating this new 
information in the analysis will certainly lead to a better understanding of 
the events occurring during the quenching of long hollow tubes. 
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APPENDIX 

MATERIAL PROPERTIES 

Table Al shows the mechanical properties used in the program as a 
function of temperature. As only 16 points are allowed for describing a 
function, not all points were used in all calculations. The main source of 
the properties is noted in Reference 6. The tables shown include property 
values at some temperatures which were found by linear interpolation. 

TABLE Al. MEZHANICAL PROPERTIES AS A FUNCTION OF TEMPERATURE 

Temperature Young's tidulus Yield Stress 
(F) (xlOE6 psi) (psi> 

65. 30. 160000. 
100. 29.84 157560. 
150. 29.6 154080. 
200. 29.37 150060. 
225. 29.26 148860. 
250. 29.14 147120. 
275. 29.02 145380. 
300. 28.9 143640. 
325. 28.78 141910. 
350. 28.67 140170. 
375. 28.56 138430. 
400. 28.44 136680. 
425. 28.32 134950. 
450. 28.20 133210. 
485. 28.04 130770. 
500. 28.03 130750. 
560. 27.67 126760. 
617. 27.34 122980. 
635. 27.32 122800. 

1200. 27.00 88000. 
1560. 18.60 65600. 
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TABLE X2. THERMAL AND TRANSFORMATION COEFFICIENTS USED IN THE STRESS PROGRAM 

Temperature 
CT) 

Coefficient 
of Thermal 

Expansion 
(E-6 in./in.-F) 

65. 6.3 
100. 6.42 
150. 6.6 
190. 6.75 
200. 6.78 
225. 6.84 
250. 6.9 
275. 6.96 
300. 7.02 
325. 7.08 
350. 7.14 
375. 7.20 
400. 7.27 
425. 7.33 
450. 7.39 
485. 7.45 
500. 7.51 
560. 7.65 
600. 7.75 
610. 7.76 
617. 7.77 
635. 7.8 

1200. 8.5 
1560. 6.87 

Coefficient for 
Transformation 

Computation 
(E-4 in./in.-F) 

Coefficient for 
Combined 

Stress 
(E-6 in./in.-F) 

2.05 -2.99 
1.33 -3.11 

.89 -3.28 

.66 -3.47 

.59 -3.61 

.53 -3.76 

.48 -3.92 

.44 -4.08 

.41 -4.26 

.38 -4.45 

.36 -4.65 
.33 -4.86 
.31 -5.07 
.30 -5.31 
.27 -5.37 
.27 -5.82 
.24 -6.53 
l O 7.75 
.o 7.76 
.o 7.77 
.O 7.8 
.o 8.5 
.o 6.87 
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TABLE A3. THERMAL PROPERTIES USED AS A FUNCTION OF TEMPERATURE 

Temperature 
(OF) 

0 
400 
600 
800 

1000 
1200 
1400 
1560 

----------------- 

I 

.0005 
l 00049 3 

.000472 
l 000449 

.000412 
.00037 
.00031 
.00031 

----_---------------__I___ 

Temperature Specific Heat 
(OFI (BTuWF) 

0 .105 
1300 .184 
1400 .38 
1550 .14 

Thermal Conductivity 
(BTU/OF set in.) 

Density .284 #/in.3 
Martensite Start Temperature 325*C (617'F) 
Martensite Finish Temperature 26O*C (500'F) 
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FINITE ELEKZNT ANALYSIS OF FABRICS WITH NONLINEAR STRESS-STRAIN LAWS 

A. R. Johnson 
US Army Materials and Mechanics Research Center (DRXMR-SMM) 

Watertown, MA 02172 

ABSTRACT . -.I-- The material constitutive relationships for woven fabrics are 
r,onlinear. This,together with the fact that transversely loaded fabric 
membranes undergo large deformations, presents a difficult analysis problem 
to desiyners using fabrics in structures. In this effort, the constant 
strain triangular element is used for the development of finite element 
gradient and tangent matrices for the case when the material energy density 
functional is a C2 - runction of the warp and fill strains. The element matrices 
are derived using the nonlinear Green strain-displacement relations to describe 
the warp and fill strains in terms of the deformations of the fabric. Biaxial 
stress-strain data Eor a 2.6 oz/yd2 cotton cloth is used to obtain approxirncte 
stress-strain functionals arid an energy density functional. The element 
is used to tlctzcrnlinc the deformations and stresses in a uniformly loaded square 
fabric membrane. 

INTRODUCTION. m--m Fabrics are used as structural components in lighter 
than air vehicles, parachutes, and tents. Recent worksle5 have concentrsted 
on determining material properties, constitutive relations and constructing 
apyro;>iate finite element algorithms to deal with the large deformations 
and nonlinear materials. Previous constitutive relationships used stresses 
as independent variables along with warp (lengthwise)-to-Eill (woof) stress 
ratio. 1;3 This presents a complication to displacement Einite element 
formulations. 

In this effort the idea of fitting a function to the stress-strain 
data with the strains as independent variables is p;ryued with a finite 
element formulation similar to that used by Johnson ' to determine the 
deformations of rubber membranes. The warp and fill stresses are expressed 
via warp and fill strains. An energy density functional for fabric membranes 
is then obtained in terms of the fabric warp and fill strains. Green's 
strain-displacement relations are used and a potential energy functional 
is obtained in terms of material displacements. A total Lagrangian formulation 
is then constructed and used to obtain displacements, strains and stres;:es 
in a uniformly loaded initially flat square fabric membrane. 

_CDNSTITUTIVE MZLATION. The stress-strain data for biaxially loaded 
woven fabrics indicate that the response of a fabric, say in the warp direction, 
is dependent on the ratio of the warp-to-fill stresses (see Refs 2, 3). In 
Figure 1 some of the biaxial stress- 
for a 2.6 oz/yd2 cotton. cloth. 

strain data from reference 2 is presented 
This data was used to generate the curves 

shown in Figure 2. When similar curves are drawn for linear materials, 
a series of equally spaced constant stress contours is obtained whose slopes 
in the E,,c 

i 
plane are dependent on Poisson's ratio. Comparisons indicate 

that the fa ric constant load profiles are associated with a variable Poisson's 
ratio, and that the magnitudti of the stresses yrovs ever more rapidly for 
fabrics as the strains increase. That is, for fabrics, the spacing between 
the constant load profiles for a given load change tends to decrease as 



the load increases, while it remains constant for linear materials. Then, 
a constitutive relationship for fabrics should have a variable Poisson's 
ratio and an increasing load-to-strain slope as the strain increases. After 
investigating several possible functions, an exponential form was selected, 
I.@., 

Upon expanding the exponsntials in (1) we obtain 

N, = CUE, + VA + $[qtyc2]: .*. 

(1) 

(2) 

The first order terms in (2), with K ,fL constant, represent a linear material. 
With suitable constants C,, ) C,, and functions J;(E,,~~),G'(G,,~~L) we may expect 
to obtain a behavior close to that of a fabric. 

A material which strictly follows the constitutive relationship given 
by (1) can sustain compression unlike a fabric which cannot. The maximum com- 
pression stress which can be obtained from (1) is -1 when the strain is (or, 
strains are) infinetly negative. No negative stresses were obtained for 
the problem solved in this effort. 

Using the data from Figure 2 and experimenting with several linear 
functions for J; and t& , the following constitutive relation is obtained 

(3) 



Constant stress profiles for (3) are shown in Figure 3. These contours 
agree well with those in Figure 2 in the first quadrant and have the shifting 
and curvature properties similar to the profiles shown in Figure 2. The 
potential energy can now be easily obtained in terms of the strains. 

METHOD OF ANALYSIS. For simplicity we assume that the potential energy 
is a function of two field variables X, and xp . Thesefield variables 
are the strains E, and E, in the detailed analysis presented in the next 
section. Extension to the case when more nodal variables are used is straight 
forward. X, and )(, are approximated by the nodal variables X and ‘I over 
an element domain. That is, we have 

7-r = f (X,,X,) = the potential energy 

Then, the gradient of the potential energy is 

(4) 

(5) 

(6) 
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The tangent matrix is written as 

which in this case becomes 

where 

A solution is defined as a point(%,Y) at which71 is a minimum. The 
Newton-Raphson method can be used to locate stationary points of n using 
the element gradient and tangent matrices as follows 

where u; = 
[ 
Xi 
Y 

(7) 

(9) 
represents the i'th vector, etc. 



GRADIENT AND TANGENT MATRICES FOR CONSTANT STRAIN ELEMENT. The coordinate 
system used for the element is shown in Figure 4. In the element coordinnte 
syaem, the strain-displacement relations can be written as 

(10) 

where (U’,lV~W’) are the displacement components of a material point alonq thz 
element coordinate directions(Xe,Y,,i,) , respectively. 

We now introduce the relationships between the element Cartesian coordinates 
and the area coordinates (see ref. 8 and Figure 4). 

F, = (4, + b,x, +C,u,)/OA) 

$2 = ( Q, + 4% + c&lAzA) 

cij = ( a, * 4X, + C,Y,)/WQ 

the Cartesian coordinates of node; 
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and (i, j,K) is an even permutation of (1, 2, 3). 

Next, using the traingular constant-strain element interpolation functions, 
we interpolate Ue, meand weas follows 

(11) 

where U; , (c e M; ,y;') are the nodal displacements of the i'th node. With the 
definitions given above, the strain in the warp direction can be written as 

El = 
1 

so the dot products become 

(12) 

and 

(13) 

The gradient of the element’s potential energy is computed as follows 

(14) 
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where TTe = s F(~,,~~I dn, - we 
AC 

F( c,,~,) =: the area1 energy density functional given by 

F (t,,c,‘) =.+ E,N,Ct,,&) + 'i ~,N&e,l 

we = the work done on the element by external Forces, 

and n, = the domain of the element. 

Then, the gradient becomes 

Or, in a shorter notation 

and the elcmcnt tangent matrix becomes 

(15) 

(18) 
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where s'c; = 

or 

Calculating, we obtain 

M, =’ M,= 

(193 



and the terms in SE, and JE, are found from 

C20) 

Using the cunstitutive relarion given in (1) we can compute the rate of change 
of the oncrgy density function in (15) and obtain the coeffecients 

Now with a description of a fabric's geometry, boundary conditions and 
loading, solutions can be obtained using the algorithm described above. 

Uniformly Loaded Square Membrane. One quarter of a uniformly loaded square 
fabric mcmbranc is shown wizboundsy conditions in Figu-re 5. To obtain a solution 
to this problem the following approximate expression for the work done was used. 

(211 

where q = the pressure applied to the membrane. 

w = the vertical displacement of the membrane. 

and fl = the (x,y) domain of the fabric. 
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For the constant strain element described above we find (for an element of A). 

and 

where u; = I up,lye,bke 4 I nr;‘,K,’ , u,’ ) Af, w,e> 
7 

I \ and We in the portion of the 
external work done on the elements. 

The deflections, strains and stresses for a uniformly loaded square membrane 
with the boundary conditions given in Figure 5 and a constitutivc relation given 
by (3) were dctcrmincd. 'The size of the membrane was 10 in X 10 in, (represents 
one quarter of a 20 in X 20 in uniformly loaded memb.rane). Figure 6 shows the 
maximum displaccmcnt and load shown indicates that when the membrane is nearly 
flat it is very flexible but after it has been deformed it becomes stiff. The 
value 2 of' the membrane stress, N , are shown in Figure 7 for a pressure of 0.5 
lb/in . The distribution for N 'was entirely symmetrical with respect to N and 
is not shown. This data indica es Y that the stresses are very low in the cokers 
0L’ the ur~il~ocx~ly lorrdcd ,squ;.'rc mcmbra~lc and arc the largest along the ccntcrlincs. 
Corresponding values of the strains E and E are shown in Fig, 8. The strains 
indicate that the fabric will tend to%ull tl(ght across the two centerlines of 
the square but remain relatively unloaded near the corners. 

The effect of mesh size on the accuracy of the solution was dctcrmincd by 
using Richardson's extrapolation method to study the accuracy of the displacements. 
This was accomplished by assuming the center deflection of the square membrane 
was related to the mesh size as follows. 

where w(h) is the ccntcr dcflcction fo 
were obtained at a pressure of q = 10 -I 2 mesh s'zc h and C,P are constants. Solutions 

lb/in . for 6 X 6, 8 X 8 and 10 X 10 meshes 
(i.e. for h = l/6, l/8, l/10). The values for h and w(h) were used to determine 
the convcrgonce rate (P = 1.69) shown in Figure 3. 

Conclusions. The elastic nonlinear behavior of fabrics can be modeled by 
exponential functions in which stresses are determined as a function of the 
strains. These stress-strain relationships allow the stresses in the deformed fabrics 
to bc dctcrmincd by a nonlinear displacement finite element method. This approach 
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is useful for determining-the deformations, strains and stresses in uniformly 
loaded square fabric membranes. The approach here can be modified and used for 
designing tents and inflatable fabric Structures- 
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FIGURE 1. Biaxial fabric test data for 2.6 oz/yd2 cotton 
typerwriter ribbon cloth. (taken from Ref. 2). 
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FIGURE 2. Contours of constant stress as a function of 

c, and E, for 2.6 OZ/yd 2 cotton typamriter 
ribbon c 10th. 
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FIGURE 4. Coordinate System For The Fabric Element. 



center def\ection 

FIGURE 5. Loading, boundary conditions, and typical 
mesh for flat square fabric membrane. 
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FIGURE 6. Maximum deflection vs pressure for an initially flat 
square fabric membrane. 
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FIGURE 8. Membrane strains for a 6 X 6 mesh. 
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FIGURE 9. Convergence of center deflection with respect 
to mesh size for a small pressure (P = 0.0001 lb/in'). 
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EXPLICIT FORMULAS FOR 0 PIECEWISE HERMITE BASIS FUNCTIONS 

Royce W. Soanes, Jr. 
US Army Armament, Munitions, and Chemical Command 

Armament Research and Development Center 
Large Caliber Weapon Systems Laboratory 

Benet Weapons Laboratory 
Watemliet, NY 12189 

ABSTRACT. Completely factored forms of the piecewise Hermite basis 
functions will be derived. All necessary coefficients for any level of 
smoothness will be shown to reside conveniently in Pascal's triangle. 

I. INTRODUCTION. We begin with a theoretical characterization of the Cn 
basis functions with which we are dealing. For a given node Xi in R, there is 
a basis function Hij(x) associated with the jth derivative of any function f 
at xi, where j ranges from o to n. In addition, each basis function is 
nonzero on only two adjacent subintervals. Continuing with the definition of 
the H's, we wish an approximation F to f of the form: 

F(x) = 
(j 1 

j=O 
Hij(x)f (Xi) + Hi-t-Ij(x)f 

where xi G x ( xi+1. 

In order that F and its n derivatives will agree with f and n of its 
derivatives at nodes xi and xi+l, it is sufficient that the basis functions 
associated with arbitrary node i obey the following conditions: 

(k) 
Hij(Xi) a 6jk 

and 
04 (k) 

Qj (xi-11 = “ij (xi+11 = 0 

where 0 C j,k < n. 

On a given subinterval, therefore, each H must obey nfl conditions on the 
left extreme and n-t1 conditions on the right extreme. The H's may therefore 
be represented by two distinct polynomials of degree 2n+l, 

The following series of pictures depicts the C4 basis functions (scaled) 
and their derivatives. The five functions across the top are the basis 
functions associated with the 0th through the 4th derivatives of f and the 
functions underneath them are their successive derivatives. Note that the 
functions along the diagonal are nonzero in the center while all off diagonal 
functions are zero there. 
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Figure 1. C4 Basis Functions and Their Derivatives. 

Glthough subsequent analysis will enable us to compute all the basis 
functions for any given level of smoothness (n) in an extremely simple way, 
the author has not seen anything similar mentioned or referenced in any finite 
element text thus far. 

(FSTS;? 
DERIVATION. We begin by defining a finite support Taylor series 

Take the ordinary Taylor series for f around node xi, truncate it 
beyond nth derivative terms, and multiply each term by a function which will 
have the effect of (1) not disturbing the truncated Taylor series at all at 
node xi and (2) zeroing the series and n of its derivatives at nodes xi-1 and 
xi+10 If we do this for each node xi, calling the result Fi(x), we get a 
global approximation to f which agrees with the truncated Taylor series of f 
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at each node by simply summing the Fi. This is just an alternative way of 
defining the piecewise Hennite approximation which we will find quite useful. 

TS: f(x) = F f(t?i)(xqi)j/j! (1) 
j=O 

where 

FSTS: IQ(x) = i f'i?i, (x-x,)jgj (Q(x) )/j ! 
j=O 

(2) 

Ri(x) = 1 if x < xi-1 or x > xi+1 

= (Xi-x)l(Xp+l) if xi-1 c x < xi 

= (x-q)/(xi+l-xi) if xi 6 x < xi+1 (3) 

Ri(x) is just one minus the hat function associated with node i or just the 
relative position of x in either the left or the right hand subinterval. The 
domain of the g functions is therefore just the interval [O,l]. 

The objective now is to determine the g's, Since we want Fi and its 
derivatives to behave in a certain manner, we must first differentiate Fi(x) 
an arbitrary number of times. Using Leibniz's rule for differentiating a 
product, we have: 

j=O 

minIj,mI m 
1 

j-k (m-k) 
(kE)(XTi) gj(Ri(x))(R;(x))m-k/(j-k)! (4) 

k=O 

and substituting x = xi in Eq. (4) we have 

FimiXi) = j~of({l,,$,:m~AI(R~(0)) 
m-j 

(5) 
zm 

t t 
we may define Ri(0) to be Ri(fE) or take limits from either side of xi. 

We now want conditions an the g's which are sufficient for: 

(m) Cm> 
Fi(xi) = f (Xi) (6) 

and 

Cm> b) 
Fi(Xi-1) = Fi(Xi+l) = 0 (7) 

for 0 < m < n. 
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We may glean these conditions from Eqs. (4) and (5). Conditions on the 
g's sufficient for Eqs. (6) and (7) may be seen to be: 

gjm = 1 OGj<n (8) 

,$A) = 0 0 Cj <n, lGm(n-j (9) 

g:tl, = 0 OCj Gn,O<mCn 

The 2n-j+2 conditions on gj may therefore be met by a polynomial of 
degree 2n-j+l; the product of gj and (x-xi)j in Eq. (2) is therefore of degree 
2n+l for all j, as expected. 

The g of lowest degree is therefore gn, which has defining conditions: 

and 

This g may be obtained by inspection and is: 
n+l 

g&l = (1-x) .(11) 

Now, from Eq. (lo), we may observe that all the g's have-the same derivative 
behavior at x=1. We therefore need only define gj(x) as the product of some 
unknown polynomial hj(x) and &n(x): 

n-l-l 
gj (X) = hj(x)(lT) OGjCn (12) 

where hj is a polynomial of degree n-j: 

hj(x) = il',akxk OGjGn (13) 

It may seem at first glance that the a's should have an extra subscript - 
namely j, since we are seeking n+l sets of coefficients. As will become 
immediately apparent, however, one set is sufficient and all other sets are 
subsets of Ghis one. This subset property and the fact that the largest set 
of a's may be obtained in an almost trivial manner, is what makes the result 
of this analysis truly simple indeed. 

If we now obtain the mth derivative of gj(x) and evaluate it at x = 0, we 
get: 

(14) 
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Using Eqs. (8) and (9), we have: 

a, = 1 

and 

y ak(-l)m-k(n+l) = 
m-k 

0 for 1 G m < n-j (15) 
k=O 

This is a lower triangular system, which may be easily solved for the a's by 
forward substitution. Note that the coefficients do not depend on j, so we 
might as well solve the largest system (j=O) and obtain all the a's, although 
only the first n-j+1 a's are needed for hj(x). 

Solving system (15) for j=O and a few values of n gives us the following 
table of a's 

TABLE 1. COEFFICIENTS OF ho 

a, a1 a2 a3 

-t- 
1 
1 2 
1 3 6 
1 4 10 20 
1 5 1s 35 
1 6 21 56 

70 
126 252 

Inspection of this table gives us a very simple recursion for the n set of 
coefficients in terms of the n-l set: 

c 

a4 a5 

n 
a0 = 1 

n n n-l 
ak - ak-1 f ak 1 G k < n-l 

n 
a, = 2az-1 (16) 

where the superscripts denote the level of smoothness. 

We therefore have here nothing more than one half of Pascal's triangle, 
viewed at an angle! 

Recalling that: 

gj (XI = hj (x)(1-~) 
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and from the FSTS that: 

we have, explicitly: 
n-t1 

Hij (x> = hj (Ri(x))( l-Ri(x) 1 (x-qlJ /j I 

therefore, f may be approximated on [x~,xi+l] by: 
I 

(17) 

f f( t 
xi+1-x X-xi 

~~+~~hj(-------~(;iilx;) 
n+l 

(x-xi+1 )j l/j ! (18) 
xi+1-xi - . 

In order to evaluate the derivatives of the H's, one may expand the 
polynomials involved and multiply out or one may apply Leibniz's rule a couple 
of times. The latter course is deemed simpler and more numerically stable 
since it leaves a result which is in “nearly” fully factored form. The latter 
method was used to produce Figure 1. 



BIVARIATE QUADRATIC SPLINES ON 
CRISSCROSS TRIANGULATIONS 

Charles K. Chui 
Center for Approximation Theory 

Department of Mathematics 
Texas A&M University 

College Station, Texas 77843 

Cl 
ABSTRACT. A bivariate C1 quadratic B-spline basis for the space of 

piecewise polynomials with total degree two on a crisscross 
triangulation is given. This basis has very important algebraic, 
georaetric and approximstic properties, and can be used in a variety of 
applications. In particular, it can be used adaptively in pattern 
recognition, image processing and data reduction. In image restoration, 
for example, it gives much better pictures than the tensor product 
splines using the same discrete data. 

1. INTRODUCTION. Lzt D be a domain in R2 and A a grid of 
straight line segments that partition D into cells. The collection of 
all functions s in e(D) such that the restrictions of s to each 
cell are polynomials with total degree at most k, that is 

c xiyj , 
Os+jc ai3 

where IJ and k are nonnegative integers, is called the space of 
bivariate splines with (total) degree k in e(D) on the grid 
partition A, and will be denoted by S$D,A). Clearly, $(D,A) 
becomes the trivial space of polynomials with total degree k if 
I.I > k. 
c&es. 

More generally, we could allow A to consist of algebraic 
Some fundamental tools have recently been developed in [3] to 

study these spaces. These methods could be used to determine 
dimensions, find locally supported splines, etc. as in [5] and [4]. 
Locally supported splines with minimum supports are most important both 
in theory and applications. These functions are generalizations of 
univariate B-splines, and are sometimes called bivariate B-splines, 
although this name is used by some authors to include all locally 
supported splines which are strictly positive inside the supports. When 
A is a regular grid partition, these functions can usually be obtained 
by projections as discussed in [l]. For a fairly up-to-date review of 
the subject of multivariate splines, the reader is referred to the 
95-page survey article [8]. 

2. B-SPLINES ON CRISSCROSS TRIANGULATIONS. In application, such 
as in surface fitting, pattern recognition, image processing, data 
reduction, etc., D is usually a rectangular region, and depending on 
the density and variation of the data to be studied, D is divided into 
rectangular subregions of different sizes. Let 
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a = x0 < x1 < . . . < xm+l = b, and 

c =yo <yl <..a <Y,+~ =d. 

Two common ways to triangulate the rectangular subregions 
Ix i, xi+11 x [yj, Y~+~], i = O,,,.,m and j = O,...,n, are to draw in 
diagonals with only positive (or only negative) slopes, or to draw in 
diagonals with both positive and negative slopes of these subregions. 
They are called uni-diagonal (or type-l) and crisscross (or type-2) 
triangulations. If, in particular, the partition is regular, i.e. 
xi+l - xi = xi - xi-l* i - l,...,m, 
j 

and Yj+l - Yj = Yj - Yj,1~ 
= l,...,n, then a unidiagonal triangulation becomes a three-direction 

mesh and a crisscross triangulation becomes a four-direction mesh. Very 
interesting results on a three-direction mesh can be found in [2] and 
161. It has been pointed out in [f], however, that a minimum support 
for splines in Si(D,A) where A is a three-direction mesh, no longer 
supports a nontrivial B-spllne if A becomes irregular. Since 
irregular (i.e. non-uniform) subdivisions are very important in 
applications, especially in adaptive procedures, one would wish to 
obtain bivariate B-splines that change continuoysly with the grid 
lines. On crisscrossltriangulations, a cubic C B-spline is givan in 
[4] and a quadratic C B-spline, with slightly larger support, is given 
in [7]. These B-splines have minimum supports and are continuous in the 
gridlines x=xi and y=y.. Since lower degree splines are more 
desirable, we only discuss theJquadratic one. 

To give an expression of the B-spline, we give each of the 
polynomial pieces. A bivariate quadratic polynomial has six 
coefficients and they are uniquely determined by the six values of the 
polynomial at the three vertices and the mid-points of the three sides 
of a triangle. Let A, B and C be the vertices of a triangle and 
A', B' and C' the mid-points of the sides opposite to A, B and C 
respectively. Let us use barycentric coordinates; that is, let a, b 
and c be linear polynomials such that a(A) = 1, b(B) = 1, c(C) = 1, 
and the values of a, b, c at the other vertices are zero. Then the 
quadratic polynomial which takes on the values f(A), f(B), f(C), f(A'), 
f(B'), f(C') at the six points A, B, C, A', B', C', respectively, is 
given by 

p(a,b,d = a(2a-l)f(A) + b(2b-l)f(B) + c(2c-l)f(C) 

+ 4[bcf(A') f caf(B') + abf(C'>] . 

Note that a+b+c=l, so that p is actually a polynomial in two 
variables. In writing a computer program to give p as a function of 
x and y, one could simply consider a = 0, b = 0, c=O as the 
(linear) equations of the sides opposite to A, B, C respectively, so 
normalized that a(A) = b(B) = c(C) = 1. 
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We now give a representation of our Cl 

Bij 
bivariate quadratic spline 

whose support is an octagon contained in the rectangle 
[ximl, xi+21 x [yjel, Y~+~] as in Fig. 1. Here, the values of B.. at 
six (appropriate) points of each triangle are given. Of course, s&&e 

% 
vanishes on the boundary of its octagonal support, we do not have 

to give its values there. The values A., Ai+l, B., and B! 1 J 
in 

Fig. 1 are defined by J+l 

xi - xi-l 
Ai = xitl - ximl ' A;+1 = xi+2 - xi+l 

xi+2 - xi ’ 

B yj - Yj-1 
B' yj+2 - yj+l 

j = Yj-1 - yj-l ' j+l = Yj+2 - Yj 

Fig. 1 

Note that these values have very interesting geometric meaning. In 
addition, they are all positive numbers and 

A +A'=B +B'=l 
i i j j 

for all i and j. In Fig. 2, we give a three-dimensional picture of 
B 

ij 
with xi-l, . . . . xi+2 = 0, 1, 4, 8 and y j-1, 9.') Yj+2 = O,‘,‘,‘~ 



Fig. 2 

View: (15,10,1) 
Target: (.5,5,.5) 
Field: 150” 

3. PROPERTIES OF Bij l 

It is clear from Fig. 1 that Bij is 

strictly positive inside its support. From Fig. 2, it can also be seen 

that each (vertical) cross-section of Brj 
is a bell-shaped curve as 

expected. A very important feature for approximation is 
that the Bij ‘S 

form a partition of unity; that is, 

l-l+1 iIrk1 
-I 1" 1 

Bij(x,y> = 1 

for all 
arbi tra 

y-2 9 

Yj ' s a 

X i 
= x. 1 

if xi 

ry 

-1 
.re 

.+1 
= 

b,Y) 
values 

90 = 
I allowe 

then 

in the rectangle [a,bl X [c,dl. 
Here, we have as 

' c < d = Yn+l I y,+2 Iy,3. 
!d as in the univariate setting. 

Of course, if 

the joining condition along this edge becomes CO 

jump on this edge. See Fig. 

xi+l = xl+2 then B ij has a 

signed 

and 

and 

3a,bw 



Fig. 3a Fig. 3b 

Yj-1"' Yj=3, Y j+1=5, Yj+2=6 

The provision of coalescence of the grid lines makes Bi 
I 

more flexible 
for application. It is interesting to point out that, d fferent from 
the univariate setting, the B 

ij 
*a are linearly dependent. In fact, we 

have the relationship 

n+l u+l 
jI-l I 

=- 
l (Xi+1 - Xi) (Yj+l - Yj)BIj (X,Y) = 0 

for all (x,y) in [a,b] x [c,d]. This dependence, however, does not 
diminish the utility of Bi 

1 
in various approximation schemes. We 

finally remark in this sect on that the center crisscross in the support 
of B 

ij 
is in general active, and becomes inactive when t'he partition 

becomes regular. For regular grid partition, B . becomes a box-spline 
as discussed in [l] and this box-spline was firskJconstructed in [9]. 

4. APPLICATION TO IMAGE EBCONSTBUCTION. During the presentation at 
this "First Army Conference on Applied Mathematics and computing", we 
have shm Cl images constructed from 64 x 64 and 128 x 128 
discrete data of pictures of a girl, a portion of the surface of the 
moon, and a couple by simply using the surface 
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l-It1 uttl 
2-c c 

J 's-1 i=-1 
a (f(xitYj) + f(xitYj+l) + f(xi+l'Yj) 

+ f (xi+l ,Y j+l> )Bij (x,Y > 

where x -2 = x-1 = x03 X& = Q-2 = x&3' Y-2 = Y-1 = YO' 

Y n+l = Yrl+z = Yrl,3' and the other XI'S and y.'s 
J 

being equally 

spaced. This surface is compared to interpolating surfaces using 
bilinear, bicubic, and bicubic Hermite splines, and improves each of 
these tensor-product surfaces by at least 0.2 db, although it requires 
less computer time than the bicubic interpolating tensor-product 
surface. We expect that if variable grid lines x = xi and y = y. 
are used the images would greatly improve. More research and 

J 

experiments are required in this direction. 
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ABSTRACT. Origins of spectral methods, especially their relation to 
the Method of Weighted Residuals, are surveyed. Basic Fourier, 
Chebyshev, and Legendre spectral concepts are reviewed, and demonstrated 
through application to simple model problems. Both collocation and tau 
methods are considered. These techniques are then applied to a number 
of difficult, nonlinear problems of hyperbolic, parabolic, elliptic, and 
mixed type. Fluid-dynamical applications are emphasized. 

I. INTRODUCTION. Spectral methods may be viewed as an extreme 
development of the class of discretization schemes known by the generic 
name of the method of weighted residuals.(MWR) [l]. The key elements of 
the MWR are the trial functions (also called the expansion or approxima- 
ting functions) and the test functions (also known as weight functions). 
The trial functions are used as the basis functions for a truncated 
series expansion of the solution, which, when substituted into the 
differential equation, produces the residual. The test functions are 
used to enforce the minimization of the residual. 

The choice of trial functions is what distinguishes the spectral 
methods from the finite element and finite difference methods. The 
trial functions for spectral methods are infinitely differentiable 
global functions. (Typically they are tensor products of the eigenfunc- 
tions of singular Sturm-Liouville problems.) In the case of finite 
element methods, the domain is divided into small elements, and a trial 
function is specified in each element. The trial functions are thus 
local in character, and well-suited for handling complex geometries. 
The finite difference trial functions are likewise local. 

The choice of test function distinguishes between the Galerkin, 
collocation, and tau approaches. In the Galerkin approach, the test 
functions are the same as the trial functions, whereas in the colloca- 
tion approach the test functions are translated Dirac delta functions. 
In other words, the Galerkin approach is equivalent to a least squares 
approximation, whereas the collocation approach requires the differen- 
tial equation to be satisfied exactly at the collocation points. 
Spectral tau methods are close to Galerkin methods but they differ in 
the treatment of boundary conditions. 

The collocation approach is the simplest of the MWR, and appears to 
have been first used by Slater [2] in his study of electronic energy 



bands in metals. A few years later, Barta [3] applied this method to 
the problem of the torsion of a square prism. Frazer, et al. [41 
developed it as a general method for solving ordinary differential 
equations. They used a variety of trial functions and an arbitrary dia- 
tribution of collocation points. The work of Lanczos [5] established for 
the first time that a proper choice of trial functions and distribution 
of collocation points is crucial to the accuracy of the solution. 
Perhaps he should be credited with laying down the foundation of the 
orthogonal collocation method. This method was revived by Clenshaw [6], 
Clenshaw and Norton [7], and Wright [8]. These studies involved appli- 
cation of Chebyshev polynomial expansions to initial value problems. 
Villadsen and Stewart [9] developed this method for boundary value 
problems. 

The earliest investigations of the spectral collocation method to 
partial differential equations were those of Kreiss and Oliger [lOJ (who 
called it the Fourier method) and Orszag [II] (who termed it pseudo- 
spectral). This approach is especially attractive because of the ease 
with which it can be applied to variable coefficient and even nonlinear 
problems. The essential details will be furnished below. 

The Galerkin approach is perhaps the most esthetically pleasing of 
the MWR since the trial functions and the test functions are the same. 
Indeed, the first serious application of spectral methods to PDE's -- 
that of Silberman [12] for meteorological modelling -- used the Galerkin 
approach. However, spectral Galerkin methods only became practical for 
high resolution calculations of nonlinear problems after Orszag [13] and 
Eliasen, et al. [14] developed a transform method for evaluating 
convolution sums arising from quadratic nonlinearities. Even in this 
case spectral collocation methods retain a factor of 2 in speed. For 
more complicated nonlinear terms high resolution spectral Galerkin 
methods are still impractical. 

The tau approach is the most difficult to rationalize within the 
context of the MWR. Lanczos, [S] developed the spectral tau method as a 
modification of the Galerkin method for problems with non-periodic 
boundary conditions. Although it too, is difficult to apply to non- 
linear problems, it has proven quite useful for constant coefficient 
problems or subproblems, e.g., for semi-implicit time-stepping 
algorithms. 

The following discussion of spectral methods for PDE's will be 
organized around the three basic types of systems -- hyperbolic, para- 
bolic, and elliptic -- with an additional section for a difficult, non- 
linear problem of mixed type. Simple, one-dimensional, linear examples 
will be provided to illustrate the basic principles and details of the 
algorithms; two-dimensional, nonlinear examples drawn from fluid 
dynamical applications will also be furnished to demonstrate the power 
of the method. The focus will be on collocation methods, although some 
discussion of tau methods is provided. 
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II. HYPERBOLIC EQUATIONS. Linear hyperbolic equations are perhaps 
the simplest setting for describing spectral collocation methods. Both 
Fourier and Chebyshev schemes have found wide application. This section 
will first present the fundamentals of both approaches and then 
illustrate them on a nonlinear fluid dynamics problem involving shock 
waves. 

Basic Fourier Spectral Concepts. The potential accuracy of spectral 
methods derives from their use of suitable high-order interpolation 
formulae for approximating derivatives. An elementary example is 
provided by the model problem 

Ut 
+ ux = 0, (1) 

with periodic boundary conditions on [0,2al and the inLtia1 condition 

u(x,W = sin(a cos x). (2) 

The exact solution 
u(x,t) = sin[a cos(x-t)] (3) 

has the Fourier expansion 

u(x,t) = T Uk(t) eikx, (4) 
k=-m 

where the Fourier coefficients 

Uk(t) = sin(%) Jk( r) edikt (5) 

and Jk(t) is the Bessel function of order k. The asymptotic proper- 
ties of the Bessel functions imply that 

kp -t(t) + 0 as k+= (6) 

for all positive integers p. As a result, the truncated Fourier series 

N/2-1 
uN(x'E) = k= -fj/2+1 uk(t) eikx (7) 

converges faster than any finite power of l/N. This property is often 
referred to as exponential convergence. A straightforward integration- 
by-parts argument [15] may be used to show that it applies to any 
periodic and infinitely differentiable solution. 

The standard collocation points are 

2Itj 
xj =N j=O,l,-•- ,N-1. 

Let u. 
has be& suppressed. 

denote the approximation to u(xj), where the time dependence 
Then the spatial discretization of Eq. (1) is 



5 aU a; 
at =ax j’ I (9) 

where the right-hand-side is determined as follows. First, compute the 
discrete Fourier coefficients 

Then the interpolating function 

N kua - _ 
2' 

-;+ l,***, ;- 1. (10) 

N/2-1 
3x> - c Gk e ikx 

k= -N/2 

can be differentiated analytically to obtain 

N/2-1 
c ik ;k e 

fkxj 
. 

k= -N/2+1 

(11) 

(12) 

(The term involving k = -N/2 makes a purely imaginary contribution to 
the sum and hence has been dropped.) Note that each derivative approxi- 
mation uses all available information about the function values. The 
sums in Eqs. (10) and (12) can be obtained in O(N Rn N) operations via 
the Fast Fourier Transform (FFT). 

An illustration of the superior accuracy available from the spectral 
method for this problem is provided in Table I. Shown there are the 
maximum errors at t = 1 for the truncated series and for the spectral 
collocation method as well as for second-order and fourth-order finite 
difference methods. The time discretization was the classical fourth- 
order Runge-Kutta method. In all cases the time-step was chosen so 
small that the temporal discretization error was negligible. Because 
the solution is infinitely smooth, the convergence of the spectral 
method on this problem is more rapid than any finite power of l/N. 
(The error for the N = 64 spectral result is so small that it is 
swamped by the round-off error of these single precision CDC Cyber 175 
calculations.) In most practical applications the benefit of the 
spectral method is not the extraordinary accuracy available for large 
N but rather the small size of N necessary for a moderately accurate 
solution. 
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Table I- Maximum Error for a 1-D Periodic Problem 

N 
Truncated Fourier 

Series Spectral 

2nd-Order 
Finite 

Difference 

4th-Order 
Finite 

Difference 

8 9.87 (-2) 1.62 (-1) 1.11 (0) 9.62 (-1) 
16 2.55 (-4) 4.97 (-4) 6.13 (-1) 2.36 (-1) 
32 1.05 (-11) 1.03 (-11) 1.99 (-1) 2.67 (-2) 
64 6.22 (-13) 9.55 (-12) 5.42 (-2) 1.85 (-3) 

128 1.37 (-2) 1.18 (-4) 

Basic Chebyshev Spectral Concepts. Spectral methods for non-periodic 
problems can also exhibit exponential convergence. A simple example is 
again provided by Eq. (1) but now on the interval [-l,l] wfth initial 
condition u(x,O) and boundary condition u(-1,t). Since this is not a 
periodic problem, a spectral method based upon Fourier series in x 
would exhibit extremely slow convergence. However, rapid convergence as 
well as efficient algorithms can be attained for spectral methods based 
upon Cbebyshev polynomials. These are defined on [-1,1] by 

'CJX) = cos (n cos -1 x). (13) 

The function 

u(x, t) = sin crr(x-t) (14) 

is one solution to Eq. (1). It has the Chebyshev expansion 

where 

with 

u(x,t) = c qt> qx). 
n=O 

U,(t) a 1 sin (5 - aat) J,(alr) 
n 

C = 
n 1 2 n=O 

. 
1 n>l 

The truncated series 

(15) 

(16) 

(17) 

N 
l$(x,t) = 1 U,(t) qx) 

n=O 
(18) 



converges at an exponential rate. Note that this result holds whether 
or not a is an integer. In contrast, the Fourier coefficients of 
u(x,t) are 

i ik(t) = x e iaat sin m(a+k) i -iaxt sin x(a-k) 
a+k -2ae a-k * (19) 

For non-integer a these decay extremely slowly. 

The change of variables 

x = CDS 0, (20) 

the definition 

v(e,t) = u(cos fl,t), (21) 

and Eq. (13) reduce Eq. (15) to 

v(8,t) = 1 in(t) cos no. (22) 
n=O 

Thus, the Chebyshev coefficients of u(x, t) are precisely the Fourier 
coefficients of v(0,t). This new function is automatically periodic. 
If u(x,t) is infinitely differentiable (in x), then v(0,t) will be 
infinitely differentiable (in 0). Hence, straightforward integration- 
by-parts arguments lead to the conclusion that the Chebyshev coeffi- 
cients of an infinitely differentiable function will decay exponentially 
fast. Note that this holds regardless of the boundary conditions. 

A Chebyshev spectral method makes use of the interpolating function 

“u(x) = ; in fJX). (23) 
n=O 

The standard collocation points are 

xj 
=j = cos - N j = O,l,*=* ,N. (24) 

Thus, 

y * cos N , 
9 = n90 5.l 

nnj 
(25) 

where l-9 is the approximation to u(xj). The inverse relation is 
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n 
= 2 ; ‘1-1 uj cos y , 

Y-I Niz n j-0 
n = O,l,***,N (26) 

where 

j=O or N 

lGj<N-1 - 

The analytic derivative of this function is 

where 

a; -= 
ax f p f&d 1 

n=O 

A(1) p o 
U 

N-I-1 

-(I> ~ o 
U 

N 

(27) 

(28) 

(29) 

~ -Cl> 
nun = ;;;; f 2(n+l);n+l, n = N-l,N-2,***,0. 

(See [15] for the derivation of this recursion relation.) The Chebyshev 
spectral derivatives at the collocation points are 

00) 

Special versions of the FFT may be used for evaluating the sums in Eqs. 
(26) and (30). The total cost for a Chebyshev spectral derivative is 
thus O(N Rn N). 

The time-stepping scheme for Eq. (1) must use the boundary condi- 
tions to update uN (at x = -1) and the approximate derivatives from 
Eq. (30) to update 

"t 
for j=O,l,===,N-1. Note that no special 

formula is required for he derivative at j = 0 (or x - +l>. 

Results pertaining to cr = 2.5 at t = 1 for a truncated Chebyshev 
series, a Chebyshev spectral method, a Fourier spectral method, and a 
second-order finite difference method are given in Table II. For this 
non-periodic problem Fourier spectral methods are quite inappropriate, 
but the Chebyshev spectral method is far superior to the finite 
difference method. 
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The Chebyshev collocation points are the extreme points of r,(x). 
Note that they are not evenly distributed in 
clustered near the endpoints. 

x, but rather a$e 
The smallest mesh size scales as l/N . 

While this distribution contributes to the quality of the Chebyshev 
approximation and permits the use of the FFT in evaluating the series, 
it also places a severe time-step limitation on explicit methods for 
evolution equations. 

Table If. Fk&num Error for a 1-D Mrlchlet Problem 

N 
Truncated Chebyshev 

Series Spectral 
Fourier 
Spectral 

Finite 
Difference 

4 1.24 (0) 1.49 (0) 1.85 (0) 1.64 (0) 
8 1.25 (-1) 6.92 (-1) 1.92 (0) 1.73 (0) 

16 7.03 (-6) 1.50 (-4) 2.27 (0) 1.23 (0) 
32 1.62 (-13) 3.45 (-11) 2.28 (0) 3.34 (-1) 
64 1.79 (-13) 9.55 (-11) 2.27 (0) 8.44 (-2) 

Application to Two-dimensional, Supersonic Flow. Spectral methods have 
recently been applied successfully to the nonlinear hyperbolic system 
of equations which describes a two-dimensional inviscid gas [16,17]. 
The most serious complication over the simple model problems discussed 
above occurs when shock waves are present. If the shock occurs in the 
interior of the domain, then the truncated series for the discontinuous 
flow variables converges very slowly. Elaborate filtering strategies 
appear necessary to extract useful information from a calculation of 
such a situation [17,18]. This difficulty disappears, however, when the 
shock occurs at the boundary of the domain, as in shock-fitting as 
opposed to shock-capturing calculations. 

A schematic of the type of spectral shock-fitted calculations 
described below is illustrated in Fig. 1. At time t = 0 an infinite, 
normal shock at x = 0 separates a rapidly moving, uniform fluid on the 
left from the fluid on the right which is in a quiescent state except 
for some specified fluctuation. The initial conditions are chosen so 
that in the absence of any fluctuation the shock moves uniformly in the 
positive x-direction with a Mach number (relative to the fluid on the 
right) denoted by Ms. In the presence of fluctuations the shock front 
will develop ripples. The shape of the shock is described by the func- 
tion xJy, t) . The numerical calculations are used to determine the 
state of the fluid in the region between the shock front and some 
suitable left boundary x#) and also to determine the motion and 
shape of the shock front itself. 
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Figure 1 is taken from a shock/turbulence calculation [19] in which 
the downstream fluctuation is a plane vorticity wave that is periodic in 
Y with period y . Because of the initial value nature of the calculs- 
tion, the fluid mo ion behind the shock is not periodic in x, as Fig. 1 Rt 
makes abundantly clear. The interesting physical domain is given by 

y(t) 4 x G Xs(YJ) 

0 6 Y 6 Yg 

t 3 0. 

The change of variables 
X- 

x= 
qt) 

xs(Y,t) - qt) 

y = YlYg 

T= t 

produces the computational domain 

O<XCl 
O<P<l 
T 3 0. 

The fluid motion is modeled by the two-dimensional 
equations. In terms of the computational coordinates these are 

Q, + B Q, + C Q, = 0, 

where Q = (p,~,v,S)~, 

B= 

1 

u YXx 
a2 
uxx lJ 
$X 0 

Y 

L 0 0 
and 

yxY 
0 

u 

0 

0 

0 

0 

U 1 

(31) 

(32) 

(33) 

Euler 

(34) 

(35) 
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c= 

V YYx YY 0 

a2 
Y 

vyx .v 
0 0 

a2 
uy 

0 V 0 
Y 

0 0 0 V 

The contravariant velocity components are given by 

and 
u = Xt + uxx + vx 

Y 
v = Yt + uYx + VY . 

Y 

(36) 

(37) 

A subscript denotes partial differentiation with respect to the 
indicated variable. P, a, and S are all normalized by reference con- 
ditions at downstream infinity; u and v are velocity components in 
the x and y directions, both scaled by the characteristic velocity 
defined by the square root of the pressure-density ratio at downstream 
infinity. A value y = 1.4 has been used. 

Let n denote the time level and At the time increment. The time 
discretiaation of Eq. (34) is 

2 = [l - AtLn]Qn (38) 

Q 
Irk1 = ; [Q" + (1 - At:)<], (39) 

where L denotes the spatial discretization of BaX + cay. The solu- 
tion Q has the Chebyshev - Fourier series expansion 

Q@,Y,T) - 
tj N/2-1 

,zo q lN,2 Qpq(T) ~pG)e2TiqY, 
P- 

where 5 = 2X-l. The derivatives QX and Qy are approximated by 

N/2-1 

QX q iN,2 Q~~~“)(T)rp(S)e2”iqY, 

(40) 

(41) 

(42) 

where 
(130) 

QP9 is computed from Q,, in a manner analogous to Eq. (29), 
and 

Q(‘,l) 

Pq 
=isQ 

Pq' 
(43) 
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As a general rule the correct numerical boundary conditions for a 
spectral method are the same as the correct analytical boundary condi- 
tions. The global nature of the approximation avoids the need for 
special differentiation formulae at boundaries. At the same time 
spectral methods are quite unforgiving of incorrect boundary condi- 
tions. The inherent dissipation of these methods is so low that 
boundary errors quickly contaminate the entire solution. In many fluid 
dynamical applications the computational region must be terminated at 
some finite, artificial boundary. The difficulty at "artificial" 
boundaries is that analytically correct, fully nonlinear boundary condi- 
tions for systems are seldom known. One example of a workable artifi- 
cial boundary condition for the Euler equations is given in Ref, [20]. 

The most critical part of the calculation is the treatment of the 
shock front. The shock-fitting approach used here is desirable because 
it avoids the severe post-shock oscillations that plague shock-capturing 
methods. The time derivative of the Rankine-Hugoniot relations provides 
an equation for the shock acceleration. This equation is integrated to 
update the shock position (see [20] for details). This method is a 
generalization of the finite difference method developed by Pao and 
Salas [21] for their study of the shock/vortex interaction. 

The nonlinear interaction of plane waves with shocks was examined at 
length in [19]. The numerical method used there was similar to the one 
described above but employed second-order finite differences in place of 
the present Chebyshev-Fourier spectral discretization. Detailed 
comparisons were made in [19] with the predictions of linear theory 
[=I- The linear results turned out to be surprisingly robust, 
remaining valid at very low (but still supersonic) Mach numbers and at 
very high incident wave amplitudes. The only substantial disagreement 
occurred for incident waves whose wave fronts were nearly perpendicular 
to the shock front. This type of shock-turbulence interaction is a use- 
ful test of the spectral technique because the method can be calibrated 
in the regions for which linear theory has been shown to be valid. 

The most reliable numerical results can be obtained for the acoustic 
responses to acoustic waves. Unlike the vorticity responses, these 
require no differentiation of the flow variables, thus eliminating one 
extra source of error. Moreover, the acoustic reponse stretches much 
further behind the shock than the vorticity response, thus providing 
greater statistical reliability. Vorticity response results are 
reported in [23]. The incident pressure wave is taken to be 

pi = A; e 
i(+ - w,t) 

(44) 

where kl = (kl,x,kl,y), w = Msq kl,x + a1 kl and Ai is the ampli- 
tude. In terms of the incidence angle el, Icl = (kl cos Bl,kl sin Ol). 
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The linearized transmitted acoustic wave can be expressed in the same 
manner with all subscripts changed from 1 to 2. The amplification 
coefficient for the transmitted acoustic wave is then the ratio 

As/A; . (45) 

Figure 2 indicates the transmission coefficient extracted from the 
computation. At each fixed value of X we perform a Fourfer analysis 
in Y of the pressure. The Fourier coefficient for q = 1 provides 
the amplitude 

"i' 
In order to reduce the transients that would 

accompany an abrup start of the calculation at full wave amplitude, an 
extra factor of s(t) is inserted into Eq. (44), where 

The start-up time tS is some multiple (typically l/2) of the time it 
takes the shock to encounter one full wavelength (in the x-direction) of 
the incident wave. The ratio Ai/Af is plotted in Fig. 2 as a function 
of the mean value of the physical coordinate x corresponding to X. 
The start-up time for this Mach 3 case is t, = 0.56. The average of 
the x-dependent responses between the start-up interval and the shock 
produces the computed transmission coefficient. The standard deviation 
of the individual responses serves as an error estimate. 

The dependence upon incidence angle of the acoustic transmission co- 
efficient for A; = 0.001 and MS = 3 waves is displayed in Fig. 3. 
As is discussed in [19], linear theory is quite reliable at angles 
below, say, 45'. Figure 3 contains results from both spectral and 
finite difference calculations. The finite difference results were 
obtained with the same second-order MacCormack's method that was 
described in [19] except that periodic boundary conditions (rather than 
stretching) were employed in the y-direction. The finite difference grid 
was 64 x 16 and these calculations used a CFL number of 0.70. The 
spectral grid was 32 x 8,and the CFL number was 0.50. Figure 3 shows 
that both methods produce the same results. A head-to-head comparison of 
both methods for the B1 = 10' case is provided in Table III. The 
"exact" value is taken from linear theory [22]. Since the amplitude of 
the incident acoustic wave is so small, it should come as no surprise 
that four points in the y-direction suffice for the spectral calcula- 
tion. Note that the standard deviations are substantially smaller for 
the, spectral method. These results suggest that the spectral method 
requires only half as many grid points in each coordinate direction. 
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Table III. Grid Dependence of Acoustic Transmission Coefficient 

Grid 
Finite Chebyshev- 

Difference Fourier Spectral 

16x 4 
16x 8 
32x 4 
32x 8 
32 x 16 
64 x 16 

128 x 16 
"exact" 

6.403 f 2.652 7.257 f 0.587 
6.427 dz 2.626 7.257 f 0.587 
7.105 l 0.453 7.158 f 0.022 
7.134 l 0.471 7.158 zt 0.022 
7.139 * 0.497 7.158 f 0.022 
7.163 k 0.078 7.157 f 0.017 
7.152 f 0.022 

7.156 7.156 

III. PARABOLIC EQUATIONS. The nonlinear, parabolic system formed 
by the incompressible, Navier-Stokes equations was the focus of much of 
the early development and application of spectral methods to large-scale 
fluid dynamical problems. Fourier spectral methods have been the 
obvious choice for the simulation of homogeneous, isotropic turbulence 
~41. For shear flows, however, non-periodic boundary conditions are 
required. So far, Chebyshev spectral methods have been favored for 
these applications [25,26,27]. Nevertheless, Legendre spectral methods 
are a viable alternative and of late they have been attracting some 
attention. This section will present a discussion of the implementation 
of Legendre spectral methods and will then compare them with Chebyshev 
spectral methods for the one-dimensional heat equation. This section 
will close with a description of a promising semi-implicit time-stepping 
scheme for the Navier-Stokes equations. 

Basic Legendre Spectral Concepts. A Legendre spectral method on [-l,l] 
makes uses of the interpolating function 

N 
G(x) = c in P,(x), 

n=O 
(47) 

where P,(x) is the Legendre polynomial of degree n. Closed form 
expressions for these polynomials are well-known, albeit clumsy. The 
computationally preferred way to evaluate the polynomials is through the 
recursion relation 

PO(X) = 1 

Pp - x 

and for n>2 
n P,(x) = (2n-l)flnwl(x) - (n-1) Pne2(x). (48) 
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Unlike the case with Fourier and Chebyshev collocation methods, 
there is no tidy expression for the Legendte collocation points. Appeal 
must be made to the theory of numerical quadrature [28]. The presence 
of boundary conditions at both endpoints makes it desirable to include 
-1 and +l in the set of collocation points. Subject to this con- 
straint, the most accurate quadrature 
coefficients is the Gauss-Lobatto rule 

C I  * N 
u =c 

n n 1 
j=O wJ 

p n ( x j )  u 
j 

, 

where x0=+1, xN=-I and x 
pp> l The weights are 

j for 

1 

formula for the hiscrete Legendre 

n - O,l,***,N (49) 

1 C j 4 N-l are the roots of 

and 

wj= A2 2 (50) 
NW+11 PN(xj> 

A 2n+l n = O,l,=**,N-1 
C = . n (51) 

N n=N 

The interior collocation points must be determined numerically. This 
quadrature rule yield8 the exact Legendre coefficients if u(x) is any 
polynomial of degree less than N. Its inverse relation is 

uj= f in 
PO 

PJx,>. (521 

The analytic derivative of the interpolating function in Eq. (47) is 

a; -= i P P,(X)) 
ax n=O n 

where 

* (1) 
uN+l = ’ 

“(1) = 0 
UN 

1 ^(l) 
ZiTi un 

1 ^(l) * 
p 2n+5 un+2 + '*+l 

(53) 

(54) 

n = N-l,N-2,-a-,0. 



Since fast transform techniques are not available for the LEgendre 
basis functions, there is no particular advantage to computing au/ax1 
by applying Eqs. (49), (54) and (53) rather than by following Eq. (44) 
with 

g Ij = P 
n=O 

;, P;l(Xj). (55) 

In fact, for a collocation method it is faster still to perform this 
entire process by a single matrix-vector multiplication. For that 
matter the Chebyshev collocation differentiation operator may also be 
represented by a matrix. Timing studies [29] on the CDC Cyber 175 have 
indicated that even for N = 16, the Chebyshev matrixlnultiply differen- 
tiation procedure is substantially faster than one based on assembly 
language fast transforms. Moreover, the matr%xmultiply procedure does 
not suffer the sort of speed degradation that afflicts the transform 
procedure whenever N is not an integral power of 2. 

The heat equation 
au a2u -=- 
at ax2 

is the natural parabolic linear model problem. 
[-l,l], the initial condition is 

u(x,O) = sin nx 

(56) 

The spatial domain is 

(57) 

and the boundary conditions are 

u(-1,t) = 0 
(58) 

u(+l,t) = 0. 

The exact solution is then 

u(x,O) = eT 2t sin TX. (59) 

The. time differencing is again the classical fourth-order RungeyKutta 
scheme. 

In addition to spectral collocation and series truncation solutions, 
we will also present spectral tau results. Let En(t) for n=O,l,***,N 
denote the Legendre coefficients of the tau approximation to u(x,t> * 
The semi-discrete tau equations are 

dii 
42) $-un , n = O,l,***,N-2 (60) 
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with 

i a-0 
n=O 

n even (61) 

y u/o. 
n=l 

n odd 

f;e,i:;f;“y;$v efficfents of the approximation to the second spatial 
(t) can be obtained from iin by two applications of 

the recursion relation in Eq. (54). In this tau approximation the 
dynamical equations for the two highest-order coefficients are dropped 
in favor of the equations for the boundary conditions. Equation (61) 
follows from the property 

pp > = (*lp. (62) 

Since the Chebyshev polynomials also satisfy Eq. (62), the Chebyshev 
tau equations for Eq. (56) are the same as Eqs. (60) and (61). Of 
course, Eq. (29) is invoked for the derivative coefficients instead of 
Eq. (54). 

The results at t=1 are given in Tables IV and V. The maximum 
errors shown there have been boosted up by the factor er2 so that they 
represent relative errors. On the whole the collocation results are the 
best. Moreover, except for the truncated series results, the Legendre 
approximations are superior to' the Chebyshev ones. Lanczos [30] has 
discussed some circumstances under which Legendre approximations are 
superior to Chebyshev ones. It goes almost without saying that finite 
difference results are far inferior to any of these spectral approxima- 
tions. 

Table IV. I&- Error for Legendre Approximations to the 
Heat Equation 

N Truncated Series Tau Collocation 

a 6.65 (-4) 6.85 (-4) 2.40 (-5) 
10 1.72 (-5) 1.07 (-5) 1.50 (-7) 
12 3.06 (-7) 1.54 (-7) 1.38 (-9) 
14 3.50 (-9) 1.86 (-9) 4.81 (-10) 
16 3.88 (-11) 1.15 (-10) 9.98 (-11) 
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Table V. lhximum Error for chebyshev Approximations to the 
Heat Equation 

N Truncated Series 

8 2.44 (-4) 
10 5.76 (-6) 
12 9.42 (-8) 
14 1.14 (-9) 
16 1.05 (-11) 

Tau 

1.61 (-3) 
2.12 (-5) 
3.19 (-7) 
3.35 (-9) 
8.39 (-11) 

Collocation 

4.58 (-4) 
8.25 (-6) 
1.01 (-7) 
1.10 (-9) 
2.09 (-11) 

The time-step restriction for explicit Legendre or Chebyshev methods 
for the heat equation is very severe, scaling as l/N% This can pose 
quite a barrier to large-scale calculations for which a relative accura- 
cy of 0.1% or so will suffice. Fortunately, many large-scale calcula- 
tions can be split into one-dimensional, inhomogeneous counterparts of 
Eq. (56) and efficient implicit schemes are available for this linear, 
constant coefficient equation. They rely on reducing the Legendre (or 
Chebyshev) tau equations to a system which is nearly tridiagonal. The 
Legendre tau equations for a Crank-Nicolson temporal discretization of 
Eq. (56) are 

*leti2 len+4 - 
(2n-1;(2n-3) U,_2 + I1 - (2n-1)(2n+3)] 'n + (2n+3)(2n+5) un+2 

a (2n-1):2n-3) 'n-2 - 

2e 

(2n-l;f22&3) 'n + 
en+4 

(2n+3)(2n+5) in+2 

n = 2,3,===,N, (63) 

where X = -At/2 with At the time-step, the coefficients in on the 
left-hand side are at t + At, 

'n = u,(t) +; At un -(2)(t), 

and 

1 OcncN 
e = . n (65) 

0 n>N 

Equation (63) for even n plus the first of Eqs. (61) from a linear 
system which is tridiagonal except for the boundary condition 
equation. This is cheap to invert. The odd coefficients display a 
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similar structure. The Chebyshev tau version of Eq. (63) is available 
in [15] and [31]. 

Application to Channel Flow. Several three-dimensional Navier-Stokes 
algorithms have been developed which incorporate the quasi-tridiagonal 
structure of the Chebyshev tau equations for the second derivative in 
semi-implicit schemes which treat the constant coefficient diffusion 
term implicitly [25-271. In practice this device has permitted time- 
steps several orders of magnitude larger than the explicit diffusion 
limit. Unfortunately, the quasi-tridiagonal structure is lost even for 
a linear, variable viscosity coefficient. An effective iterative scheme 
for this more general case has recently been proposed by Malik, et al. 
r321. This approach will be described here in its two-dimensional 
setting. 

The rotation form equations for two-dimensional channel flow are 

ut - v(v,- uy) + p, = W,), + buy>, 

Vt + U(V,” uy) + P Y = (lJv,), + WY), 

ux + vy = 0, 

with periodic boundary conditions in x and no-slip boundary conditions 
at y = l 1. The variable P denotes the total pressure. The 
viscosity p is presumed to depend upon ye 

A useful discretization employs Fourier series in x and Chebyshev 
series in y. The pressure gradient term and the incompressibility con- 
straint are best handled implicitly. so, too, are the vertical diffu- 
sion terms because of the fine mesh-spacing near the wall. The variable 
viscosity prevents the standard Poisson equation for the pressure from 
decoupling from the velocities in the diffusion term. The algorithm 
described in [26] appears to be a good starting point. A Crank-Nicolson 
approach is used for the implicit terms and Adams-Bashforth for the 
remainder. After a Fourier transform in x, the equations for each 
wavenumber k have the following implicit structure 

* 
U’ 1/2At(p;y)y +I/2Ati& = 0.0 

; -1/2At(&y)y +l/,at$, = 9.0 

ik; + Gy = 0. 

(67) 

Fourier transformed variables are denoted by hats, the subscript y 
denotes a Chebyshev spectral derivative, and At is the time increment. 



The algorithm in [26] was devised for constant viscosity, in which 
case the Eqs. (67) can be reduced to essentially a block-tridiagonal 
form. This cannot be done in the present, more general situation. We 
advocate solving these equations iteratively after applying a finite 
difference pre-conditioning. 

The interesting physical problems have high Reynolds number, i.e., 
low viscosity. Thus the first derivative terms in Eqs. (67) predomi- 
nate. The effective pre-conditioning of them is crucial. Four possi- 
bilities have been considered. The eigenvalues of pre-conditioned 
iterations for the model scalar problem ux = f with periodic boundary 
conditions on [0,2a] are given for each possibility in Table VI. The 
term aAx is the product of a wavenumber a and the grid spacing Ax. 
It falls in the range 0 C IdlAx < T. For the staggered grid case the 
discrete Eqs. (67) are modified so that the velocities and the momentum 
equations are defined at the cell faces yj p cos(a j/N), j=O,l,==*,N, 
whereas the pressure and the continuity equation are defined at the cell 
centers Yj q2= cos(r(j-l/2)/N),j=l,**=,N. Fast cosine transforms 

enable interpolation between cell faces and cell centers to be 
implemented efficiently. The staggered grid for the Navier-Stokes 
equations has the advantage that no artificial boundary condition is 
required for the pressure at the walls. 

Table VI. Pre-conditioned Eigenvalues for a Ou~imensioual 
First Derivative Model Problem 

PRE-CONDITIONING EIGENVALUES 

Central Differences 

One-sided Differences .-i(aAx/2) aAx/ 
sin[(aAx)/2)j 

High Mode Cut-off 

aAx 
sin(aAx) 

0 

0 C IaAxl < (2n/3) 

(21~/3) < IaAxl < TI 

Staggered Grid 



The actual eigenvalues for pre-conditioned iterations of Eqs. (67) 
are displayed in Fig. 4. The model problem estimates the eigenvalue 
trends surprisingly well considering that it is just a scalar equation, 
has only first derfvative terms and uses Fourier series rather than 
Chebyshev polynomials. 

The preceding results indicate that the staggered grfd leads to the 
most effective treatment of the first derivative terms. The condition 
number of the pre-conditioned system is reasonably small and no resolu- 
tion is lost by a high mode cut-off. (Although it is possible to devise 
a hfgh-mode cut-off which avoids the small eigenvalues shown in the 
figures, some of the spectral resolution is thereby lost.) A simple and 
effective iterative scheme for this system with its complex eigenvalues 
is a minimum residual method [32]. At a Reynolds number of 7500 each 
iteration reduces the residual by almost an order of magnitude. 

Table VII, which is taken from [32], presents a comparison of the 
accuracy of the Chebyshev discretization in y. The two codes are 
otherwise identical. The initial conditfon consisted of Poiseuille flow 
plus a small amount of a linearly unstable eigenmode. The table 
compares the computed growth rate of this perturbation with the theoret- 
ical, linear result after 100 time-steps. 

Table VII. Percent Error in Grovth Rate 

N Finite Difference 

8 4470 
16 337 
32 147 
64 39.5 

128 10.0 
256 2.4 

Spectral 

3210 
74.5 

0.097 
0.071 

IV. ELLIPTIC EQUATIONS. Fruitful nonlinear applications of 
spectral methods developed the latest for equations of elliptic type. 
Unlike hyperbolic or parabolic equations, for which explicit schemes can 
often be tolerated, ellipic equations virtually require implicit itera- 
tive schemes in practical situations. It was only a few years ago that 
Morchoisne [33] and Orszag [34] proposed preconditioning the spectral 
collocation equations by finite difference operators. More recently 
still, effective spectral multigrid iterative methods have been 
developed [35,36] and applied to the nonlinear potential flow problem of 
fluid dynamics [29]. These developments will be described in this 
section. 
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Poisson's Equation. As usual the discussion will begin with a linear 
model problem, but this time in two spatial dimensions. That problem is 
the Poisson's equation 

2 
--+&=f a u 
ax2 ay2 

(68) 

on the square [-l,l] x [-l,l] with homogeneous Dirichlet boundary con- 
ditions. The choice 

f(x,y) = -2n* sin TIX sin my (69) 

corresponds to the analytical solution 

u(x,y) = sin 71x sin ry. (70) 

Both Chebyehev and Legendre spectral methods are appropriate for 
this problem. Direct solution schemes for the Chebyshev tau method have 
been described in [31]. The same schemes also work for the Legendre tau 
method with straightforward modifications. They are basically of an 
alternating direction implicit (ADI) nature and rely on the quasi- 
trfdiagonal form of the constant coefficient, one-dimensional problem. 
Haidvogel and Zang [31] report comparisons of the Chebyshev tau method 
with finite difference methods on numerous problems. They discuss both 
computational efficiency and accuracy. 

These direct solution schemes cannot feasibly be extended to 
spectral collocation methods because the collocation equations for the 
one-dimensional components cannot be represented by sparse matrices. 
However, an ADI iterative scheme based on finite difference precondi- 
tioning is an efficient method for obtaining an approximate solution. 
The description of this scheme in its general nonlinear setting begins 
by writing the spectral collocation equations as 

M(U) = 0. (71) 

Define the Jacobian 

J(U) = g (U). 

In many cases the Jacobian can be split into the sum of two operators 
J,(U) and J (U), each involving derivatives in only the one coordinate 
directlon in 1cated B by the subscript. The most straightforward AD1 
method is 

[ a1 - J$‘>][“I - Jy(V)]AV = aM(V), (73) 

with the approximate solution V updated by 

V + V + wAV. (74) 
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This is just the Douglas-Cunn version of AD1 [37]. The term approximate 
factorization is commonly used for this type of scheme for the nonlinear 
potential flow problem [38]. This particular scheme is referred to as 
AFL. For second-order spatial discretizations the term [aI - J,(V)] 
leads to a set of tridiagonal systems, one for each value of y. The 
second left-hand side factor produces another set of tridiagonal 
systems. For spectral discretizations, however, these systems are full; 
hence, Eq. (73) is still relatively expensive to invert. A compromise is 
to replace J, and Jy with their second-order finite difference 
analogs, denoted by Hx and H , respectively: 

Y 

[ a1 - Hx(V)][aI - Hy(V)]AV = aM(V). (75) 

The spectral approximate factorization scheme consists of Eqs. (74) and 
(75). The choice of the iteration parameters is discussed in [29]. 

Table VIII. Maximum Error for Chebyshev Approximations to 
Poissoll's Equation 

N Truncated Series Tau Collocation 

8 2.88 (-4) 2.79 (-3) 1.17 (-4) 
10 6.79 (-6) 5.26 (-5) 2.33 (-6) 
12 1.09 (-7) 8.86 (-7) 3.12 (-8) 
14 1.34 (-9) 1.09 (-8) 3.27 (-10) 
16 1.19 (-11) 9.15 (-11) 2.73 (-12) 

The results for the simple model problem are presented in Tables 
VIII and IX. The trends are the same as they were for the heat 
equation: the collocation method is more accurate than tau and Legendre 
polynomials are more accurate than Chebyshev. (Since it is not practi- 
cal to design a spectral method for PDE's using truncated series, those 
results have been ignored in this comparison.) 

Table m. ~AEUJJI Error for Legendre Approximations to 
Poisson's Equation 

N Truncated Series 

8 6.04 (-4) 
10 1.69 (-5) 
12 3.05 (-7) 
14 3.82 (-9) 
16 3.85 (-11) 

Tau 

1.55 (-3) 
3.40 (-5) 
6.05 (-7) 
6.98 (-9) 
6.37 (-11) 

Collocation 

1.77 (-5) 
2.48 (-7) 
2.27 (-9) 
1.99 (-11) 
3.06 (-10) 
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Spectral Multigrid Methods. Iterative schemes for spectral collocation 
equations, such as AH, can be accelerated dramatically by applying 
multigrid concepts. This technique has been extensively developed for 
finite difference and finite element discretizations [40] and has 
recently been applied to spectral discretizations [35,36,29]. Briefly 
put, multigrid methods take advantage of a property shared by a wide 
variety of relaxation schemes - potential efficient reduction of the 
high-frequency error components but unavoidable slow reduction of the 
low-frequency components. 

The fundamentals of spectral multigrid are perhaps easiest to grasp 
for the simple model problem 

-A= f 
dx2 

(76) 

on [O,~IT] with periodic boundary conditions. The Fourier approximation 
to the left-hand side of Eq. (76) at the collocation points is 

N/2-1 
1 p2 G, e 

iPXj 
. 

P" -N/2+1 

The spectral approximation to Eq. (76) may be expressed as 

LU - F, 

where 

u = (UO,U~,-**,UN-~), (79) 

F = (fO’f$**‘fN-l)’ (80) 

(77) 

(78) 

and L represents the Fourier spectral approximation to - d2/dx2. 

A Richardson's iterative scheme for solving Eq. (78) is 

V + V + w(F - LV), (81) 

where w is a relaxation parameter. On the right side of the replace- 
ment symbol (+) V represents the current approximation to U, and on the 
left it represents the updated approximation. The eigenfunctions of L 
are 

(82) 

with the corresponding eigenvalues 

X(P) = P2, (83) 



where j = O,l,***,N-1 and p = - N/2-l-l,***,N/2-1. The index p has 
a natural interpretation as the frequency of the eigenfunction. 

The error at any stage of the iterative process is V - U; it can be 
resolved into an expansion in the eigenvectors of L. Each iteration 
reduces the p'th error component to wp> times its previous value, 
where 

v(X) = 1 - WA, (84) 

The optimal choice of w results from minimizin 9 lu(X)I for 
A,E [Amin,hmax], where Amin = 1 and A,, = N /4. 
(One need not worry about the p = 0 eigenfunctlon since it corresponds 
to the mean level of the solution, which is at one-s disposal for this 
problem.) The optimal relaxation parameter for this single-grid proce- 
dure is 

'SG = X  

2 

max 
+ Amin l 

It produces the spectral radius 

x -x 
‘SG = XmaX + Xmin . 

max min 

(85) 

(86) 

Unfortunately, pSG = 1 - 8/$ , which implies that O(N2) iterations are 
required to achieve convergence. 

This slow convergence is the outcome of balancing the damping of 
the lowest-frequency eigenfunction with that of the highest-frequency 
one in the minimax problem described after Eq. (84). The multigrid ap- 
proach takes advantage of the fact that the low-frequency modes (IPl < 
N/4) can be represented just as well on coarser grids. It settles for 
balancing the middle-frequency eigenfunction (IpI = N/4) with the 
highest-frequency one (IpI = N/2), and hence damps effectively only 
those modes which cannot be resolved on coarser grids. In Eqs. (85) and 
(861, Amin is replaced with Amid = X(N/4) . The optimal relaxation 
parameter in this context is 

2 
'MG = Xmax + AmId - 

The multigrid smoothing factor 

(87) 

x -A 
UlZlX mid 

'MG = Xmx + Amid (88) 
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measures the damping rate of the high-frequency modes. In this example 
"MG = 0.60, independent of N. The price of this effective damping of 
the high-frequency errors ,is that the low-frequency errors are hardly 
damped at all. Table X compares the single-grid and multigrid damping 
factors for N = 64. However, on a grid with N/2 collocation points, 
the modes for ipi E [N/8, N/4] are now the high-frequency ones. They 
get damped on this grid. Still coarser grids can be used until relaxa- 
tions are so cheap that one can afford to damp all the remaining modes, 
or even to solve the discrete equations exactly. For the case illustra- 
ted in Table X the high-frequency error reduction in the multigrid con- 
text is roughly 250 times as fast as the single-grid reduction for N = 
64. 

Let us consider just the interplay between two grids. A general, 
nonlinear fine-grid problem can be written 

Lf(IJf) = Ff. (89) 

The shift to the coarse grid occurs after the fine-grid approximation 
Vf has been sufficiently smoothed by the relaxation process, i.e., 
after the high-frequency content of the error Vf - Uf has been 
sufficiently reduced. The related coarse-grid problem is 

Lc(Uc) = FC, (90) 

where 
FC = R[Ff - Lf(Vf)] f Lc(RVf). (91) 

The restriction operator R interpolates a function from the fine grid 
to the coarse grid. The coarse-grid operator and solution are denoted 
by Lc and UC, respectively. After an adequate approximation Vc to 
the coarse-grid problem has been obtained, the fine-grid approximation 
is corrected via 

Vf + Vf + P(V= - RVf). (92) 

The prolongation operator P interpolates a function from the coarse 
grid to the fine grid. 

A complete mltigrid algorithm requires specific choices of the 
interpolation operators, the coarse-grid operators, and the relaxation 
schemes. These issues are discussed at length in [35,36,29] for both 
Fourier and Chebyshev multigrid methods. Numerous linear, variable co- 
efficient examples are also provided there. The more interesting non- 
linear examples from [29] are the subject of the remainder of this 
paper. 
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Table X. Damping Factors for B = 64 

P Single-Grid Multigrid 

1 .9980 .9984 
2 .9922 .9938 
4 .9688 .9750 
8 .8751 .9000 

12 .7190 l 7750 
16 .5005 .6000 
20 ,219s .3750 
24 .1239 .lOOO 
28 .5298 .2250 
32 .9980 .6000 

Application to Two-Dimensional Potential Flow. Until the recent work of 
Streett [39], the discretization procedures for the potential equation 
were invariably based on low-order finite difference or finite element 
methods. Streett used a spectral discretfzation of the full potential 
equation and obtained its solution by a single-grid iterative tech- 
nique. The application of spectral multigrid techniques by Streett, et 
al, [29] produced a dramatic acceleration of the iterative scheme. Even 
in its relatively primitive state the spectral multigrid scheme is 
competitive, and in some cases unequivocally more efficient, than 
standard finite difference schemes. 

After a conformal mapping from the surface of an airfoil to a 
circle the potential equation becomes 

where G is the reduced potential, R and 0 are the computational 
polar coordinates, and p is the fluid density. The reduced potential 
is periodic in 0 and it satisfies 

aG 0 -= 
aR at R=l, (94) 

G+O as R+ m, (95) 

and the Kutta condition. The density is given by the isentropic rela- 
tion 



1 

P = [l y-l 2 2 -TM,,(qr + 9; - 1)l y-l; (96) 

the ratio of specific heats is denoted by y, and M, is the Mach number 
at infinity. The velocity components in the physical (r,e) plane are 

(97) 

and the Jacobian between the complex physical plane (z = re 9 and the 

complex computational plane (a = ReiB) is 

ff= g. I I (98) 

Further details are provided in [39]. 

The spectral method employs a Fourier series representation in 0. 
Constant grid spacing in 0 corresponds to a convenient dense spacing 
in the physical plane at the leading and trailing edges. The domain in 
R (with a large, but finite outer cutoff) is mapped onto the standard 
Chebyshev domain [-l,l] by an analytical stretching transformation that 
clusters the collocation points near the airfoil surface. The stretch- 
i-ng is so severe that the ratio of the largest-to-smallest radial 
intervals is typically greater than 1000. 

The flow past an NACA 0012 airfoil at 4' angle of attack and a 
freestream Mach number of 0.5 is a challenging subsonic and thus ellip- 
tic case. Nevertheless, the spectral solution on a relatively coarse 
grid captures all the essential details of the flow. The surface pres- 
sure coefficient from the spectral code MGAFSP [29] using 16 points in 
the radial (R) direction, and 32 points in the azimuthal (0) direction 
is displayed in Fig. 5. The symbols denote the solution at the colloca- 
tion points. For comparison, the result from the finite difference, 
multigrid, approximate factorization code FL036 [41] is shown as a solid 
line. The grid used in the benchmark finite difference calculation is 
so fine (64 x 384 points) that the truncation error is well below 
plotting accuracy. The FL036 and MGAFSP results are identical to 
plotting accuracy. The spectral computation on_tqhis mesh yields a lift 
coefficient with truncation error less than 10 . Spectral solutions 
on a 16 x 32 grid are thus of more than adequate resolution and 
accuracy for subsonic flows. 
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In Fig. 6 are shown convergence histories from ~~036, MGAFSP, and 
the finite difference, approximate factorization, single-grid code TAIR 
r421 l Meshes which yield approximately equivalent accuracy were 
chosen. The surface pressure results are the same to plotting accuracy, 
the lift coefficient is converged in the third decimal place, and the 
predicted drag coefficient is less than ,001. (Actually, the spectral 
result is an order of magnitude more accurate than these limits, but the 
TAIR result barely meets them.) Figure 7 demonstrates the improvement 
produced by the spectral multigrid scheme over the spectral single-grid 
method (AFSP). There is well over an order-of-magnitude gain in 
efficiency. 

v. A MIXED EQUATION. The potential flow problem is much more 
difficult whenever the flow field contains both supersonic (hyperbolic) 
and subsonic (elliptic) regions. Nevertheless, the spectral multigrid 
algorithm that succeeded for the subsonic flow case requires only a 
minor modification in order to succeed for the transonic (mixed.) problem 
as well. 

The most expedient technique for dealing with the mixed elliptic- 
hyperbolic nature of the transonic problem is to use the artificial 
density approach of Hafez, et al. [43]. The original artificial density 
iS t 

; = P - u6fJ (99) 

with 

p = max{O,l - 1_), 
M2 

(100) 

where M is the local Mach number and $p is an upwind first-order 
(undivided) difference. The spectral calculations employed a higher- 
order artificial density formula. The spectral method also required a 
weak filtering technique to deal with some high-frequency oscillations 
generated by the shock. Details are available in [39]. 

Flow Past an Airfoil. A lifting transonic case is provided by the NACA 
0012 airfoil at M, = 0.75 and 2' angle of attack. A shock appears 
only on the upper surface for these conditions and is rather strong for 
a potential calculation; the normal Mach number ahead of the shock is 
about 1.36. Lifting transonic cases are especially difficult for 
spectral methods since the solution will always have significant content 
in the entire frequency spectrum: the shock populates the highest 
frequencies of the grid and the lift is predominantly on the scale of 
the entire domain. An iterative scheme therefore must be able to damp 
error components across the spectrum. 

Surface pressure distributions from MGAFSP, TAIR, and ~~036 are 
shown in Pig. 8. The respective computational grids are 18 x 64, 
30 x 149, and 32 x 192. The latter two are the default grids for the 
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production finite difference codes. Spectral results obtained by trigo- 
nometrically interpolating the 18 x 64 grid results onto a much finer 
grid are included alongside the results at the collocation points. This 
reveals the wealth of detail that is provided by the rather coarse spec- 
tral grid. The shock predicted by TAIR is far more rounded and smeared 
than that of PLO36, reflecting the coarser mesh and larger artificial 
viscosity used in the former. The TAIR result shown is also only 
correct to one decimal place in lift as compared with a finer-grid 
result. Convergence histories for these three cases are shown in Fig. 9 
along with the results for MGAFSP on a coarser grid (16 x 48). 

Flow Past a Circular Cylinder. The MGAFSP code has recently been used 
for an extremely accurate determination of the critical freestream Mach 
number at which the potential flow past a circular cylinder first 
develops a supersonic region [44]. This spectral calculation represents 
an alternative to the asymptotic series method employed by van Dyke and 
Guttmann[45] to arrive at the estimate Merit = .39823780 f .00000001. 

The spectral multigrid potential code was used to determine the 
critical Mach number on several grids. On each of these grids calcula- 
tions were performed at a half-dozen or so freestream Mach numbers. For 
each case the maximum local Mach number was determined from the computed 
solution. Then an extrapolation procedure was employed to ascertain 
what freestream Mach number produced a maximum local Mach number of 
unity. This value was recorded as the critical Mach number for that 
particular grid. An estimate of the extrapolation error was made to 
ensure consistency. These results are given in Table XI. 

Finally, these grid-dependent calculations of the critical free- 
stream Mach number were extrapolated to the limit of infinite numerical 
resolution. The best result was obtained by assuming sixth-order 
convergence. The final estimate of the critical freestream Mach number 
is Merit 3 .3982415 & .0000002. The difference between this estimate 
and the one by van Dyke and Guttmann is more than an order-of-magnitude 
greater than the estimated errors. Possible explanations for this 
discrepancy are discussed in [44]. Neverth less, the agreement of the 
two estimates to better than one part in 10 f is remarkable in itself. 

Note that the convergence rate of the spectral multigrid potential 
result (at least sixth-order) pertains to a quantity (critical free- 
stream Mach number) which requires the fundamental solution (the 
potential) to be first differentiated and then extrapolated. Moreover, 
the MGAFSP code is so efficient that all of the requisite calculations 
consumed less than 20 minutes of CPU time on the CDC Cyber 175 and were 
performed on grids with no more than 2000 points. 

A comparable calculation by existing finite difference codes would 
likely exhibit only first-order convergence. It would be far more 
expensive both in terms of CPU time and storage, surely exceeding the 
central memory of a machine such as the CDC Cyber 175. Here then is an 
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example which firmly establishes the utility of spectral methods for 
nonlinear, multi-dimensional problems. 

Table tfI. Grid-dependent Critical Freestream Mach Numbers 

Grid Merit Error Estimate 

14 x 32 .398289 .000048 
18 x 40 .3982514 .0000099 
22 x 48 .3982450 .0000035 
30 x 64 .3982422 .0000007 

Research of the first author was supported by NASA Contract Nos. NASl- 
17130 and NASA-17070 while in residence at ICASE, NASA Langley Research 
Center, Hampton, VA 23665. 
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